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Abstract. The axiomatization is an important work in fuzzy rough set theory, which can 

provide a concise and direct description for approximation operators of fuzzy rough sets. 

In this paper, using the inner product and outer product of fuzzy sets, we give a single 

axiom characterization of some special - fuzzy rough approximation operators. 

They include six fuzzy approximation operators generated by reflexive, symmetric, and 

transitive fuzzy relations and their composition. 
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1. Introduction 

Pawlak’s rough set theory [9] is a new tool for dealing with uncertain and incomplete 

knowledge. Nowadays, it has been widely expanded [6,7,8,12,19,22,23]. The upper and 

lower approximation operator is the most important concept in rough set theory. There are 

two main methods for the study of approximation operators, the constructive method and 

the axiomatic method. The constructive method is constructing a pair of upper and lower 

approximation operators from a binary relation on a nonempty set and studying their 

properties. The axiomatic method takes abstract operators as the primitive notion and finds 

some conditions (called axioms) to ensure the existence of binary relation s.t., the 

approximation operator induced by the binary relation is exactly equal to the given abstract 

operators [6,21,22]. 

Nowadays, the axiomatic method has been extended to fuzzy situations by many 

scholars. At first, scholars used a minimal axiom set (including at least two axioms) to 
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describe various fuzzy rough sets [5,8,10,16,20]. In 2013, Liu [4] first put forward the 

idea and method of describing (fuzzy) rough sets by a single axiom. The method he gave 

was based on the outer product and inner product of fuzzy sets; the given characterizations 

are simple in form. Liu characterized some fuzzy approximation operators based on the 

maximum triangular norm and the minimum triangular conorm. Along with Liu's research, 

Wu [17] extended his work to more general - fuzzy rough sets determined by any 

triangular norm   and conorm ▽ , Wu [15] further generalized the corresponding 

characterizations to intuitionistic fuzzy rough sets. But, the above-mentioned reference 

only considers the approximation operators generated by symmetric, symmetric and 

reflexive, symmetric and transitive fuzzy relations, some other important characterizations 

of the approximation operators generated by reflexive, transitive fuzzy relation and their 

composition have not been presented. Therefore, in this paper, we shall give the single 

axiomatic characterization of that - fuzzy rough approximation operators; this 

paper is committed to proving that reflexive, transitive and reflexive+transitive 

approximation operators generated by reflexive, transitive fuzzy relation and their 

composition, respectively. 

The content of this paper is arranged as follows. Section 2 reviews some basic 

concepts and symbols used in this paper. Section 3 presents the main results, i.e., gives the 

single axiomatic characterization of some - fuzzy rough approximation operators 

by using the inner and outer products of fuzzy sets. Finally, we summarize the results and 

give future work.  

 

2. Preliminaries 

We fixed some concepts and symbols for later use. 

In this paper, we always use 
2:[0,1] [0,1]→ and 

2[0,1] [0,1]→▽:  to represent a 

left-continuous 𝑡-norm and a right-continuous 𝑡-conorm [3], respectively.  

A decreasing mapping from [0, 1] to [0, 1] is referred to be an involutive negation 

[3] when (1) 0, (0) 1= =  and [0,1] a , ( ( )) =a a .  

A mapping : [0,1]→A U is called a fuzzy set in 𝑈. The family of all fuzzy sets in 

U  is denoted as ( )U . The operations on [0,1] can be transferred onto ( )U  point-

wise. For ( )A,B U and { , , }  ▲,▽, ,we define ( )( ) ( ) ( ),A B x A x B x =   

( ) ( ( )).A x A x= For [0,1]a , we use a  to denote the constant fuzzy set valued a .  

A fuzzy set ( ) U U is called a fuzzy relation (FR for short) on U . The pair 
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( ),U  is referred a fuzzy approximation space (FAS). Furthermore,   is called 

(1) reflexive if ( ) 1, ., Ux x x =   (2) symmetric  ( ) ( ), ,, ,x y y x x y U  =  . 

(3) -transitive if 
y

( , ) ( , ) ( , ), , ,
U

x z x y y z x y z U


       . 

 is termed a tolerance provided it fulfils (1) + (2), a preorder provided (1) + (3), and 

an equivalence provided (1) +(2) +(3). 

