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Abstract. Other than the individual machine learning models' capabilities, the weighted 
voting ensemble (WVE) technique relies on appropriate weight assignment in order to 
significantly realize prediction performance improvement. Often evolutionary global or 
grid local search heuristics are being applied for such a challenging optimization task. 
However, these techniques do not guarantee optimal solution finding. In turn, the surprising 
outstanding successes of brute exhaustive search procedure in producing similar results 
shed light on its significance and the need to exploit its possible weights solutions search 
space(s) with corresponding sizes as a key determinant factor for implementing a 
successful brute search procedure for finding optimal WVE solution with a trade-off the 
computational efficiency. This paper formulates an asymptotically WVE weights domain 
constraints optimal 1EX(-)Z+ initial term-based arithmetic sequences initialization 
function, and then a computational multi-precision search space-based generation 
algorithm is developed to find optimal WVE solution as part of the brute exhaustive search 
procedure. It took 45 minutes for a proposed algorithm to generate 133,192 combinations 
and find the optimal solution in weights space of precision 0.01. 

Keywords: Arithmetic sequences, brute exhaustive search, search spaces, artificial 
intelligence, machine learning, weighted voting ensemble, weights precision. 
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1. Introduction  
Machine learning (ML) ensemble model construction has been implemented in several 
real-world applications due to their prospective superiority in performance as compared to 
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individual ML models, for that reason, schemes thereof have widely been applied in several 
studies related to high-performance ML model implementations using ensemble learning 
strategies. In particular, weighted voting ensemble (WVE), among other ensemble schemes 
is an ensemble combination strategy that treats all models as unequal and weighs their class 
probabilities prediction, an act which have theoretical and empirical lead to extensive 
appreciation due to observed significant model performance improvements by WVE, on 
the contrary to its former variant, i.e. simple voting which assumes all models to be equal 
[1].  

On the one hand, while the key success of WVE’s is highly dependent on the 
challenging task of assigning appropriate weights to its base ML models predictions 
[1,2,3,4,5], various state-of-the-art evolutionary algorithms (EA), greedy search (GS) and 
brute force (BF) based boundless search heuristic methodological procedures are being 
developed and applied in various WVE optimization experiments to find deemed optimal 
weights.  

However, although both the stochastic population-based evolutionary and greedy-
based search heuristic procedures are often more efficient than brute exhaustive search, 
they may sometimes not guarantee to achieve of global optimum [6,7], whereas greedy and 
its variant implementation, such as the greedy randomized adaptive search which have been 
used by (8) may face a hill climbing problem, the evolutionary extremums may be caused 
by its population-based stochastic search heuristic implementation which may 
probabilistically select at that one time from a very unfit initialized genes chromosomes of 
the creature being optimized [9], among other things. As such, as observed in [10], the 
surprising outstanding successes of the systematic brute force-based exhaustive search 
counterpart in producing optimal WVE models configuration sets with predictive 
performances similar to those created by evolutionary-based optimization procedures in 
conjunction with its theoretical guarantee for finding an optimal solution through a search 
across systematic search spaces [11], it may become imperative to implement the brute 
exhaustive search procedures, as given the required high computational effort is available, 
it guarantees exhaustion of all candidate solutions combinations [11,12], for optimality 
search problems, such as this of finding the appropriate weights for the most accurate  
WVE, at a reasonable efficiency tradeoff when the deemed global optima solution 
estimations has been defined as a key requirement, that is, must occur.   

Therefore, given the significance of search spaces in optimization procedure, this 
paper presents a brute exhaustive search heuristic implementation for optimizing weighted 
voting ensembles in multi precisions local search spaces formulated from a 1EXP(-)Z+ 
Initial-term based arithmetic sequence and to return the deemed optimal weights 
configuration, particularly emphasizing on a scrutiny across multi precision search spaces 
for a systematic brute exhaustive based WVE optimization procedure implementation, as 
an advancement as a contribution to the existing ML WVE models optimization scientific 
knowledge body. Specifically, a mathematically valid function for computing as search 
spaces represented by multi precision weights that are asymptotic optimal to WVE weights 
domain constraints was derived. Then, an algorithmic implementation of the function was 
developed to computationally generate multi precision weights as search spaces for 
optimizing ensemble base members using brute search technique. Finally, the performance 
of the proposed function algorithm in formulating multi-precision search spaces for 
effectively finding the optimal WVE combination as a configuration set of the individual 
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base expert’s weights coefficient values was evaluated,  with an objective to maximize 
accuracy.  

The rest of this paper is organized as follows, chapter 2 is preliminary on ensemble 
learning, WVE, and brute exhaustive search techniques, chapter 3 presents the materials 
and methods used to develop the proposed weight generation algorithm solution for the 
brute searching procedure, chapter 4 presents and discusses the results of the experiment 
carried out to evaluate the proposed algorithm solution, and chapter 5 concludes the paper 
and provides recommendations of future work.  
  
