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Abstract. The aim of image restoration is to reconstruct an approximation of an image 
from blurred and noisy measurements. The problem has received considerable attention 
in recent years. In this paper, we propose the augmented Lagrangian method to restore 
blurred and noisy images with spatially adapted regularization parameter selection. Some 
numerical examples are given to illustrate the effectiveness of the proposed algorithm. 
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1. Introduction 
The recording of an image usually involves a degradation process: a blurrring, due to 
atmosphere turbulence, camera misfocus or relative movement, followed by a random 
noise, due to errors of the physical sensors or to quantization [1,2,3]. The goal of image 
restoration is to reconstruct an approximation of an image from a blurred and noisy 
measurement. Image restoration plays an important part in various areas of applied 
sciences such as medical imaging, microscopy, astronomy, film restoration, and image 
and video coding [4, 5, 6]. The image formation process is typically modeled as 

g=Hf+e ,                                                          (1) 

where 
2nRf ∈  represents the ideal nn ×  image, 

2nRg ∈  represents the observed nn ×  

image, 
2nRe ∈  represents the additive noise and the structured matrix 

22 nnRH ×∈  
related to the boundary conditions is called a blurring matrix that models the blurring 
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operation. In this work, we assume that the norm of the noise 
2

e=σ  is explicitly 

known, but that the noise vector e  is not.  
Mathematically, image restoration is a typical ill-posed inverse problem. It is known 

that the solution of gHf =  is very sensitive to the noise e  in the right-hand side g . To 

stabilize the recovery of the image f , one must utilize some prior information. In such a 
stabilization scheme, a common approach is to add a regularizer to the data fidelity term, 
resulting to the following reconstruction model: 

)(Reg
2

1
min

2

2
fgHf

f
λ+− ,                                                 (2) 

where in the objective function, )(Reg f  regularizes the solution by enforcing certain 

prior constraints and λ  is the regularization parameter that controls the balance between 
the fidelity term and the regularization term for minimization. 

Probably one of the most popular regularization methods is Tikhonov regularization 
[7]. The regularization functionals used more often are quadratic functionals of the form  

2

2
)(Reg Lff = , where L  is usually chosen to be the identity matrix or differentiation 

matrix. This choice essentially gives a linear least squares problem, but has the drawback 
of penalizing discontinuities in the image f . Therefore, this is not a good choice if we 
are interested in edge restoration. To overcome this shortcoming, Rudin, Osher and 
Fatemi [8] proposed a total variation (TV)-based regularization technique (ROF model), 
which preserves the edge information in the restored image. In this case, the 

regularization term is the TV-norm: 
1

)(Reg ff ∇= . To define the discrete TV-norm, 

we usually introduce the discrete gradient f∇  as follows [9]: 

( ) ( ) ( )( )y
ji

x
jiji fff ,,, , ∇∇=∇  

with 
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
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Here jif ,  represents the value of pixel ),( ji  in the image, it is the ))1(( jni −+ th entry 

of the vector image f . With the notations, the discrete TV-norm of f  is defined as 
follows: 

( ) ( )( ) ( )( )2,

2

,
1,

,
1,1

y
ji

x
ji

n

ji
ji

n

ji
ffff ∇+∇∑=∇∑=∇

==
,                   (3) 

where 2
2

2
1 yyy +=  for every ( ) 2

21, Ryyy ∈= . In fact, as reported in [10], we can 

use the periodic boundary condition for the discrete TV-norm. It is well known that the 
major difficulty of the ROF model is the high nonlinearity and non-differentiability of the 
object function. To address the problem, many efficient and robust methods have been 
proposed; see [11,12,13,14,15] for more details. 

Clearly, the choice of the regularization parameter λ  in (2) is a non-trivial issue. A 
large λ  favors a small solution norm at the cost of a large residual norm, while a small 
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λ  has the opposite effect. Thus, the regularization λ  is an important quantity which 
controls the properties of the regularized solution, and λ  should therefore be chosen with 
care. Throughout the years a variety of parameter choice strategies such as the 
discrepancy principle, the L-curve and generalized cross validation (GCV) have been 
developed [16,17]. In particular, total variation models with a spatially varying choice of 
parameters were considered in [18,19,20,21]. Motivated by these works, Dong, 
Hintermuller and Rincon-Camacho [22] introduced a robust multi-scale total variation 
model for image restoration recently. The model utilizes a spatially dependent 
regularization parameter in order to enhance image regions containing details while still 
sufficiently smoothing homogeneous features. The fully automated adjustment strategy of 
the regularization parameter is based on local variance estimators. 