 

Definition 2.1. [17] Let , ( )A B U , we define the inner product ( , )I A B , outer product 

[ , ]O A B of A and B as 

( , ) ( ( ) ( )),


= 
x U

I A B A x B x O[ , ] ( ( ) ( )).


= 
x U

A B A x B x
 

The following proposition collects some properties of the inner product and outer produce. 

Proposition 2.1. [17] Let , , , ( ) ( ), jA B C A j J U [0,1]a then 

(I1) ( , ) ( , ).I A B I B A=  (I2) ( , ) ( , ).A B I A C I B C   (I3) ( , ( , .I a A B a I A B=） ）   

(I4) ( , ) , .j j
j J j J

I A B I A B
 
 = （ ）(O1) [ , ] [ , ].O A B O B A=  (O2) [ , ] [ , ].A B O A C O B C    

(O3) [ , ] [ , ].O a A B a O A B=  (O4) [ , ] [ , ].j j
j J j J

O A B O A B
 
 =   

Definition 2.2. [7,17] Let ( ),U  be a FAS. For each ( )A U , the pair ,( ( ) ( ))A A 

is said to be ( ),  -fuzzy rough sets of A  , where ( )A  and ( )A
  

are defined by: 

,x U   

 ( )( ) ( ( , ) ( )),   ( )( ) ( ( , ) ( )).
y U y U

A x x y A y A x x y A y
 

 =    =    

  and   are called -fuzzy rough lower approximation operator and -fuzzy rough 

upper approximation operator, respectively. 

 

3. The main results 

In this section, we shall give the single axiom characterizations of some fuzzy rough 

approximation operators by using inner product and outer product of fuzzy sets. 

In this following, we always assume that : ( ) ( )H L U U→,   be a pair of 
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operators.  

In [17], Wu has given the single axiom characterizations of approximation operators 

generated by fuzzy relation, symmetric fuzzy relation, symmetric+transitive fuzzy relation, 

symmetric+reflexive (i.e., tolerance) fuzzy relation, and equivalent fuzzy relation, 

respectively. But, the axiomatic of the approximation operators generated by reflexive 

fuzzy relation, transitive fuzzy relation, and reflexive+transitive (i.e., preordered) fuzzy 

relation have not been presented, respectively.  

 

Definition 3.1. [17] Let : ( ) ( )U U → be an arbitrary operator and ( ),A U define 

( ) ( )1 1

{ }( )( ) (1 )( ) ( ) , ( )( ) (1 )( ) ( ) , .U y y
x U x U

A y x A x A y x A x y U− −

−
 

 =    =     

Then
1 1, : ( ) ( )U U− −  →▽ ▲   are called  - lower inverse operator and  - upper 

inverse operator of ,  respectively. Obviously, 

1 1

{ }( )( ) [ (1 ), ], ( )( ) ( (1 ), ).U y yA y O A A y I A− −

− =   =   

The next theorems summarize the main results in [17,18].  

Theorem 3.1. (1) There is an unique FR  on U with H =  iff H fulfills (AFU1) and 

(AFU2) iff H fulfills (AFU), where 

(AFU1): ( ), [0,1], ( ) .A U a H A a H A a    ( )=  

 (AFU2): ( ), , .j j j
j J j J

A U j J H A H A
 

    ( )= ( ) 

 

(AFU): ( ), [0,1], , ( ( ( .j j j j j j
j J j J

A U a j J H a A H a A
 

      ))= ) 

 
(2) There is an unique reflexive FR onU with H =  iff H  fulfills (AFU1) , (AFU2) 

and (AFU3): ( ),  ( ).A U A H A    

(3) There is an unique symmetric FR onU with H =  iff H fulfills (AFU1) , (AFU2) 

and (AFU4): , , (1 )( ) (1 )( ).x yx y U H y H x  =  

(4) There is an unique -transitive FR on U with H =  iff H fulfills (AFU1) , 

(AFU2) and (AFU5): ( ),  ( ) ( ).A U HH A H A    

Theorem 3.2. (1) There is an unique FR   on U with L =  iff L fulfills (AFL1) and 
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(AFL2)  iff L fulfills (AFL), where 

(AFL1): ( ), [0,1], ( )A U a L A a H A a    ( )= .