2. Ensemble learning 
Ensemble learning in ML is a method used to combine results of various ML homogeneous 
or heterogeneous hypotheses or base experts’ predictions that answer the same question in 
order to have more predictive accuracy [13,14,15], have theoretically and empirically 
proved to have potential for improving the predictive performance of individual learners 
by combining their predictions, through an ensemble function of all base members, and the 
ensemble error becomes a decomposition of average individual members errors essentially 
to compensate for the lower average accuracy of individual members by the higher 
disagreement weight the ensemble as long as it is correct [16,17,18].  
 
2.1. Weighted voting ensemble (WVE) 
While several alternative implementations of ML ensembles could exist, model predictions 
or voting are the two common ways to combine single base model predictions, whereby 
averaging mainly reduces variance. Voting selects the class mostly predicted by induvial 
models. Most importantly, as presented in [19], the WVE whose output y(x) can be 
expressed through equation (1), is an improved variant of simple voting which was 
introduced with an understanding that different individual models to form an ensemble 
cannot in most practical cases have same influence within that formation, in turn specifying 
a weight coefficient often between 0 and 1 for each member which can be same or different 
depending on optimality of the ensemble thereof and whose total weight summation should 
be equal to one as in equation (2) can provide better predictive performance, unlike in 
simple voting which barely assume models are equal [20,21,22,23].  
 

y�x�=argmax∑ wiXA(C j(x)=j)k
i=1            (1) 

 
“where y of all the unknown instances χ in the test sets are evaluated as the argmax function 
of the respective index with the largest value from array A = {1, 2, . . . , M} denotes the set 
of exclusive class labels and XA indicates the characteristics function that considered the 
predictions j ∈ A of a classifiers Cj on instances and create vectors where the j coordinates 
take values of one and the remaining takes the value of zero [19]. And, wi which is the 
weight of model Cj is constrained by equation (2), 

      
           ∑ wi=1,   wi>0, ∀i=1,….k,  k

i=1            (2) 
Whereby k is the variable representing the index with the product of the WVE’s base 
classifier’s probability prediction and its corresponding weight wi. 
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2.2. Brute exhaustive search algorithm 
Nearly all science and engineering fields use search algorithms, which automatically 
explore a search space to find high-performing solutions [24]. Brute or exhaustive search 
algorithm is a set of instruction used to find optimal solution by examining all possible 
solution combinations. This search process is not that new at all, it has been applied in 
several optimization problems to search for the most deemed optimal solution [12,23,25]. 
 With respect to WVE’s optimization, the brute-force or exhaustive search 
algorithm have also been used in various studies, like in [22] were brute search was 
implemented to perform best ensemble model selection to integrating capabilities of CNN 
architectures and ensemble learning for decoding EEG signals collected in motor imagery 
experiments. Also, in [26] static and dynamic predictor weighting strategies were 
implemented and tested to improve the analog ensemble performance for wind power 
forecasting at on and offshore wind farms by using a brute force search procedure with 
error minimization over all possible predictor combinations. Usually, the general basic 
algorithm that follows an exhaustive or brute force search require two main stages: namely, 
Listing all the possible candidate solutions in a systematic way, and checking for the 
optimal solution and reporting it [12]. While the main disadvantage of brute exhaustive 
technique being its requirement for massive computational resources in order to find 
solutions in very large search spaces and which may sometimes makes it slow and 
infeasible [27], a drawback which can be addressed by using the search space reduction 
and algorithm parallelization strategies such as using parallel CPU–GPU computing 
structure. Its key advantage being the theoretical simplicity in implementation and ability 
to always identify global optimal solution given computational resources are available [14], 
with which may make this algorithm be deemed as a good choice especially when it will 
not require days, months, or years to locate the required solution in a real-life optimization 
problem.  
 
3. Materials and methods  
This study used ML ensemble techniques, brute exhaustive optimization to implement the 
optimal WVE solution. Also, the study applied mathematical linear algebra vectors and 
matrices, as well as arithmetic sequences were used to design and implement the proposed 
algorithm. Finally, laboratory experimentations were performed to evaluate the 
effectiveness of proposed solution in optimizing WVEs for soil fertility stratus prediction 
based on a real world agricultural soil chemical properties ML dataset, using the proposed 
algorithm’s weights coefficients matrices.  
 
