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Abstract. The aim of image restoration is to reconstruct ppraximation of an image
from blurred and noisy measurements. The problesnréeeived considerable attention
in recent years. In this paper, we propose the autgd Lagrangian method to restore
blurred and noisy images with spatially adaptedilaigation parameter selection. Some
numerical examples are given to illustrate thecatiffeness of the proposed algorithm.
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1. Introduction

The recording of an image usually involves a degfiad process: a blurrring, due to
atmosphere turbulence, camera misfocus or relatigeement, followed by a random
noise, due to errors of the physical sensors gusemtization [1,2,3]. The goal of image
restoration is to reconstruct an approximation ofimage from a blurred and noisy
measurement. Image restoration plays an importartt ip various areas of applied
sciences such as medical imaging, microscopy, raatmyg, film restoration, and image
and video coding [4, 5, 6]. The image formationgess is typically modeled as

g=Hf+e, 1)
where f OR™ represents the ideax n image, g [J R represents the observedk n

image, e[ R represents the additive noise and the structuredimH OR"n
related to the boundary conditions is called arbigrmatrix that models the blurring
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operation. In this work, we assume that the nornthef noisec =, is explicitly

known, but that the noise vecteris not.
Mathematically, image restoration is a typicalpitised inverse problem. It is known
that the solution oHf =g is very sensitive to the noisein the right-hand sidg . To

stabilize the recovery of the imade, one must utilize some prior information. In such

stabilization scheme, a common approach is to agdalarizer to the data fidelity term,
resulting to the following reconstruction model:

1
mf|n§||Hf g, +ARed f), 2)(

where in the objective functiorReqf) regularizes the solution by enforcing certain

prior constraints and is the regularization parameter that controlskthkance between
the fidelity term and the regularization term fonimization.

Probably one of the most popular regularizationhoés is Tikhonov regularization
[7]. The regularization functionals used more oftea quadratic functionals of the form

Req f) =||Lf ||§ whereL is usually chosen to be the identity matrix offediéntiation

matrix. This choice essentially gives a linear {esgiares problem, but has the drawback
of penalizing discontinuities in the image. Therefore, this is not a good choice if we

are interested in edge restoration. To overcome shortcoming, Rudin, Osher and
Fatemi [8] proposed a total variation (TV)-basegutarization technique (ROF model),
which preserves the edge information in the redtoimage. In this case, the

regularization term is the TV-norReq(f) =|Of |, . To define the discrete TV-norm,
we usually introduce the discrete gradiétft as follows [9]:

(Df )i,j = ((Df )ix,j’(Df )ij)

with

0, i=n 0, j=n.
Here f; ; represents the value of pix@| j) in the image, it is th¢i + (n—1) j) th entry

of ), :{fim “hae 10 and (OOf )!, :{fi’iﬂ_ fijo d<n,
1] i

of the vector imagef . With the notations, the discrete TV-norm bfis defined as
n

follows:
o), = 20, |= £ (@ f (o f ©
where|y| =4/y7 +y; for everyy=(y,y,)OR’. In fact, as reported in [10], we can

use the periodic boundary condition for the diserEY-norm. It is well known that the
major difficulty of the ROF model is the high nardiarity and non-differentiability of the
object function. To address the problem, many iefficand robust methods have been
proposed; see [11,12,13,14,15] for more details.

Clearly, the choice of the regularization parametein (2) is a non-trivial issue. A
large A favors a small solution norm at the cost of adargsidual norm, while a small
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A has the opposite effect. Thus, the regularizaflois an important quantity which
controls the properties of the regularized solytamd A should therefore be chosen with
care. Throughout the years a variety of parametaice strategies such as the
discrepancy principle, the L-curve and generalizeass validation (GCV) have been
developed [16,17]. In particular, total variatiomaels with a spatially varying choice of
parameters were considered in [18,19,20,21]. Mwilaby these works, Dong,
Hintermuller and Rincon-Camacho [22] introducedolust multi-scale total variation
model for image restoration recently. The modellizets a spatially dependent
regularization parameter in order to enhance imrag®ns containing details while still
sufficiently smoothing homogeneous features. Thig fwtomated adjustment strategy of
the regularization parameter is based on locabwa# estimators.

In this paper, we consider to deal with the autechategularization parameter
selection model proposed in [22] by the augmentagrangian method. The proposed
algorithm is much faster than the primal-dual apptoof [22] for the spatially adapted
total variation model. Our numerical results shdwattour method outperforms some
existing restoration methods in terms of the Pegke-to-Noise Ratio (PSNR) and
Structural SIMilarity (SSIM) value. The organizatiof this paper is outlined as follows.
In the next section, we recall some basic restiith@maugmented Lagrangian method for
image restoration. In Section 3, we introduce thtomated regularization parameter
selection method and propose the augmented Lagramgéthod for the solution of the
model. Some numerical experiments are given tcstilite the performance of the
proposed algorithm in Section 4.

