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Abstract. In this paper, we study the global asymptotic béiraef the solutions for the
rational recursive sequence
Xn+1 :A , n:O,ll... ,
At X, o X
where thep,q,r are nonnegative integers, amd is positive constants. The initial
conditions X_g, X_¢,,,**,X_;, X, are arbitrary nonnegative real numbers wheremax

{p g r} . Moreover, some numerical simulations are giveifiustrate our results.

Keywords: recursive sequence; equilibrium point; asymptétistability; positive
solutions

1. Introduction
As a discrete analogue and a numerical solutiordiféérential or delay differential
equation, difference equations have applicationsainous scientific branches such as
biology, ecology, physiology, physics, engineerargl economics, etc[1-5]. So recently
there has been an increasing interest in the stfidgualitative analysis of rational
difference equations. And the present cardinal lprolis about the globally asymptotic
behavior of solutions for a rational difference atijpns [6-15].

Elabbasy et al. [16] deal with the behavior of sb&ution for the following recursive
sequence:
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xnﬂ:axn_l—M , n=0,1,-- (11)

where the initial conditions<.,, X_,, X,are arbitrary positive real numbers aag,c,d

are positive constants. In particular, Cinar[17] dt8died respectively the properties of
positive solutions for the following equations

- X -
w=—"—, n=0,1.- 1.2
= ok (1.2)
- X -
= , n=0,1,-- 13
K= e (13)
where the initial valuesx, and X, are the real numbers such thatX,# -1 or

X X, #1.

The main theorem in this note is motivated by theve studies. The essential
problem we consider in this paper is the asymptb&bavior of the solution for the
difference equation

= —Xn-p
Xt At X, %,

where the initial conditionsX_g, X_,;,"**,X_;,X, are arbitrary positive real numbers,
p,q,r is nonnegative integes = max{p,q,r} and A are positive constants.

This paper proceeds as follows. In Section 2, ieduce some definitions and
preliminary results. The main results and theirofsoare given in Section 3. Finally,
some numerical simulations are given in Sectiom dlustrate our theoretical results.

, h=01,--, (1_4)

2. Preliminaries
In this section, some definitions and preliminagsults [19, 20] which are used
throughout this paper are given to prove the mesuits.

LemmaZ2.l. Let | be some interval of real numbers and let
folt L (2.1)
be a continuously differentiable function. Then fevery set of initial conditions
X s X s % U 1, the difference equation
X = P0G X0 %), n=0,1- (2.2)
has a unique solutiofx} ', .

Definition 2.1. If there exits a poinkK | such thak = f (X, X,---,X), thenX is called
an equilibrium point of Eq.(2.2). That ix, =X for n=0 is a solution of (2.2), or
equivalently,X is a fixed point of f .

Definition 2.2. Let X be an equilibrium point of Eq. (2.2).
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(i) The equilibriumX of Eq.(2.2) is locally stable if for everg >0, there exits
0>0 such that for any initial datéX_,,X ... X,%,)01™" satisfying max
{I X =X] I X s =X 50 W% =X [}< 9, | X, =X K & holds for alln=>-m.

(ii) The equilibriumX of Eq.(2.2) is a local attractor if there exids> 0 such that
lim, . x =X for any (X, X .. Xq,%)01™ satisfying max {| x_, —X|,
[ X =X |5 % =X [}< 0.

(iii) The equilibriumX of Eq.(2.2) is locally asymptotically stable ifii stable and
is a local attractor.

(iv) The equilibriumX of Eq.(2.2) is a global attractor if for al_, X
X, %01, lim, __ X =X holds.

(v) X is globally asymptotically stable if it is stabledais a global attractor.
(vi) X is unstable if it is not locally stable.

m+1r” T

Definition 2.3. Let p,q be two nonnegative integers such thatq=n. Splitting
X= (X, %y, % )into Xx=([¥ ,[ ¥4 , where[X], denotes a vector witlw -compo-
nents of X, we say that the functiorf (X, X,,:-+,X,) possesses a mixed monotone
property in subsets” of R"if f([X],[X,) is monotone nondecreasing in each

component off ], and is monotone nonincreasing in each componer{tqf for

xO1". In particular, ifg =0, then it is said to be monotone nondecreasing'in

The linearized equation of (2.2) about the equiilitor X is the linear difference
equation

K of (X,X,++,X)
L=y T Ry 23
yn 1 ; axn_i y ( )
Now assume that the characteristic equation agsdcigith (2.3) is
P(A)=aA*+aA*"+..-+a_A+a =0, (2.4)

wherea =0f (X,X,---,X)/0x,;,i =0,1,2;-- k
Lemma 2.2. Assume thatf is a C' function and letX be an equilibrium point of
Eq.(2.2). Then the following statements are true.