3.1. Development of the 1EXP(-)Z+ search spaces based computational brute 
Exhaustive WVE Optimization Algorithm 
Lemma 3.1. From equation (1) in sub section 2.1.7. of the weighted voting ensemble 
scheme for model performance improvement, If the WVE combination equation (1) that is 
described by [19], when expressed as in equation (3) of its matrix form Y, that expresses a 
mathematical system of linear equation’s that can be operated through matrix operations 
to compute the overall prediction outcomes for each WVE’s combinations as a summation 
of the product of weights coefficients Wi and j base experts class probability predictions 
C1 to Cj on a dataset D  having d unseen targets instances values, where i > 1, and j > 1. 
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   Y= 

⎣⎢
⎢⎢
⎡ w1c1 w1c2 w1c3 wicj
w1c1 w2c2 w2c3 wicj
w2c1 w3c2 w3c3 w2cj

. . . .
wic1 wic2 wic3 wicj ⎦⎥

⎥⎥
⎤
,             (3) 

 
Thereby, Y can be compared against true classes to score the prediction accuracy of the 
WVE, which for all other possibly available WVE combinations, the optimal set is chosen 
based on the one which satisfies an established criteria such as error minimization, 
accuracy or other performance measure maximization as an objective function.  
Proof: The WVE matrix form in equation (3) has been notated by [19]. Where the study 
referenced values of the weights coefficients as a function of the individual WVE base 
learners f1_score performances for evaluating the efficiency of individual learners in the 
ensemble during training. 
 In addition, by using equation (1) of the WVE scheme in the sub section 2.1., or 
its corresponding matrix form, the WVE can also be represented into the basic system of 
linear equations defined in [28,29], as 
 

Y1 = w1c1 + w1c2 + w1c3 + …………….. + wicj 
Y2 = w1c1 + w2c2 + w2c3 + …………….. + wicj 
Y3 = w2c1 + w3c2 + w3c3 + …………….. + w2cj 

. 

. 

. 
Yk = wic1 + wic2 + wic3 + …………….. + wicj 

 
These of which can be in matrix form as shown in equation (4) 
  

   Y[k]= 

⎣⎢
⎢⎢
⎡w1 w1 w1 wi
w1 w2 w2 wi
w2 w3 w3 w2
. . . .

wi wi wi wi ⎦⎥
⎥⎥
⎤
 *  

⎣⎢
⎢⎢
⎡c1
c2
c3
.
cj ⎦⎥

⎥⎥
⎤
,                              (4) 

 
3.1.1. The proposed multi precision search spaces formulation function 
In general, the generation of a WVE of ML classifiers may consider mostly two phases that 
are i) Using various candidate ML algorithms to generate potential base members’ 
classifiers that are to be used to form the WVE combinations, and ii) selection of base 
models optimal weights based on the WVE combination grounded by a  accuracy 
performance criteria. 
Proposition 3.1.1. If instead an ordered weights coefficients matrix W[k][n] can be 
automatically generated from the permutation of an explicit vector W[n] that is referred to 
as the  search spaces Sp and Spz+  here in,  of weight values that satisfy the WVE weights 
coefficients domain constraints in equation (2), with a variable matrix  C[j][d] of j base 
expert’s class probability predictions on dataset D containing d total instances. Such that 
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the resultant WVE combination k constant predictions matrix Y[k][d] or Y_pred, can be 
obtained from the  product of the ordered weights coefficients matrix W[k][n] and variable 
matrix  C[j][d] as shown in equation (5), which is augmented from equation (4) with the 
appending of the dimension of the dataset instances Id, for practical optimization purposes. 
 

            Y�k�d= �k1w1 ⋯ k1wn⋮ ⋱ ⋮
kkwn ⋯ kkw1

� ∗  �c1I1 ⋯ c1Id⋮ ⋱ ⋮
cjI1 ⋯ cj Id

�,                             (5) 

 
At that juncture, assuming that the variable matrix C[j][d] of m classifiers class probability 
predictions on instances I of dataset D with length d are provided, and an initialization 
function for explicitly formulation of values for generating the weight coefficients matrix 
W[k][n] which satisfy WVE weights constraints in equation (2) can be derived and 
developed as part of an automatic weighting values generation algorithm,  then a Brute-
exhaustive optimization procedure can be applied to search one optimal combination set 
from the automatically created WVE combinations predictions matrix in equation (5). This 
whose general form is that in equation (3). Whereas, equation (4) serves to compute the 
general form in equation (3) as a product of the of the weight coefficients W[k][n] and 
variable matrices C[j][d] of j individual classifiers probability predictions on supplied 
dataset d as represented in equation (5). But rather this time, the weight coefficients is 
automatically generated, hence the complete WVE general form in equation (3) will be 
automatically generated. It is to be proved that the general WVE combination matrix form 
representation in equation (3) can be automatically generated. In such, specifically for 
practical optimization purposes, brute exhaustive search can be automatically applied as 
long as dataset D with instances exist. 