 (AFL2): ( ), , .j j j
j J j J

A U j J H A H A
 

    ( )= ( ) 

 

(AFL): ( ), [0,1], , ( (j j j j j j
j J j J

A U a j J L a A L a A
 

      ( ))= ).

 
(2) There is an unique reflexive FR on U with L =  iff L  fulfills (AFL1) , (AFL2) 

and (AFL3): ( ),  ( ).A U A L A    

(3) There is an unique symmetric FR on U with L =  iff L fulfills (AFL1) , (AFL2) 

and (AFL4): { } { }, , (1 )( ) (1 )( ).U x U yx y U L y L x− −  =  

(4)There is an unique -transitive FR on U with L =  iff L  
fulfills (AFL1) , 

(AFL2) and (AFL5): ( ),  ( ) ( ).A U LL A L A    

Theorem 3.3. (1) There is an unique FR  on U with H =  iff H fulfills (SAFU):

1, ( ), ( , ( )) ( , ( )).A B U I A H B I B H A−  = ▲

 
(2) There is an unique symmetric FR on U with H =  iff H fulfills (SAFUS):

, ( ), ( , ( )) ( ( ), ).A B U I A H B I H A B  =

 (3) There is an unique tolerance FR on U with H =  iff H fulfills (SAFUSR):

, ( ), ( , ( )) ( , ( )).A B U I A H B I B A H A  = 

 (4) There is an unique symmetric and -transitive FR on U with H =  iff H

fulfills (SAFUST): , ( ), ( , ( )) ( , ( ) ( )).A B U I A H B I B H A HH A  = 

 (5) There is an unique equivalent FR on U with H =  iff H fulfills (SAFUE):

, ( ), ( , ( )) ( , ( ) ( )).A B U I A H B I B A H A HH A  =  

 Theorem 3.4. (1) There is an unique FR on U with L =  iff L fulfills (SAFL):

1, ( ), [ , ( )] [ , ( )].A B U O A L B O B L A−  = ▽
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(2) There is an unique symmetric FR on U with L =  iff L  
fulfills (SAFLS):

, ( ), [ , ( )] [ , ( )].A B U O A L B O B L A  =

 (3) There is an unique tolerance FR on U with L =  iff L fulfills (SAFLSR):

, ( ), [ , ( )] [ , ( )].A B U O A L B O B A L A  = 

 (4) There is an unique symmetric and -transitive FR on U with L =   iff L fulfills 

(SAFLST): , ( ), [ , ( )] [ , ( ) ( )].A B U O A L B O B L A LL A  = 

 (5) There is an unique equivalent FR on U with L =  iff L fulfills 

 (SAFLE): , ( ), [ , ( )] [ , ( ) ( )].A B U O A L B O B A L A LL A  =  

 
Next, we give the single axiom characterizations on the six fuzzy rough approximation 

operators mentioned above.  

Theorem 3.5. There is an unique reflexive FR  on U with H =  iff H fulfills 

(SAFUR):
1, ( ), ( , ( )) ( , ( )).A B U I A H B I B A H A−  =  ▲  

Proof: From Theorem 3.3(1) we need only check that (AFU3)+(SAFU)   (SAFUR). 

. , ( ),A B U   by (AFU3), then for any ,y U  

1

y y( )( ) ( (1 )( ) ( )) (1 ( ) ( )) ( ),
x U x U

H A y H x A x x A x A y−

 
=    =▲ ▲ ▲  

which means
1( ) ,H A A−   then 

1 1( ) ( )A H A H A− − = , by (SAFU), 

1 1( , ( )) ( , ( )) ( , ( )),I A H B I B H A I B A H A− −= =   

i.e., (SAFUR) holds. 

