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Abstract. In this paper, we study the global asymptotic behavior of the solutions for the 
rational recursive sequence  
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x n

A x x+ = =
+

⋯，  

where the , ,p q r  are nonnegative integers, and A  is positive constants. The initial 

conditions 1 1 0, , , ,s sx x x x− − + −⋯  are arbitrary nonnegative real numbers where s = max 

{ , , }p q r . Moreover, some numerical simulations are given to illustrate our results. 
 
Keywords: recursive sequence; equilibrium point; asymptotical stability; positive 
solutions 
 
1. Introduction 
As a discrete analogue and a numerical solution of differential or delay differential 
equation, difference equations have applications in various scientific branches such as 
biology, ecology, physiology, physics, engineering and economics, etc[1-5]. So recently 
there has been an increasing interest in the study of qualitative analysis of rational 
difference equations. And the present cardinal problem is about the globally asymptotic 
behavior of solutions for a rational difference equations [6-15].  

Elabbasy et al. [16] deal with the behavior of the solution for the following recursive 
sequence: 
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where the initial conditions 2 1 0, ,x x x− − are arbitrary positive real numbers and , , ,a b c d  

are positive constants. In particular, Cinar[17, 18] studied respectively the properties of 
positive solutions for the following equations 
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where the initial values 1x−  and 0x  are the real numbers such that 1 0 1x x− ≠ −  or 

1 0 1.x x− ≠   

The main theorem in this note is motivated by the above studies. The essential 
problem we consider in this paper is the asymptotic behavior of the solution for the 
difference equation 
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where the initial conditions 1 1 0, , , ,s sx x x x− − + −⋯ are arbitrary positive real numbers, 

, ,p q r is nonnegative integer, max{ , , }s p q r=  and A  are positive constants. 
This paper proceeds as follows. In Section 2, we introduce some definitions and 

preliminary results. The main results and their proofs are given in Section 3. Finally, 
some numerical simulations are given in Section 4 to illustrate our theoretical results. 
 
2. Preliminaries 
In this section, some definitions and preliminary results [19, 20] which are used 
throughout this paper are given to prove the main results. 
 
Lemma 2.1. Let I  be some interval of real numbers and let 

1: kf I I+ →                                                       (2.1) 
be a continuously differentiable function. Then for every set of initial conditions 

1 0, , ,k kx x x I− − + ∈⋯ , the difference equation 

1 1( , , , ), 0,1,n n n n kx f x x x n+ − −= =⋯ ⋯               (2.2) 

has a unique solution { }n n kx +∞
=− . 

  
Definition 2.1. If there exits a point x I∈  such that ( , , , )x f x x x= ⋯ , then x  is called 

an equilibrium point of Eq.(2.2). That is, nx x= for 0n ≥  is a solution of (2.2), or 

equivalently, x  is a fixed point of f . 
 
Definition 2.2. Let x  be an equilibrium point of Eq. (2.2). 
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(i) The equilibrium x  of Eq.(2.2) is locally stable if for every 0ε > , there exits 

0δ >  such that for any initial data 1
1 1 0( , , , , ) m

m mx x x x I +
− − + − ∈⋯ satisfying max 

+1 0{| | | | | |} ,m mx x x x x x δ− −− − − <⋯， ， ，  | |nx x ε− <  holds for all n m≥ − . 

(ii) The equilibrium x  of Eq.(2.2) is a local attractor if there exits 0δ >  such that 

lim n nx x→∞ = for any 1
1 1 0( , , , , ) m

m mx x x x I +
− − + − ∈⋯ satisfying max {| |,mx x− −  

+1 0| | | |}mx x x x δ− − − <⋯， ， . 

(iii) The equilibrium x  of Eq.(2.2) is locally asymptotically stable if it is stable and 
is a local attractor. 

(iv) The equilibrium x  of Eq.(2.2) is a global attractor if for all 1, , ,m mx x− − + ⋯  

1 0,x x I− ∈ , lim n nx x→∞ =  holds. 