Proof: First, the variable K which represents the combinations counts is introduced into 
equation (3) to obtain a new representation form as in equation (6),  
 

  Y�k= �k1w1c1 ⋯ k1wncj⋮ ⋱ ⋮
kkwnc1 ⋯ kkw1cj

� * �c1I1 ⋯ c1Id⋮ ⋱ ⋮
cjI1 ⋯ cjId

�,                      (6) 

 
Then in subsequent sub sections 3.1.2, and 3.1.3, a function is derived to initialize the 
weights variable values, and incorporated as part of the proposed “1EXP(-)Z+ initial term 
based arithmetic sequences multi precision search spaces algorithm function for systematic 
brute exhaustive optimization of intelligent small WVE (1EXP(-)Z+-ITASMPSS-BEO-
ISWVE)”. 
 
3.1.2. 1EXP(-)Z+-ITASMPSS-BEO-ISWVE weight coefficients values formulation 
function closed loop equation 
Whereas, as observed in [30], Taylors series can often be used for the derivation of 
algorithmic system’s closed loop equation that expresses a particular problem domain. 
Herein, through lemma 3.1 and proposition 3.1.1, arithmetic sequence are used as a basis 
for the search space generation. These were applied as follows: A search space referenced 
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by a positive integer denoted as Z+, which is first set with Z+=1 to represent the search space 
1, whose precision is the first term ao of an arithmetic sequence A in equation (7),  
 

A= ∑ (a0 + a0*n(1/a0)
n=1 ),                           (7) 

 
3.1.3. 1EXP(-)Z+ based weights coefficients matrix and search spaces matrix 
computation 
In order to automatically generate the search space values, represented as weights 
coefficients values matrix. First, the function F(Z+) in equation (8) whose computational 
representation is provided by the function in equation (9), is proposed herein to 
automatically initialize the first terms ao’s of the sequence, for all search spaces as sequence 
referenced by Z+, the positive integers greater than zero. 
 

F(Z+) =1exp (-) Z+ , for Z+ > = 1,                           (8) 
 

F(Z+) or ao  = 1exp-Z+, or simply 1/(1expZ+),              (9) 
 
Then F(Z+) which is ao from equation (9), is used to serve as the basis for computationally 
generating the respective second to nth terms a1 to an of the arithmetic sequence A by using 
the arithmetic sequence’s closed loop equation1 (10).     
          

      an = ao + d*n,                            (10) 
 

Consequently, by substituting ao in the arithmetic sequence expression A from equation (7) 
by the proposed initialization function equation (9) values, to obtain arithmetic sequence 
AZ+ in equation (11).  

 

                 Az+ = ∑ ( 1exp-Z+ + 1exp-Z+*n(1/1exp-Z+)
z+=1 ),            (11) 

 
Whereas, values a0 to an, are used herein to represent weights values respectively 

w1 to wn specifying the WVE weights values domain. the permutation of the values a0 to 
an as weights w1 to wn, to the list of WVE’s constituting base models is later performed to 
complete the development of the proposed function algorithm for generating the search 
domain as WVE combinations proposed in proposition 3.1.1. This of which will be brute 
exhaustively searched. Finally, The weights coefficients values matrix as search space SPZ+ 
of K combinations is formulated as a permutation of sequences Az+ in equation (11) that 
represents the automatically computed weighting values by the WVE’s list of base model 
C[j] in equation (12), to form the final automatically generated combinations matrix in 
equation (13). 

 
SPZ+= permutation (AZ+, C[j]),                   (12) 

 

                                                 
1 O. Levin, “2.2: Arithmetic and Geometric Sequences,” Mathematics LibreTexts, 2019. 
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SPZ+= permutation�� ∑ (1exp-�� + 1exp-�� ∗ n(L)
n=1 )�,C[j]�        (13) 

 
where L is the reciprocal of the initialized fractional value based on 1eZ+, and Z+ is greater 
or equal to 0. A re-arrangement of the generated permutation spaces Spz+, from equation 
(13) in order of the dimensions of the variable matrix representing available classifiers 
class probability predictions would represent weighted output predictions for K 
combinations as expressed in equation (14). 
 

        �y1k1⋮
ykkk

� = � k11exp-z+c1 ⋯ k11exp-z+ ∗  n cj⋮ ⋱ ⋮
kk1exp-z+ ∗  nc1 ⋯ kk1exp-z+c(nj )

�,                        (14) 

 
And by decomposing the matrix in equation (14) into its constant, coefficients, and variable 
matrices as defined in [31,32], equation (15) is obtained, which computes for the constant  
matrix as an output prediction as a product of the coefficients, variable matrices of the 
general WVE matrix form in equation (14). 
 