2. Augmented L agrangian method
Consider an unconstrained optimization problem:

muin W(u) + d(Du), (4)

where W and ® are proper, closed and convex functions. Intrauy@ new variable
v = Du, we can rewrite (4) as a constrained problem @fohm:

min Y (u) + d(v),
5)
s.tDu=vw.
The associated augmented Lagrangian function feiptioblem is defined as
L(u,v,b,q)=w(u)+q>(v)+%||Du—v+b||§, ©6)

where/} is related to the penalty parameter for the cairgtrin (5). The idea of the

augmented Lagrangian method is to find a saddlet @di(6), which is also the solution
of the original problem (4). We can use the alteéngadirection method to iteratively
solve the following subproblems:
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ukt = argumin W(u) +%||Du -V + bk”z,

Vet = argvmin d(u) + %”Duk+1 v+ bk"z,

bk+1 = bk _ (Dull:+1 —Vk+l).

We now investigate these subproblems one by on¢hiorspatially adapted total
variation image restoration problem (2) with a &t varying parameter. In this case,

we have W(f) :%”Hf - g||§ , ©(Df) = nZ)Ii |ID, f|, where D, denotes the discrete

gradient of f at pixeli .
For the first subproblem, it is required to solke following normal equation:
(HTH +7D'D)f =H g +7D" (Vv +b"). (8)
Under the periodic boundary conditioB, and H have block circulant with circulant
blocks (BCCB) structure; see [10] for more detailse know that the computations with

BCCB matrices can be done very efficiently by udmst Fourier transforms (FFTs). For
the second subproblem, we need to solve the faligywroblem:

mvinianl)Iivi +%||Df k”—v+b"||z, (9)

wherev = (Vl,vz,...,vnz). It is known that the problem can be solved usirghrinkage

formula. We refer to [14] for details. Now we area position to describe the augmented
Lagrangian method for the total variation imagetaegion problem with a spatially
varying parameter as follows:

Algorithm 1. Augmented Lagrangian method for the total variatimage restoration
problem with a spatially varying parameter.

Input: v°, b°, g andk =0.

1. Forv* andb® fixed, employ an efficient method to comput&™:
(HTH+7D'D)f =HTg+7D" (V¢ +b).

2. For f*** andb® fixed, use a shrinkage formula to compute

Vit = argvrnininél/livi + %”Df v+ bk”z.

3. Updateb**! = b* — (Du*"* —v**1).
4. Check the stopping criteria. If a stopping ciite is satisfied, then exit with an
approximate solution; otherwise, lkt=k +1 and go to step 1.

3. Spatially adaptive algorithm
In this section, we propose the augmented Lagrangiethod for image restoration with
spatially adapted parameter selection. At first, describe how to choose the spatially
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adapted regularization parameter. For the sakempligity, we use the continuous model.
Similar to [22], we define a normalized filter'

CL)(X, y) |Qr ”y X” __

o} otherwse

where xOQ is fixed, Q' is a local window centered at pix&l which is defined by
= {y:”y— X|_ < 12} andr > 0 sufficiently small is the essential width of thikef

window. By F (u)(x) we denote the local expected value estimator, wisic

F(U)() = | a(x y)(Hf -~ g)*(v)dy. (10)
Hence, we obtain the following total variation-bégainimization problem with local
constraints based on formula (10):

minJ' [Ofldx s.t. F(u)<1+¢€ a.e.inQ (11)

uds(Q) JQ
where “a.e.” stands for “almost everywhere”. Thegbrof the existence of a solution in
(11) can be found in [22].

In the discrete form, we Iéﬂi”j denote the set of pixel-coordinates in-ay-r
window centered afi, j) with a symmetric extension at the boundary, wisch

, . r-1 r-1
Q, ={(s+|,t+ j):—Tss,tsT}.
We apply the mean filter to the residug- Hf and obtain the local expected value
estimator:
1

S i = Z (gst (Hf )s,t)z'
(sy)D i

Similar to the work in [22], we can propose the illmupdate scheme of as
follows:

1 _1
ot /]~—+5maX((SK) -0’ 0), (12)
i ]
11, 2 = 13

AT syey, A

where J is a step size. For obtaining a better choicénefregularization parameter, we
can apply a modified local variance estimaﬁjq to repIaceS,f ;; see [22] for more
details.