(v) x  is globally asymptotically stable if it is stable and is a global attractor. 
(vi) x  is unstable if it is not locally stable. 

 
Definition 2.3. Let ,p q  be two nonnegative integers such that p q n+ = . Splitting 

1 2( , , , )nx x x x= ⋯ into ([ ] ,[ ] )p qx x x= , where[ ]x σ denotes a vector with σ -compo- 

nents of x , we say that the function 1 2( , , , )nf x x x⋯  possesses a mixed monotone 

property in subsetsnI of nR if ([ ] ,[ ] )p qf x x  is monotone nondecreasing in each 

component of [ ] px  and is monotone nonincreasing in each component of [ ] qx  for 
nx I∈ . In particular, if 0q = , then it is said to be monotone nondecreasing in nI . 

The linearized equation of (2.2) about the equilibrium x  is the linear difference 
equation 

                      1
0

( , , , )
.+ −

= −

∂=
∂∑
⋯

k

n n i
i n i

f x x x
y y

x
                                  (2.3) 

Now assume that the characteristic equation associated with (2.3) is  
1

0 1 1( ) 0,k k
k kP a a a aλ λ λ λ−

−= + + + + =⋯              (2.4) 

where ( , , , ) / , 0,1,2, , .−= ∂ ∂ =⋯ ⋯i n ia f x x x x i k  

Lemma 2.2. Assume that f is a 1C  function and let x  be an equilibrium point of 
Eq.(2.2). Then the following statements are true. 

(i) If all roots of the polynomial equation (2.4) lie in the open unite disk | | 1λ < , then 

the equilibrium point x of (2.2) is locally asymptotically stable. 
(ii) If at least one root of (2.4) has absolute value greater than one, then the 

equilibrium point x of (2.2) is unstable. 
 
3. The Main Results 
Consider the system (1.4), if 1A ≥ , system (1.4) has a unique equilibrium point 0x = . 
In addition, if 1A < , then system (1.4) has two equilibrium points 0x =  and 

1x A= − . 
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Let 3: (0, ) (0, )f ∞ → ∞ be a function defined by 

( , , )
u

f u v w
A vw

=
+

                                         (3.1) 

then it follows that  

2 2

1
, , .

( ) ( )u v w

uw uv
f f f

A vw A vw A vw
= = − = −

+ + +
      (3.2) 

As x  and x  are the equilibrium points of (1.4), then we have 

                        
1

( , , ) , ( , , ) ( , , ) 0u v wf x x x f x x x f x x x
A

= = = . 

         ( , , ) 1, ( , , ) ( , , ) 1u v wf x x x f x x x f x x x A= = = − . 

Thus, the linearized equations of (1.4) about equilibrium points x  and x  are as follows 

                           1

1
n n pz z

A+ −=                                                           (3.3) 

1 ( 1) ( 1)n n p n q n rz z A z A z+ − − −= + − + −                        (3.4) 

where , ,p q r is nonnegative integer. 
The characteristic equations associated with (3.3) and (3.4) are 

1 1
( ) 0,pP

A
λ λ += − =                                       (3.5) 

( ) ( 1) ( 1) 0,s p s q s rP A Aλ λ λ λ− − −= + − + − =            (3.6) 
where max{ , , }s p q r= . 

By Lemmas 2.2, we have the following results. 
 
Theorem 3.1. If 1A < , the equilibrium point 0x = of (1.4) is unstable. Moreover, we 
have the following results. 

(i) If all roots of the characteristic equation (3.6) lie in the open unite disk | | 1λ < , 

then the equilibrium point x  of (1.4) is locally asymptotically stable. 
(ii) If at least one root of (3.6) has absolute value greater than one, then the 

equilibrium point x  of (1.4) is unstable. 
 