                         �y1k1⋮
ykkk

� = � � 1exp-!� ⋯ k11exp-!� ∗  n⋮ ⋱ ⋮�"1exp-!� ∗ n ⋯ kk1exp-!� � * �c1⋮
c2

�,                  (15) 

 
This of which when subjected to class probability predictions on dataset with d instances,        
the vector Y or Y[k][d] of equation (15) could finally be calculated as the argument max of 
the product of weights coefficient matrix and classifiers class probability predictions, which 
is then scored for accuracy against the true targets as observed in the data set D with I 
instances, for each k combination the accuracy is compared with the previous maximum 
score to pick it as a new maxim if the previous is small otherwise the algorithm proceed to 
the next combination iteration k. Until terminations conditions, the kth combinations with 
maximum accuracy is return as optimal WVE combination configuration set. 

Whereas the final automatically generated search combinations in equation (14) is 
similar to the general WVE matrix equation (4) which was decomposed from matrix (3) in 
Lemma 3.1. In addition, as the WVE’s full-form matrix in equation (13), and its 
corresponding variable and constant matrices in equation (14) are also similar to the WVE 
matrix forms in equations (5) and (6) in the initial proposition 3.1.1. Then, it entails that 
the automatically derived matrix form based on the proposed arithmetic sequences weights 
coefficients formulation function can well serve for representation of K possible WVE 
combinations in equation (1). Hence, the general WVE combination matrix form 
representation in equation (3) can be automatically generated. These could be 
implemented, which can then serve as automatic synthetic search space for brute 
exhaustive search. 
 
3.1.4. The complete 1EXP(-)Z+-ITASMPSS-BEO-ISWVE algorithm 
A pseudo-code of the straightforward implementation of the derived 1EXP(-)Z+ initial 
term-based sequences formulation and weights coefficients matrix generation algorithm is 
presented in Table 1. The algorithm execution starts at step 1, in step 2, the first sequence 
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or search space reference is set to 1. Repeatedly from setp 3 until step 11, the search spaces 
SPZ+ are generated. In step 12 the brute exhaustive procedure is called to search the formed 
search space SPZ+ and return an optimal weights configuration set from the corresponding 
SPZ+ based on class probability predictions C[j][d]. In step 13, the next sequence is 
initialized. In step 14, the algorithm checks if objective criteria and computational capacity 
are still not limited; the process repeats until either one or both of the termination conditions 
are satisfied. Finally, it provides the optimization results in step 15 before ending the 
execution in step 16. Whereas IEEE’s mathematical co-processor FPA units permissible 
operation denoted by e substitutes ‘exp’ for practical implementation in the algorithm. 
 

Table 1: The Complete 1EXP(-)Z+-ITASMPSS-BEO-ISWVE Algorithm. 
Input:  Base epxerts Probability predictions, true targets 
Step 1: Start 
Step 2: initialize search space precision (Z) = 1 
Step 3: REPEAT 
Step 4:     Compute first term of sequence as ao = 1e – Z 
Step 5:     Initialize Search_space reference N = 1 
Step 6:     REPEAT 
Step 7:        Compute nth term an, an = (1e - Z) + ((1e - Z) * N) 
Step 8:        Sequence = ∪.Sequence+ an 
Step 9:        Increment N = N + 1 
Step 10:    UNTIL N < = 1eZ 
Step 11:    SPZ+ = permutations(Sequence, E[ j]) 
Step 12:    Brute_Exhaustive_ optimization(SPZ+, C[j][d]) 
Step 13:    Increment Z = Z + 1 
Step 14: UNTIL Z reach computational lim. or combination k 
Step 15: Display optimization results 
Step 16: End 
Output:  Optimal WVE subsets weights configuration 

 
The 1EXP(-)Z+-ITASMPSS-BEO-ISWVE computational complexity was then 
asymptotically analyzed by calculating the proposed algorithms instructions lines 
asymptotic execution time as follows: substituting the complex for each execution line 
from the algorithm in Table 1, the total complexity could then represented as : 
 
Total Complexity (TC) = F(Z+) = {1}+{1}+{1}+{1e-Z +}+{1}+{1}+{((1eZ +) + ((1e-
Z+)*(N-1))} +{1}+{1} +{1eZ +}+{1}+{1}+{1}+{1}+{1}+{1} 

  TC=$11%+{1e-N}+{( �e-N�+&�e-N�*[ �N-1�]'}+{1eN}               (16) 

 
From equation (16), it can be seen that {1e^N} is the highest order term, which is the worst-
case scenario. Therefore, the algorithm has a worst-case scenario exponential complexity 
of {1eN}. When this type of computational time complexity might be undesired in cases 
where search space precision grows so large, the upper bound running time could even fast 
be reached when the search spaces are integrated into the brute exhaustive-based search 
heuristics algorithm execution that would mainly arise from the size of ensemble base 
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expert predictions to be weight estimated during optimization. Whereby, algorithm 
execution acceleration procedures namely, the constraining of search spaces with weights 
points, coupled with the vectorization of data structures thereof, and computation on 
reasonable computational hardware resources were used to facilitate for rapid execution of 
the algorithm computations in attempts to provide the algorithm execution run time 
minimization.  
 