. , ( ),A B U  by (SAFUR),  

1( , ) ( , ) ( , ) ( , ( ))I B A I A B I A B H I B H A−=   = , 

it follows by Proposistion2.1 (I2) we have ( ),A H A i.e., (AFU3) holds. Then form (AFU3) 

we further obtain 
1( )A H A− , so

1 1( ) ( )A H A H A− − = , hence 

1 1( , ( )) ( , ( )) ( , ( )),I A H B I B A H A I B H A− −=  =  

i.e., (SAFU) holds. 
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Theorem 3.6. There is an unique  -transitive FR  on U with H =  iff H fulfills 

(SAFUT): 
1 1 1, ( ), ( , ( )) ( , ( ) ( )).A B U I A H B I B H A H H A− − −  =   

Proof: Form Theorem 3.3(1) and Theorem 3.1(1), we need only check that 

(AFU5)+(SAFU)   (SAFUT) and (AFU5)+(AFU) (SAFUT). 

. ( ),A U y U    , by (AFU5), 

1 1 1

y y

y y

( )( ) ( (1 )( ) ( )( )) { (1 )( ) [ (1 )( ) ( )]}

                      { (1 )( ) (1 )( ) ( )} { [1 (1 )( )]( ) ( )}

                      { [1

x
x U x U z U

x x
x U z U x U z U

x
z U x U

H H A y H x H A x H x H z A z

H x H z A z H H x z A z

H

− − −

  

   

 

=  =  

=   =  

=  

▲ ▲ ▲▲ ▲ ▲

▲ ▲ ▲ ▲

▲ y y

1

y

(1 )( )]( ) ( )} ( (1 )( ) ( ))

                      ( (1 )( ) ( )) ( ),

z U

z U

H x z A z HH z A z

H z A z H A y



−



= 

  = ▲

▲ ▲

▲

 

so 
1 1 1( )H H A H A− − − , then 

1 1 1 1( ) ( )H A H A H H A− − − −=  , by (SAFU), we have 

1 1 1 1( , ( )) ( , ( )) ( , ( ) ( )),I A H B I B H A I B H A H H A− − − −= =   

i.e., (SAFUT) holds. 

. , ( ),A U B  by (SAFUT), 

1 1 1

1 1 1

1 1 1

( , ( ( ))) ( ( ), ( ) ( ))

                                   (( ), ( ) ( ))

                                   ( , ( ) ( ))

    

j j j j
j J j J

j j
j J

j j
j J

I B H a A I a A H B H H B

I a A H B H H B

a I A H B H H B

− − −

 

− − −



− − −



 =  

=  

=  

▲ ▲ ▲

▲ ▲ ▲

▲ ▲ ▲

▲ ▲

▲

▲

                               ( , ( )) ( , ( )),j j j j
j J j J

a I B H A I B a H A
 

=  = ▲ ▲

 

then ( ( )) ( )j j j j
j J j J

H a A a H A
 
 =  , so (AFU) is true. 

Furthermore, take x1 , 1= = zA B in (SAFUT), then 

1 1 1 1 1(1 )( ) (1 )( ) (1 )( ) (1 )( ) ( (1 )( ) (1 )( ))

             (1 )( ) ( (1 )( ) (1 )( ))= (1 )( ) ( [ (1 )( ) 1 ))( )

             (1 )( ) (1 )( ),

z x x x z x
y U

z z y z z y
y U y U

z z

H x H z H H z H z H y H y

H x H y H x H x H H y x

H x HH x

− − − − −



 

=  =  

=    

= 

▲ ▲ ▲ ▲ ▲▲

▲ ▲  

which means (1 ) (1 )z zH HH , then 
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y y

y y

( ) ( 1 ( )) ( ( ) (1 ))

            ( ( ) (1 )) ( ( ( ) 1 )) ( ),

y U y U

y U y U

HH A HH A y A y HH

A y H H A y H A

 

 

=  = 

  =  =

▲ ▲

▲ ▲
 

which means ( ) ( )HH A H A , i.e., (AFU5) holds. 

Theorem 3.7. There is an unique preorder FR  on U with H =  iff H fulfills 

(SAFURT): 
1 1 1, ( ), ( , ( )) ( , ( ) ( )).A B U I A H B I B A H A H H A− − −  =    

Proof: From Theorem 3.6 we need only check that (AFU3)+(SAFUT)   (SAFURT). 