(i) If all roots of the polynomial equation (2.4) liethe open unite diskA K 1, then

the equilibrium pointX of (2.2) is locally asymptotically stable.
(i) If at least one root of (2.4) has absolute vaipmeater than one, then the
equilibrium pointX of (2.2) is unstable.

3. TheMain Results
Consider the system (1.4), A=1, system (1.4) has a unique equilibrium padirt 0.
In addition, if A<1l, then system (1.4) has two equilibrium poits=0 and

X=v1-A.
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Let f:(0,0)° — (0, )be a function defined by

u
f(u,v,w)=—— 3.1
vw=—r (3.)
then it follows that
= 1 o :_LZ’ fwz—Lz_ (3.2)
A+w (A+ww) (A+w)
As X andX are the equilibrium points of (1.4), then we have
fu(i,i,i):%\, f,X,x,X)=f,x,xXx)=_C

f(XX,X)=1 f &XX)=f, ®XX)=A-1
Thus, the linearized equations of (1.4) about égyitim pointsX and X are as follows

1
2o =2 2y (3:3)

Zn+1 = Zn—p +(A_1)Zn—q + (A_l)zn—r (34)
wherep, q,r is nonnegative integer.
The characteristic equations associated with gn&)(3.4) are
1

P(A) =A™ AT 0, (3.5)
P(A)=A"P+(A-DA T+ (A-DA°" =0, (3.6)
wheres = max{p,q,r}.
By Lemmas 2.2, we have the following results.

Theorem 3.1. If A<1, the equilibrium poinfX =0 of (1.4) is unstable. Moreover, we
have the following results.
(i) If all roots of the characteristic equation (3li)in the open unite diski K 1,

then the equilibrium poinK of (1.4) is locally asymptotically stable.
(ii) If at least one root of (3.6) has absolute vaimeater than one, then the
equilibrium pointX of (1.4) is unstable.

Theorem 3.2. If A>1, the equilibrium poinkK =0 of (1.4) is locally asymptotically

stable.
Proof. The linearized equations of (1.4) about equilibriponts X =0 is

1
Zn+1 _I\Zn—p

where A>1, then0<%<l. By Lemmas 2.2, the equilibrium poit=0of (1.4) is

locally asymptotically stable. And then the pramtomplete.
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Theorem 3.3. Let [a,b] be an interval of real numbers and assume that

f :[a,b]*" = [a b is a continuous function satisfying the mixed nmone property. If
there exits
My < MIN{X_, X i X SMAX{ X, X oy Xg <M, (3.7)

such that
my < f([m],[Mdy < f((M] [ m}) <M, (3.8)
then there exi{m,M)0[m,, M ]* satisfying
M =f(M],[my), m=f([nm [M),. (3.9)

Moreover, ifm=M , then (2.2) has a unique equilibrium poxitl[m,, M ] and every
solution of (2.2) converges .
Proof. Usingm, and M, as a couple of initial iteration, we construct taequences

{m} and{M}(i=L2,--) from the following equations

m=f(mJ, M) M =f(M],[m]) (310
It is obvious from the mixed monotone property bfthat the sequencesm} and
{M} possess the following monotone property

m<ms<---<ms<--<M, <---<M, <M, (3.11)
wherei=0,1,2;-- ,and
m<x<M. forl=(k+1)i+1i=0,12;- (3.12)
Set
m=Ilimm, M =limM, (3.13)
then
m<liminf x <limsupx <M. (3.14
)
By the continuity of f , we have
M =f(M],[My),  m=1f([nm [ M) (3.15
)

Moreover, ifm=M , thenm=M =lim x =X, and then the proof is complete.

| -0

Theorem 3.4. If A>1, the equilibrium pointX =0 of (1.4) is a global attractor for any
initial conditions

(Xogs Xogar 1 X1, %) O (O A= 1§ (3.16)
Proof. Let f :(0,0)° - (0,00 )be a function defined by
f(u,v,w)= Afvw (3.17)