Based on the Hierarchical decomposition technigwe, have the following

augmented Lagrangian method for image restoratiith gpatially adapted parameter
selection.
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Algorithm 2. Augmented Lagrangian method for image restoratidth spatially
adapted parameter selection.

Input: f°, A° andk =0.
1. If k =0, employ Algorithm 1 withA = A° to compute:

A .1 PR

f0= argfmln§||Hf -gf, + iZ/\i D £,
else computé® by Algorithm 1 with A = A andv* = g — Hf ¥

Sk i 1 2 n?

fk= argfmlnEHHf —v"||2 + iZ)I!‘"Di fl,-

2. Updatef** = f*+ f*,

3. UpdateA* based on (12) and (13).
4. Check the stopping criteria. If a stopping eridn is satisfied, then exit;
otherwise, letk =k +1 and go to step 1.

4. Numerical experiments

In this section, we present numerical resultsltstitate the performance of the proposed
approach for image restoration. We compare thegseg algorithm (Algorithm 2) with
the SATV algorithm presented in [22]. All computats of the present paper were
carried out in Matlab 7.10 on a PC with an Intel®¥e(TM) i3-2130 CPU 3.4 GHz and
4 GB of RAM. The initial guess is chosen to be Itkeck image (zero matrix) in all tests.
As reported in [22], we concentrate on image dengisn this work, i.e.,H is the
identity matrix and use the window size=11. In this way, we have a fair comparison
for our algorithm with the SATV algorithm.

The quality of the restoration results by differemdthods is compared quantitatively
by using the Peak-Signal-to-Noise Ratio (PSNR) @mdctural SIMilarity index (SSIM).
In general, a high PSNR-value indicates that tlseoration is more accurate. The SSIM
is a well known quality metric used to measuredimeilarity between two images. This
method is developed by Wang et al. [23], and isebasn three specific statistical
measures that are much closer to how the humarpeseeives differences between
images.

Supposef and f are the original image and the restored imageectvely. The
PSNR and SSIM are defined as follows:

PSNR= 20|oglO;f—5;' , (14)
-1,
24, - +C,) (20~ +C
SSIM_ ( quluf 1)( ff 2) (15)

(U HC) (W H R +C,)
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where 4, and y; are averages off and F respectively.c, and o- are the

variance off and F respectively.o is the covariance of and f . The positive

constantsC, andC, can be thought of as stabilizing constants for-aeso denominator
values. We refer the reader to [23] for furtheradeton SSIM.

In the first test, we consider the well-known Caamean image with size of
256x 256. The original image is contaminated by the 2% Gawmsnoise. The ideal
image and the degraded image are shown in Figedsafhd 1(b). The restored images
by SATV and the proposed method are shown in Fggife) and 2(d). In this test, we
choose the penalty parametgr=5 for the proposed method. From the figures,
compared with SATV, the proposed method yieldsdbetsults in image restoration. We
observe that the CPU time of the proposed methoauish less than that of SATV. We
show the SSIM maps and the plots.bfin Figures 1(e)-(h). We see from Figures 1(e)
and 1(f) that the SSIM map of the restored imageheyproposed algorithm is whiter
than that by the SATV algorithm, i.e., our methath get better restoration results.

(e) (f) (g)

Figure 1. Results of the Cameraman image. (a) Original imémeDegraded imag:

(c) Restored image by SATV (CPU time: 53.70s, PSBE&G7dB). (d) Restored

image by the proposed method (CPU time: 7.76s, RSE§R5dB). (e) SSIM map by

SATV (SSIM=0.93). (f) SSIM map by the proposed noet{SSIM=0.96). (g) Final

value of A in SATV. (h) Final value ofd the proposed method.

In the second example, tt&#56x 256 Lena image shown in Figure 2(a) is degraded

by the Gaussian white noise with 5% to generatebiserved image displayed in Figure
2(b). The restored images by SATV and the propasethod with/7 =10 are shown

Figure 2(c) and 2(d), respectively. It is not diffit to observe that the restored image by
our method contains more details. From Figure a¢e) 2(f), we know that the SSIM
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value of the restored image by the proposed meihdigher than the SATV method.
The results in terms of the SSIM map, CPU time éindl value of regularization
parameterd show that the performance of the proposed methsdperior to that of the
SATV method.

(g) (h)

Figure 2. Results of the Lena image. (a) Original image. Pegraded image. (i
Restored image by SATV (CPU time: 54.40s, PSNR=R#2. (d) Restored image
by the proposed method (CPU time: 8.53s, PSNR38BB (e) SSIM map by
SATV (SSIM=0.84). (f) SSIM map by the proposed noet{SSIM=0.92). (g) Final
value of A in SATV. (h) Final value ofl the proposed method.
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