In this paper, we consider to deal with the automated regularization parameter 
selection model proposed in [22] by the augmented Lagrangian method. The proposed 
algorithm is much faster than the primal-dual approach of [22] for the spatially adapted 
total variation model. Our numerical results show that our method outperforms some 
existing restoration methods in terms of the Peak-Signal-to-Noise Ratio (PSNR) and 
Structural SIMilarity (SSIM) value. The organization of this paper is outlined as follows. 
In the next section, we recall some basic results of the augmented Lagrangian method for 
image restoration. In Section 3, we introduce the automated regularization parameter 
selection method and propose the augmented Lagrangian method for the solution of the 
model. Some numerical experiments are given to illustrate the performance of the 
proposed algorithm in Section 4. 
 
2. Augmented Lagrangian method 
Consider an unconstrained optimization problem: 

)()(min Duu
u

Φ+Ψ ,                                                  (4) 

where Ψ  and Φ  are proper, closed and convex functions. Introducing a new variable 
Duv = , we can rewrite (4) as a constrained problem of the form: 

.s.t.

),()(min
,

vDu

vu
vu

=
Φ+Ψ

                                                     (5) 

The associated augmented Lagrangian function for this problem is defined as 

,
2

)()(),,,(
2

2
bvDuvubvuL +−+Φ+Ψ= ηη                      (6) 

where η  is related to the penalty parameter for the constraint in (5). The idea of the 
augmented Lagrangian method is to find a saddle point of (6), which is also the solution 
of the original problem (4). We can use the alternating direction method to iteratively 
solve the following subproblems: 
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We now investigate these subproblems one by one for the spatially adapted total 
variation image restoration problem (2) with a spatially varying parameter. In this case, 

we have 
2

22
1

)( gHff −=Ψ , 
2

2

)( fDDf ii

n

i
λ∑=Φ  where iD  denotes the discrete 

gradient of f  at pixel i . 
For the first subproblem, it is required to solve the following normal equation: 

)()( kkTTTT bvDgHfDDHH ++=+ ηη .                        (8) 

Under the periodic boundary condition, D  and H  have block circulant with circulant 
blocks (BCCB) structure; see [10] for more details. We know that the computations with 
BCCB matrices can be done very efficiently by using fast Fourier transforms (FFTs). For 
the second subproblem, we need to solve the following problem: 

,
2

min
2

2

1

1

2

kk
ii

n

iv
bvDfv +−+∑ +

=

ηλ                                       (9) 

where ),...,,( 221 n
vvvv = . It is known that the problem can be solved using a shrinkage 

formula. We refer to [14] for details. Now we are in a position to describe the augmented 
Lagrangian method for the total variation image restoration problem with a spatially 
varying parameter as follows: 
 
Algorithm 1. Augmented Lagrangian method for the total variation image restoration 
problem with a spatially varying parameter. 

Input: 0v , 0b , g  and 0=k . 

1. For kv  and kb  fixed, employ an efficient method to compute 1+kf : 

)()( kkTTTT bvDgHfDDHH ++=+ ηη . 

2. For 1+kf  and kb  fixed, use a shrinkage formula to compute 

2

2

1

1

1

2
minarg

2

kk
ii

n

iv

k bvDfvv +−+∑= +

=

+ ηλ . 

3. Update )( 111 +++ −−= kkkk vDubb . 
4. Check the stopping criteria. If a stopping criterion is satisfied, then exit with an 

approximate solution; otherwise, let 1+= kk  and go to step 1. 
 
3. Spatially adaptive algorithm 
In this section, we propose the augmented Lagrangian method for image restoration with 
spatially adapted parameter selection. At first, we describe how to choose the spatially 
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adapted regularization parameter. For the sake of simplicity, we use the continuous model. 
Similar to [22], we define a normalized filter: 







 ≤−
Ω= ∞

othervise,0

,
2

,
1

),(

r
xy

yx r
xω  

where Ω∈x  is fixed, r
xΩ is a local window centered at pixel x  which is defined by 







 ≤−=Ω

∞ 2
:

r
xyyr

x  and 0>r  sufficiently small is the essential width of the filter 

window. By ))(( xuF  we denote the local expected value estimator, which is  

dyygHfyxxuF )())(,())(( 2
∫Ω −= ω .                     (10) 

Hence, we obtain the following total variation-based minimization problem with local 
constraints based on formula (10): 

dxf
su ∫ΩΩ∈

∇
)(

min  s.t. ε+≤ 1)(uF  a.e. in Ω                      (11) 

where “a.e.” stands for “almost everywhere”. The proof of the existence of a solution in 
(11) can be found in [22]. 

In the discrete form, we let r
ji,Ω  denote the set of pixel-coordinates in ar -by- r  

window centered at ),( ji  with a symmetric extension at the boundary, which is 


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We apply the mean filter to the residual Hfg −  and obtain the local expected value 
estimator: 

2
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Similar to the work in [22], we can propose the similar update scheme of λ  as 
follows: 

)0,)max((~
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1 2
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S ,                            (12) 
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,                                               (13) 

where δ  is a step size. For obtaining a better choice of the regularization parameter, we 

can apply a modified local variance estimator r
jiS ,

~
 to replace r

jiS , ; see [22] for more 

details. 
 