Theorem 3.2. If 1A > , the equilibrium point 0x = of (1.4) is locally asymptotically 
stable. 
Proof. The linearized equations of (1.4) about equilibrium points 0x =  is 

1

1
n n pz z

A+ −=  

where 1A > , then 
1

0 1
A

< < . By Lemmas 2.2, the equilibrium point 0x = of (1.4) is 

locally asymptotically stable. And then the proof is complete. 



On the solutions of a rational recursive sequence 
 

29 
 

 

Theorem 3.3. Let [ , ]a b be an interval of real numbers and assume that 
1:[ , ] [ , ]kf a b a b+ →  is a continuous function satisfying the mixed monotone property. If 

there exits 

0 1 0 1 0 0min{ , , , } max{ , , , }k k k km x x x x x x M− − + − − +≤ ≤ ≤⋯ ⋯       (3.7) 
such that 

0 0 0 0 0 0([ ] ,[ ] ) ([ ] ,[ ] ) ,p q p qm f m M f M m M≤ ≤ ≤            (3.8) 

then there exit 2
0 0( , ) [ , ]m M m M∈  satisfying 

([ ] ,[ ] ), ([ ] ,[ ] ).p q p qM f M m m f m M= =                 (3.9) 

Moreover, if m M= , then (2.2) has a unique equilibrium point 0 0[ , ]x m M∈  and every 

solution of (2.2) converges to x . 
Proof. Using 0m  and 0M  as a couple of initial iteration, we construct two sequences 

{ }im  and { } ( 1,2, )iM i = ⋯  from the following equations 

1 1 1 1([ ] ,[ ] ), ([ ] ,[ ] ).i i p i q i i p i qm f m M M f M m− − − −= =        (3.10) 

It is obvious from the mixed monotone property of f  that the sequences { }im  and 

{ }iM possess the following monotone property 

0 1 1 0,i im m m M M M≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤⋯ ⋯ ⋯             (3.11) 

where =0,1,2, ,i ⋯  and  

i l im x M≤ ≤    for ( 1) 1, 0,1,2, .l k i i≥ + + = ⋯            (3.12) 
Set  

lim , lim ,i i
i i

m m M M
→∞ →∞

= =                               (3.13) 

then  
lim inf limsup .i i
i i

m x x M
→∞ →∞

≤ ≤ ≤                            (3.14

) 
By the continuity of f , we have 

([ ] ,[ ] ), ([ ] ,[ ] ).p q p qM f M m m f m M= =               (3.15

) 
Moreover, if m M= , then lim i

i
m M x x

→∞
= = = , and then the proof is complete. 

Theorem 3.4. If 1A > , the equilibrium point 0x =  of (1.4) is a global attractor for any 
initial conditions 

1
1 1 0( , , , , ) (0, 1) .s

s sx x x x A +
− − + − ∈ −⋯                            (3.16) 

Proof. Let 3: (0, ) (0, )f ∞ → ∞ be a function defined by 

( , , )
u

f u v w
A vw

=
+

                                            (3.17) 

We can easily see that the function ( , , )f u v w  is increasing in u  and decreasing in ,v w . 
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Let 

0 1 1 0 0max{ , , , , }, 0s sM x x x x m− − + −= <⋯ ,               (3.18) 

we have 

0 0
0 02 2

0 0

.
m M

m M
A M A m

≤ ≤ ≤
+ +

                                 (3.19) 

Then from (1.4) and Theorem 3.3, there exit 0 0, [ , ]m M m M∈  satisfying 

2 2
, ,

m M
m M

A M A m
= =

+ +
                             (3.20) 

thus  
( 1)( ) 0.A Mm M m− − − =                                          (3.21) 

In view of 0 1M A< − , we have 

                             1 0.A Mm− − >                                                   (3.22) 
Then 

                              .M m=                                                           (3.23) 
It follows by Theorem 3.3 that the equilibrium point 0x =  of (1.4) is a global attractor. 
The proof is complete. 
 