3.2. Experimentation 
3.2.1. Datasets and base ML models 
As part of this study, the dataset used to experiment the algorithms effectiveness in 
formulating search spaces on which the optimal weights of a WVE’s could be estimated, 
was primarily obtained from the Tanzania Agriculture Research Institute (TARI), under 
the African Soil Information Services (AFSIS), and ministry of agriculture. The dataset 
contained sixteen (16) features, 15 of which are the key soil chemical properties necessary 
for the determination of fertility level as defined in [33], and the corresponding maize 
yields in harvested tons estimates mapping as index to fertility. With respect to ML 
classifiers, a total of seven algorithms classifiers were used, namely the support vector 
machine (SVM) [34], DecisionTreeClassifier (DT), GaussianNB (NB), 
KNeighborsClassifier (KNN), AdaBoostClassifier (AdaBoost), 
GradientBoostingClassifier(GB), and RandomForestClassifier(RF) [35]. 
 
3.2.2. Performance evaluation 
In order to evaluate the performance of the proposed 1EXP(-)Z+-ITASMPSS-BEO-ISWVE, 
an asymptotic analysis of its 1EXP(-)Z+ initial term based search space sequence 
formulation function algorithm procedures codes was performed to determine the 
algorithm computational complexity. Furthermore, the proposed algorithm’s hardware 
clock cycles based execution times, and size complexity were obtained by executing it and 
profiling its search space function on the Intel(R) Core(TM) i7-855OU CPU @ 1.99 GHz 
with 16 GB RAM, as well as in the Core i8 hardware with 64 GB RAM, 64-bit operating 
system, which produced a result set constituting of similar results from Core i7, with more 
additional better results due the Core i8 hardware capacity which permitted for more 
computations. Accuracies and receiver operating characteristic’s area under the curve 
(ROC AUC) of the WVE’s found from search spaces generated by the proposed algorithm 
were used to evaluate its effectiveness. These are functions of the basic confusion matrix 
respective true positives (TP), false positives (FP), true negatives (TN), and false negatives 
(FN). Accuracy as defined in equation (17), is the proportion of all predictions that are 
correctly identified as “Positive class” and “negative class”. 
 

       Accuracy= (TP + TN) / (TP+TN+FP+FN),                     (17) 
 
Whereas accuracy is the most intuitive performance measure of model performance, the 
area under the curve (AUC) of the ROC AUCs, which for a multiclass problem can be 
computed by equation (18), was used as the main measure of effectiveness by observing 
the scores of the various WVE that are estimated from the formulated previously deemed 
effectual search spaces that resulted from the proposed 1EXP(-)Z+ initial-term based 
arithmetic sequences search spaces with accuracy maximization as an objective function.  



Brute Exhaustive Optimization of Intelligent Small Weighted Voting Ensembles in 
1EXP(-)Z+ Initial-Term based Arithmetic Sequence’s Multi Precision Search Spaces 

39 
 

 

 

        AUC= 1

c�c-1� ∑ ∑ (AUC�j|k�+AUC�k|j�)c
k>j

c
j=1 ,                     (18) 

  
“where c denotes a total number of classes, AUC (j | k) represent AUC having positive 
class j, and negative class k” [36]. This of which can also be plotted and presented through 
ROC-AUC curves as false positive rate (1-specificity) against the true positive rate 
(sensitivity)  [37,38,39]. 
 
4. Results and discussion  
Following multiple execution of the proposed algorithm function and its overall search 
heuristic procedure runs, the results for its both its efficiency and effectiveness 
performance evaluation could be presented here in for the proposed 1EXP(-)Z+-
ITASMPSS-BEO-ISWVE function efficiency and its brute exhaustive search based 
integration procedure effectiveness in optimizing for high performance WVE. 
Additionally, following an asymptotic analysis of the proposed algorithm’s overall 
sequences generation function of equation (11) in sub section 3.1.2., it could be seen that, 
the 1EXP(-)Z+ based function would be mathematical validity for computing the WVE 
weighting values combinations as expressed by the WVE 1EXP(-)Z+ based matrix in 
equation (14), or its corresponding weight coefficients values matrix in equation (15).   