. , ( )A B U  , by (AFU3) we obtain ( ),A H A which means
1( )A H A− ▲ ,then by 

(SAFUT), it follows that 

1 1 1 1 1 1( , ( ) ( )) ( , ( ) ( )) ( , ( )),I B A H A H H A I B H A H H A I A H B− − − − − −  =  =
 

i.e., (SAFURT) holds. 

. , ( ),A B U  by (SAFURT), we have 

1 1 1( , ( )) ( , ( ) ( )) ( , ) ( , ),I A H B I B A H A H H A I B A I A B− − −=    =  

 which means ( )H B B , i.e., (AFU3) holds. 

Furthermore, from (AFU3) we can conclude that 
1( )A H A− , then  

1 1 1 1 1 1( ) ( ) ( ) ( )A H A H H A H A H H A− − − − − −  =  , 

applying it in (SAFURT), then  

1 1 1 1 1 1( , ( )) ( , ( ) ( )) ( , ( ) ( ))I A H B I B A H A H H A I B H A H H A− − − − − −=   =  , 

i.e., (SAFUT) holds. 

In the following, we consider the lower approximation.  

Theorem 3.8. There is an unique reflexive FR on U with L =  iff L fulfills (SAFLR):

1, ( ), [ , ( )] [ , ( )].A B U O A L B O B A L A−  =   

Proof: From Theorem 3.4(1) we need only check that (AFL3)+(SAFL)   (SAFLR). 

. , ( ),A B U  by (AFL3), then for any ,y U  

1

U-{y} U-{y}( )( ) ( (1 )( ) ( )) ((1 )( ) ( )) ( ),
x U x U

L A y L x A x x A x A y−

 
=    =▽ ▽ ▽  

which means
1( ),A L A−  then 

1 1( ) ( )L A A L A− −=  , by (SAFL) 
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1 1[ , ( )] [ , ( )] [ , ( )],O A L B O B L A O B A L A− −= =   

i.e., (SAFLR) holds. 

. , ( ),A B U  by (SAFLR), then 
1[ , ] [ , ] [ , ( )] [ , ( )]O B A O A B O A B L B O B L A−=   = , 

it follows by Proposistion2.1 (O2) we have ( )A L A , i.e., (AFL3) holds. Then from 

(AFL3) we further obtain 
1( )L A A−  , so

1 1( ) ( )A L A L A− − = , hence 

1 1[ , ( )] [ , ( )] [ , ( )],O A L B O B A L A O B L A− −=  =  

i.e., (SAFL) holds. 

Theorem 3.9. There is an unique  -transitive FR  on U with L =  iff L fulfills 

(SAFLT):
1 1 1, ( ), [ , ( )] [ , ( ) ( )].A B U O A L B O B L A L L A− − −  =   

Proof: Form Theorem 3.4(1) and Theorem 3.2(1), We need only check that 

(AFL5)+(SAFL)   (SAFLT) and (AFL5)+(AFL) (SAFUT). 

. ( ), ,     A U x A y U , by (AFL5), 

1 1 1

U-{y} U-{y} { }

U-{y} { }

{ } U-{y}

( )( ) ( (1 )( ) ( )) ( (1 )( ) ( (1 )( ) ( ))

                     = ( (1 )( ) ( (1 )( ) ( )) 

                     = ( ( (1 ) (1 )(

U x
x U x U z U

U x
x U z U

U x
z U x U

L L A y L x L A x L x L z A z

L x L z A z

L L

− − −

−
  

−
 

−
 

=  =  

 

 

▽ ▽ ▽▽ ▽ ▽

▽ ▽

▽

1

U-{y} U-{y}

))( ) ( ))

                    ( (1 )( ) ( )) ( (1 )( ) ( )) ( )( ),
z U z U

x z A z

LL z A z L z A z L A y−

 
=    = ▽

▽

▽ ▽

 

which means 
1 1 1( ) ( )L A L L A− − − , then 

1 1 1 1( ) ( ) ( )L A L A L L A− − − −=  , by (SAFL), we have 

1 1 1 1[ , ( )] [ , ( )] [ , ( ) ( )],O A L B O B L A O B L A L L A− − − −= =  i.e., (SAFLT) holds. 