Theorem 3.5. If 1A > , the equilibrium point 0x =  of (1.4) is global asymptotically 
stability for any initial conditions  

1
1 1 0( , , , , ) (0, 1) .s

s sx x x x A +
− − + − ∈ −⋯                   (3.24) 

Proof. The result follows from Theorems 3.2 and 3.4. 
 
4. Numerical Simulations 
In this section, some numerical simulations are given to support our theoretical analysis 
with the software package Matlab7.0. Such as, we consider the following difference 
equations: 

1
1

2 3

, 0,1, ,
5

n
n

n n

x
x n

x x
−

+
− −

= =
+

⋯                                (4.1) 

1
1

1 2

, 0,1, ,
2

n
n

n n

x
x n

x x
−

+
− −

= =
+

⋯                                 (4.2) 

1
1

2 3

, 0,1, ,
0.5

n
n

n n

x
x n

x x
−

+
− −

= =
+

⋯                             (4.3) 

where the initial conditions of (4.1) 3 2 1 0( , , , ) (0,2)x x x x− − − ∈ , the initial conditions of 

(4.2) 2 1 0( , , ) (0,1)x x x− − ∈  and the initial conditions of (4.3) 3 2 1 0( , , , ) (0, )x x x x− − − ∈ +∞ . 

Let 0 00.5, 2m M= − = , it is obvious that equations (4.1) and (4.2) satisfy the conditions 

of Theorems 3.5 and equation (4.3) satisfies the condition of Theorem 3.1. 
By employing the software package MATLAB7.0, we can solve the numerical 

solutions of equations (4.1), (4.2) and (4.3) which are shown respectively in Figure 4.1, 
Figure 4.2 and 4.3. More precisely, Figure 4.1 shows the numerical solution of equation 
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(4.1) with ( 3) 0.2, ( 2) 1.2,x x− = − = ( 1) 0.5, (0) 0.8x x− = =  and the relations that 

i l im x M≤ ≤  when 4 1,l i≥ +  0,1,2,i = ⋯, Figure 4.2 shows the numerical solution of (4.2) 

with ( 2) 0.2, ( 1) 0.6, (0) 0.4x x x− = − = =  and the relations that i l im x M≤ ≤  

when 3 1,l i≥ + 0,1,2,i = ⋯ and Figure 4.3 shows the numerical solution of (4.3) with 

( 3) 0.2, ( 2) 0.6,x x− = − = ( 1) 0.4, (0) 0.8x x− = = .  
 

 
Figure 4.1: Chart of (4.1) with ( 3) 0.2, ( 2) 1.2,x x− = − = ( 1) 0.5, (0) 0.8x x− = =  

 
Figure 4.2: Chart of (4.2) with ( 2) 0.2, ( 1) 0.6, (0) 0.4x x x− = − = =  
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Figure 4.3: Chart of (4.3) with ( 3) 0.2, ( 2) 0.6,x x− = − = ( 1) 0.4, (0) 0.8x x− = =  

 
5. Conclusions 
This paper presents the use of a variational iteration method for systems of nonlinear 
difference equations. This technique is a powerful tool for solving various difference 
equations and can also be applied to other nonlinear differential equations in 
mathematical physics. The numerical simulations show that this method is an effective 
and convenient one. The variational iteration method provides an efficient method to 
handle the nonlinear structure. Computations are performed using the software package 
MATLAB7.0. 

We have dealt with the problem of global asymptotic stability analysis for a class of 
nonlinear high order difference equation. The general sufficient conditions have been 
obtained to ensure the existence, global asymptotic stability and unstability of the 
equilibrium point for the nonlinear difference equation. These criteria generalize and 
improve some known results. In particular, some illustrate examples are given to show 
the effectiveness of the obtained results. In addition, the sufficient conditions that we 
obtained are very simple, which provide flexibility for the application and analysis of 
nonlinear difference equation. 