Based on the Hierarchical decomposition technique, we have the following 

augmented Lagrangian method for image restoration with spatially adapted parameter 
selection. 
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Algorithm 2. Augmented Lagrangian method for image restoration with spatially 
adapted parameter selection. 

 Input: 0f , 0λ  and 0=k . 

1. If 0=k , employ Algorithm 1 with 0λλ =  to compute: 

2

2

2

0
2

2
1

minargˆ fDgHff ii

n

if

λ∑+−= , 

   else compute kf̂  by Algorithm 1 with kλλ =  and kk Hfgv −= : 

2

2

2

2

2
1

minargˆ fDvHff i
k
i

n

i

k

f

k λ∑+−= . 

2.  Update kkk fff ˆ1 +=+ . 

3. Update kλ  based on (12) and (13). 
 4. Check the stopping criteria. If a stopping criterion is satisfied, then exit; 

otherwise, let 1+= kk  and go to step 1. 
 

4. Numerical experiments 
In this section, we present numerical results to illustrate the performance of the proposed 
approach for image restoration. We compare the proposed algorithm (Algorithm 2) with 
the SATV algorithm presented in [22]. All computations of the present paper were 
carried out in Matlab 7.10 on a PC with an Intel(R) Core(TM) i3-2130 CPU 3.4 GHz and 
4 GB of RAM. The initial guess is chosen to be the black image (zero matrix) in all tests. 
As reported in [22], we concentrate on image denoising in this work, i.e., H  is the 
identity matrix and use the window size 11=r . In this way, we have a fair comparison 
for our algorithm with the SATV algorithm. 

The quality of the restoration results by different methods is compared quantitatively 
by using the Peak-Signal-to-Noise Ratio (PSNR) and Structural SIMilarity index (SSIM). 
In general, a high PSNR-value indicates that the restoration is more accurate. The SSIM 
is a well known quality metric used to measure the similarity between two images. This 
method is developed by Wang et al. [23], and is based on three specific statistical 
measures that are much closer to how the human eye perceives differences between 
images. 

Suppose f  and f
~

 are the original image and the restored image, respectively. The 
PSNR and SSIM are defined as follows: 

2

10 ~
255

log20PSNR
ff

n

−
= ,                                             (14) 

)C)(C(

)C)(2C(2
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2
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2
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,                                 (15) 
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where fµ  and 
f
~µ  are averages of f  and f

~
, respectively. fσ  and 

f
~σ   are the 

variance of f  and f
~

, respectively. 
ff

~σ  is the covariance of f  and f
~

. The positive 

constants 1C  and 2C  can be thought of as stabilizing constants for near-zero denominator 
values. We refer the reader to [23] for further details on SSIM. 

In the first test, we consider the well-known Cameraman image with size of 
256256× . The original image is contaminated by the 2% Gaussian noise. The ideal 

image and the degraded image are shown in Figures 1(a) and 1(b). The restored images 
by SATV and the proposed method are shown in Figures 1(c) and 2(d). In this test, we 
choose the penalty parameter 5=η  for the proposed method. From the figures, 
compared with SATV, the proposed method yields better results in image restoration. We 
observe that the CPU time of the proposed method is much less than that of SATV. We 
show the SSIM maps and the plots of λ  in Figures 1(e)-(h). We see from Figures 1(e) 
and 1(f) that the SSIM map of the restored image by the proposed algorithm is whiter 
than that by the SATV algorithm, i.e., our method can get better restoration results. 

 

 
 
 
 
 
 
 

In the second example, the 256256×  Lena image shown in Figure 2(a) is degraded 
by the Gaussian white noise with 5% to generate the observed image displayed in Figure 
2(b). The restored images by SATV and the proposed method with 10=η  are shown 
Figure 2(c) and 2(d), respectively. It is not difficult to observe that the restored image by 
our method contains more details. From Figure 2(e) and 2(f), we know that the SSIM 

Figure 1. Results of the Cameraman image. (a) Original image. (b) Degraded image. 
(c) Restored image by SATV (CPU time: 53.70s, PSNR=35.07dB). (d) Restored 
image by the proposed method (CPU time: 7.76s, PSNR=36.45dB). (e) SSIM map by 
SATV (SSIM=0.93). (f) SSIM map by the proposed method (SSIM=0.96). (g) Final 
value of λ  in SATV. (h) Final value of λ  the proposed method. 
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value of the restored image by the proposed method is higher than the SATV method. 
The results in terms of the SSIM map, CPU time and final value of regularization 
parameter λ  show that the performance of the proposed method is superior to that of the 
SATV method. 
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