. , ( ),A B U  by (SAFLT),  

1 1 1

1 1 1

j j

[ , ( ( ))] [ ( ), ( ) ( )]

                                  [ , ( ) ( )]

                                  [ , ( )] [ , ( )],

j j j j
j J j J

j j
j J

j j
j J j J

O B L a A O a A L B L L B

a O A L B L L B

a O B L A O B a L A

− − −

 

− − −



 

 =  

=  

=  = 

▽ ▽ ▽

▽ ▽ ▽

▽ ▽

▽

▽ ▽

 

 then j( ( )) ( )j j j
j J j J

L a A a L A
 
 =  , so (AFL)is true. 
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Furthermore, take U-{x} { }1 , 1 −= = U zA B in (SAFLT), then 

1 1 1

{ } { } { }

1 1

{ } { } { }

{ } { } { }

(1 )( ) (1 )( ) (1 )( )

                   (1 )( ) ( (1 )( ) (1 )( ))

                   (1 )( ) ( (1 )( ) (1 )( ))

                  

U z U x U x

U x U z U x
y U

U z U z U y
y U

L x L z L L z

L z L y L y

L x L y L x

− − −

− − −

− −

− − −


− − −


= 

=  

=  

{ } { } { }

{ } { }

 (1 )( ) ( ( (1 )( ) 1 )( )

                   (1 )( ) (1 )( ),

U z U z U y
y U

U z U z

L x L y x

L x LL x

− − −


− −

=   

= 

 

which means { } { }(1 ) (1 )U z U zL LL− − , then 

U-{y} U-{y}

U-{y} U-{y}

( ) ( 1 ( )) ( ( ) (1 ))

           ( ( ) (1 )) ( ( ) (1 )) ( ),

y U y U

y U y U

LL A LL A y A y LL

A y L L A y L A

 

 

=  = 

  =  =

▽ ▽

▽ ▽
 

which means ( ) ( )L A LL A , i.e., (AFL5) holds. 

Theorem 3.10. There is an unique preorder FR on U with L =  iff L fulfills 

(SAFLRT):
1 1 1, ( ), [ , ( )] [ , ( ) ( )].A B U O A L B O B A L A L L A− − −  =  ▽ ▽ ▽  

Proof: From Theorem 3.9 we need only check that (AFL3)+(SAFLT)   (SAFLRT). 

. , ( )A B U  , by (AFL3) we obtain, ( )A L A , which further means
1( )A L A− , 

then by (SAFLT), 

1 1 1 1 1 1[ , ( ) ( )] [ , ( ) ( )] [ , ( )],O B A L A L L A O B L A L L A O A L B− − − − − −  =  =  

i.e., (SAFLRT) holds. 

. , ( )A B U  , by (SAFLRT), 

1 1 1[ , ( )] [ , ( ) ( )] [ , ] [ , ],O A L B O B A L A L L A O B A O A B− − −=    =  

which means ( )L B B , i.e., (AFL3) holds. 

Furthermore, from (AFL3) we can conclude that 
1( )A L A− , then 

1 1 1 1 1 1( ) ( ) ( ) ( ),A L A L L A L A L L A− − − − − −  =  applying it in (SAFURT), then 

1 1 1 1 1 1[ , ( )] [ , ( ) ( )] [ , ( ) ( )],O A L B O B A L A L L A O B L A L L A− − − − − −=   =   

i.e., (SAFUT) holds.  
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4. Concluding remarks 

The axiomatic characterization of approximate operators is an important problem in the 

development of rough set theory. In [17], Wu characterized 10 - fuzzy rough 

approximation operators by single axiom respectively. In this paper, we characterized 

another 6 - fuzzy rough approximation operators, thus perfecting Wu's work.  

In [1,2,11,13,14], the scholars studied the axiom characterization of more general 

complete residuated lattice-valued (which is an extension of 𝑡-norm) fuzzy rough sets. In 

future work, we shall consider the single axiom characterizations of the lattice-valued fuzzy 

rough sets mentioned. 
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