As shown in Figure 1 of the derived 1EXP(-)Z+ initial term based arithmetic 
sequences formulation function expressions 3-D graphical display of its valid 
computational space, portrayed asymptotic optimality to the WVE constrained boundaries 
in equation (2). Whereas it can be observed the sequences initial term values represented 
by the y-axis in Figure 1 may get smaller as much as but never equal to 0 on the y-axis, 
hence the weights greater than 0 constraint is always maintains through that presented 
asymptotic characteristic, in turn the size of the sequence may grow larger to as much as 
the reciprocal of the 1EXP(-)Z+ as read form the x-axis based on the initialized sequence’s 
first term on the y-axis. Based on those facts, the proposed function is considered 
mathematical valid for an optimal algorithmic system computational implementation. At 
that juncture a function for explicitly formulating values as weight coefficients W[k][n] 
which satisfy WVE weights constraints in equation (2) could be derived based on the 
proposed 1EXP(-)Z+ initial term arithmetic sequences ,  then a brute-exhaustive 
optimization could be applied to search one optimal combination set, hence that function 
provide for an algorithmic computational implementation. As shown in Figure 1 of the 
sequences formulation function, it is evident that the proposed weights coefficients values 
formulation algorithm’s function is asymptotic optimal to the WVE weights domain 
constraints in equation (2), hence this study deduce that it can be computationally 
implemented to compute for the WVE combinations predictions Y[k][d], which is 
computed as the argument max function of the product of weights coefficient matrix and 
classifiers class probability predictions as presented in equation (15), which is then scored 
for accuracy against the true targets as observed in the data set D with I instances, for each 
k combination the accuracy is compared with the previous maximum score to pick it as a 
new maxim if the previous is small otherwise the algorithm proceed to the next 
combination iteration k. Until terminations conditions, the kth combinations with 
maximum accuracy is return as optimal WVE combination configuration set. 
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Figure 1: 1EXP(-)Z+ based Sequence Initial term function asymptotic optimality to WVE 
weights constraints 
 

 
Figure 2: 1EXP(-)Z+-ITASMPSS-BEO-ISWVE sequences formulations total hardware 

clock cycles time in the most stable search space reference Z+ = 2 
 
4.1. 1EXP(-)Z+-ITASMPSS-BEO-ISWVE and optimization efficiency 
Results of the algorithm efficiency are presented. Figure 2 displays results of the proposed 
1EXP(-)Z+-ITASMPSS-BEO-ISWVE sequences formulations total hardware execution 
time profile in stable search space reference Z+ = 2, the algorithm could be observed to 
consume approximately 90 MiBs, with total optimization execution time of approximately 
1.7 seconds to formulate the sequences in for search space with reference Z+=2 having 
precision factor 0.01, in Core i8 64 GB RAM, which maybe reasonable in WVE 
optimization procedure.  
 
4.2. 1EXP(-)Z+-ITASMPSS-BEO-ISWVE effectiveness 
The proposed 1EXP(-)Z+-ITASMPSS-BEO-ISWVE was highly effective in formulating 
multi-precision 1EXP(-)Z+ based sequences that were processed to generate search spaces 
with varying combinations sizes in both search spaces 1 and 2, of which executions across 
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referenced to these spaces were observably converging following execution of the 
proposed   implementation a countless number of times. With 10 different sequence values 
in search space one (1), 100 in two(2), and 1000  in search space three(3) where the 
experimental core i8 64 GB hardware capacity limitation was reached to invoke the 
termination criteria, as a result forming an incomplete search space which was stored in 
log files. Among other reason, that could be explained by IEEE 754 standard for FPN 
system’s FPA requirements specifying hardware’s math co-processor world bit size 
memory limitations for FPA [40]. 
 

 
 

Figure 3: WVE initial and filtered potential search combinations in the stable domain 
search space 1 and 2 
 
As annotated by the search space domain 2 filtered combinations plot in Figure 3. It can be 
seen that, unlike in search space 1, where five thousand and forty (5040) combinations 
were initially generated  and filtered expressively by using the WVE weights boundary 
constraints in equation (2) as a reduction strategy that lead into only twenty candidate 
solutions, whereas these may be tractable by trial and error heuristic procedure, it would 
be a tedious task to do the same in search space 2, was the total number of generated 
combinations grew exponentially to one hundred and thirty-three thousand nine hundred 
and ninety-two (133,192) further filtered combinations of candidate solutions subsets 
which is a reduction from the initial formed ninety-four million (94,000,000) combinations 
due the maximum weight coefficients value being constrained to max of 1. Such 
combinations would be challenging to formulate without a computational, algorithmic 
implementation, such as the one proposed in this study, to effectively find optimal weights 
configuration sets based on prediction accuracy performance maximization as main 
objective criteria through brute exhaustive searching by considering the available hardware 
capacity. 