We can easily see that the functidrfu, v,w) is increasing iru and decreasing ix, w.
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Let
Mo = max{X_q, X q,1 X1, X0} m,<0, (3.18)
we have
m M,
< < <M,. 3.19
™ ? S A < Mo (3.19)
Then from (1.4) and Theorem 3.3, there ewitM L[m,, M ] satisfying
m M
m=—-—, M = , 3.20
A+M? A+’ (3.20)
thus
(A-Mm-1)(M —m)=0. (3.21)
In view of M, <+ A-1, we have
A-Mm-1>0. 3.42)
Then
M=m (3.23)

It follows by Theorem 3.3 that the equilibrium pox =0 of (1.4) is a global attractor.
The proof is complete.

Theorem 3.5. If A>1, the equilibrium pointX =0 of (1.4) is global asymptotically
stability for any initial conditions

(X—s’ X—s+1"" 'X—1’X0)D (OIV A_ 1y+1 (324)

Proof. The result follows from Theorems 3.2 and 3.4.

4. Numerical Simulations

In this section, some numerical simulations aregito support our theoretical analysis
with the software package Matlab7.0. Such as, wesider the following difference
equations:

_ X _
Xn+ - ] n_oyll'” ) (41)
©BEX X
_ X1 _
Xn+ -~ n_01ll“'1 (42)
b24 X%,
_ X _
== n=0,1--, 4.3
705X, %, @3
where the initial conditions of (4.10X_;, X_,,X_;,X,)0J (0,2), the initial conditions of

(4.2) (X, X_1,%,) 1 (0,1) and the initial conditions of (4.3)X 5, X_,,X_;,X,) 0 (0,+00).
Let m, =-0.5M, = 2, it is obvious that equations (4.1) and (4.2)s$atihe conditions

of Theorems 3.5 and equation (4.3) satisfies timglition of Theorem 3.1.

By employing the software package MATLAB7.0, we cswmive the numerical
solutions of equations (4.1), (4.2) and (4.3) whéch shown respectively in Figure 4.1,
Figure 4.2 and 4.3. More precisely, Figure 4.1 shtdve numerical solution of equation
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(4.1) with x(-3)=0.2xF2)= 1.2 x(-1)=0.5x(0)= 0.¢ and the relations that
m<x<M when 2 4i +1, i=0,12;--, Figure 4.2 shows the numerical solution of (4.2)
with  x(-2)=0.2,x1)= 0.6x (OF 0. and the relations thatm<x<M
whenl >3 +1,i=0,1,2;-- and Figure 4.3 shows the numerical solution o8)(4vith
X(=3)=0.2x2)= 0.6x(-1)=0.4x(0)= 0.t

= (n-134)

0.6 g
y=x(n) K
ol
Fm((n-ﬂféu
_05 1 1 1 1 1

20 n] 20 40 <H] a0 100
n

Figure4.1: Chart of (4.1) withx(=3) = 0.2x - 2)= 1.2x(-1) = 0.5x (0)= 0.¢

1

0.5k

1 1 1 1 1
3 40 51 a0 70 =1
n

Figure 4.2: Chart of (4.2) witkx(-2) = 0.2 x ¢ 1)= 0.6x (0¥ O.
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D&t . -
y=x(n)

08 1

07F 1

03 1

2 1 1 1 1 1 1
-10 0 10 20 30 40 50 80
n

Figure 4.3: Chart of (4.3) witlx(-3) = 0.2x - 2)= 0.6x(-1) = 0.4,x (0)= 0.¢

0

5. Conclusions

This paper presents the use of a variational iteranethod for systems of nonlinear
difference equations. This technique is a powetdol for solving various difference
equations and can also be applied to other nomlirdifierential equations in
mathematical physics. The numerical simulationsastmat this method is an effective
and convenient one. The variational iteration meétpoovides an efficient method to
handle the nonlinear structure. Computations arfopeed using the software package
MATLAB7.0.

We have dealt with the problem of global asymptstability analysis for a class of
nonlinear high order difference equation. The galnsufficient conditions have been
obtained to ensure the existence, global asymptitbility and unstability of the
equilibrium point for the nonlinear difference etjon. These criteria generalize and
improve some known results. In particular, somesitlate examples are given to show
the effectiveness of the obtained results. In amiditthe sufficient conditions that we
obtained are very simple, which provide flexibilityr the application and analysis of
nonlinear difference equation.
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