 
Acknowledgments 
This work is supported by the Natural Science Foundation Project of CQ CSTC (Grant 
nos. cstc2012jjA20016 and cstc2012jjA40035) of China, and the NSFC (Grant nos. 
51005264 and 11101298) of China. 
 



On the solutions of a rational recursive sequence 
 

33 
 

 

REFERENCES 
 
1. R.P.Agarwal, Difference equations and inequalities, Marcel Eekker, New York, 

(2000). 
2. L.Erbe, J.Baoguoa, A.Peterson, Nonoscillation for second order sublinear dynamic 

equations on time scales, J. Comput. Appl. Math, 232 (2009) 594-599. 
3. Shojaei M, Saadati R, Adibi H: Stability and periodic character of a rational third 

order difference equation, Chaos, Solitons and Fractals, 39(3) (2009) 1203-1209. 
4. C.Wang, S.Wang, X.Yan, Oscillation of a class of partial functional population 

model, J. Math. Anal. Appl., 368(1) (2010) 32-42. 
5. W.T.Li, H.Sun, Global attractivity in a rational recursive sequence, Dyn. Syst. Appl., 

11 (2002) 339–346. 
6. L.X.Hu, W.S.He, H.M.Xia, Global asymptotic behavior of a rational difference 

equation, Appl. Math. Comput., 218(15) (2012) 7818-7828. 
7. E.Camouzis, G.Ladas, Dynamics of third-order rational difference equations with 

open problems and conjectures, Chapman & Hall/CRC, Boca Raton, (2007). 
8. J.Migda, Asymptotically polynomial solutions of difference equations, Advances in 

Difference Equations, 2013, 92. 
9. M.Hasanbulli and Y.V.Rogovchenko, Asymptotic behavior nonoscillatory solutions 

to n-th order nonlinear neutral differential equations, Nonlinear Anal., 69 (2008) 
1208-1218. 

10. R.P.Elsayed, On the solutions of a rational system of difference equations, 
Polytechnica Posnaniensis, 45 (2010) 25–36. 

11. C.Hengkrawit, V.Laohakosol, W.Pimsert, Solutions of a class of nonlinear recursive 
equations and applications, Science Asia, 37 (2011) 136–144. 

12. G.Papaschinopoulos, M.Radin, C.J.Schinas, Study of the asymptotic behavior of the 
solutions of three systems of difference equations of exponential form, Appl. Math. 
Comput, 218(9) (2012) 5310-5318. 

13. M.R.S.Kulenović, G.Ladas, N.R.Prokup, A rational difference equation, Comput. 
Math. Appl.,  41(5) (2001) 671-678. 

14. X.X.Yan XX, W.T.Li, H.R.Sun, Global attractivity in a higher order nonlinear 
difference equation, Applied Mathematics E-Notes, 2 (2002) 51-58. 

15. Y.Muroya, E.Ishiwata and N.Guglielmi, Global stability for nonlinear difference 
equations with variable coefficients, J. Math. Anal. Appl., 334(1) (2007) 232-247. 

16. E.M.Elsayed, Solution and attractivity for a rational recursive sequence, Discrete 
Dynamics in Nature and Society, 2011, Article ID 982309, 17 pages (2011). 

17. C.Cinar, On the positive solutions of difference equation 1 -1 -1/ (1 )n n n nx x x x+ = + , 
Appl. Math. Comput, 158(3) (2004) 303-305. 

18. C.Cinar, On the difference equation 1 -1 -1/( 1 )n n n nx x x x+ = − + , Appl. Math. Comput, 
158(3) (2004) 813-816. 

19. M.R.S.Kulenonvic and G.Ladas, Dynamics of second order rational difference 
equations with open problem and conjectures, Chapman &Hall/CRC, Boca Raton, 
2001. 

20. V.L.Kocic and G.Ladas, Global behavior of nonlinear difference equations of higher 
order with applications, Kluwer Academic, Dordrecht, 1993. 