In order to scrutinize the search space precision effect on the optimality based on 
accuracies of the various best WVE subsets, the proposed 1EXP(-)Z+-ITASMPSS-BEO-
ISWVE was executed in search spaces 1 and 2, which have respective precision factors of 
0.1 and 0.01. The partially logged combinations were processed independently of the 
package where it could not complete execution search space reference Z+ = 3, with a 
precision factor of 0.001. As observed in Figure 4, search space with lower precision led 
to lower WVE accuracies, unlike those with higher precisions which showed to produce 
WVEs model with higher prediction accuracies. This fact explains not only that refined 
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solution values could be achieved in search spaces with more higher precisions, but also it 
represent a good indication about the effectiveness of the proposed 1EXP(-)Z+-ITASMPSS-
BEO-ISWVE algorithm function in generating search spaces as one of the key requirement 
for the successful execution of the consequent search procedure, as illuminated in [24], that 
how search spaces are a determinant factor as they have a significant effect in the overall 
optimization algorithm procedures implementation such as in finding WVE optimal subset, 
other than its diversity and constituting individual base model accuracies. 
 

 
Figure 4: Best WVE accuracies in Space Z+ = 1 and Z+ = 2 

 
Finally, as shown in Figure 5 of ROC AUC’s plots for the three base models WVE that 
consisted of RF, SV, and KNN (See Figure 5 (a)), as well as another with four base models 
namely GB, RF, SVM and KNN (See Figure 5 (b)). These of which were brute optimized 
in search space having 0.01 precision and scale weights coefficient matrices, the 
effectiveness of the proposed 1EXP(-)Z+-ITASMPSS-BEO-ISWVE algorithm in generating 
effective search space with respect to the number of WVE’s base models could be inferred. 
  

 
(a)  (b)  

Figure 5: Optimal WVE results in respective 0.01, and 0.001precisons and scales search 
space for three and four WVE base models ROC plots and AUC results 
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It could be observed that, while the optimal WVE with three base model was good in 
correctly predicted target classes low and medium with respective ROC AUC scores of 
71%, 70%, it almost guesses the high target class with 62% ROC AUC scores which is 
close to the 50% (0.5) cut point. In the contrary, the one with four base models exhibited a 
very good ability in increasingly discriminating and providing correct prediction for all 
low, medium, and high target classes with respective ROC AUC scores of 83%, 82%, and 
82%. Whereas, as presented in the results, ROC AUC results of both these WVE’s clearly 
outperforms results in another study by [41], other than the increased WVE diversity, such 
an achievement was due to the increase in the practical search space resulting from extra 
permuted base model. 
 
5. Conclusion 
In this paper, a 1EXP(-)Z+-ITASMPSS-BEO-ISWVE algorithm for optimizing weighted 
voting ensembles by using multi precisions search spaces was proposed to generate search 
spaces by using a 1EXP(-)Z+ initial term based arithmetic sequences generation function 
algorithm which is mathematically valid to WVE weights domain constraints. 

The proposed algorithm was observed to be effective in formulating multi precision 
search spaces and finding appropriate weights configurations sets across the 1EXP(-)Z+ 
computationally generated multi precision WVE’s base experts vs weights combinations 
search spaces. Whereby, ninety four million (94,000,000) possible values were formulated 
in the stable search space 2 whose sequence initial term value is 0.01, with 100 values as 
search space weights points, whereby by using four (4) base models, ninety four million 
(94,000,000) combinations could be generated, these which reduced through WVE weights 
constraints, into one hundred thirty three thousand nine hundred and ninety two (133,192) 
candidates. An optimal GB, RF, SVM, and KNN classifiers WVE could be obtained at a 
score of 94% prediction accuracy, with 83% AUC score for the macro average and 92% 
for the micro AUC score, which was 6% higher than a previously obtained RF, SV and KN 
combinations micro AUC score of 86%. Nevertheless, due to massive computational 
requirements that prematurely halts execution in search space 3 using Core i8 hardware 
with 64 GB RAM, with independent processing of the partially logged combinations to 
find a combination of GB, DT, RF, SVM, and KNN classifiers scoring an accuracy of 
98.98%. Therefore, while the proposed algorithm has been effectively to optimize WVE 
combinations through its search space 2 and 3 generated weights coefficient matrices, it 
cannot be applied to very large WVEs. 

Future work could be to investigate metaheuristics for improving the efficiency of the 
proposed 1EXP(-)Z+-ITASMPSS-BEO-ISWVE algorithm. Also, to experiment 
implementation of the proposed algorithm through quantum computation in capitalizing 
the rich qubit storage structures to deal with memory limitations, and inclusion of large 
WVEs optimization. 
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