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1. Introduction and main results 
Consider the second-order systems                                                                  

{ ],,0[a.e.t                   0))(,()(
)()()0()()0(
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ɺɺ

ɺɺ
              (1) 

where  0>T , and [ ] RRTF N →×,0:  satisfies the following assumption: 
),()( xtFH  is measurable in t for each NRx ∈  and continuously differentiable in x for 

[ ]Ttea ,0.. ∈  and there exist ),( ++∈ RRCa , );,0(1 +∈ RTLb  such that 
)()(),(),()(),( tbxaxtFtbxaxtF ≤∇≤  

for all NRx ×∈  and [ ]Ttea ,0.. ∈ . 
The existence of periodic solutions for problem (1) has been studied extensively, a 

lot of existence and multiplicity results have been obtained, we refer the readers to [1-17] 
and the reference therein. 

Suppose that ),( xtF  is −iT periodic in
ix , ri ≤≤1 , that is 

                    ( ) ),(F
1

xtFxt,
r

eTk
i

iii =∑+
=

,                      (2) 

for all [ ]Ttea .0.. ∈ , NRx ×∈  and all integers ik , ri ≤≤1 , where { } )1( riei ≤≤  is the 
canonical basis of NR . 

With periodic potentials, that is, (2) holding with r=N, the existence and multiplicity 
theorems are obtained for the nonautonomous second-order system (1) in [1] and [2] 
respectively. When the nonlinearity is bounded, In [3-4], Chang and Liu have studied the 
nonautonomous second order system (1) with partially periodic (that is,(2)holding 
with Nr ≤≤1 )a- nd partially uniformly coercive potentials ( +∞→),( xtF for every ,(x  

r
r Rxx ∈⋅⋅⋅ ),2 as ),( 21 Nrr xxx ⋅⋅⋅++  tends to infinity inR rN− ). 

In [5], Wu has obtained the following result. 
 

Theorem A.  Suppose that F satisfies conditions (H) and (2). Assume that there exist 
);,0(1 +∈ RTLg such that 
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)(),( tgxtF ≤∇     and  +∞→∫ dtxtF
T

0
),( , 

for every r
r Rxxx ∈⋅⋅⋅ ),,( 21  as ),,( 21 Nrr xxx ⋅⋅⋅++ tends to infinity inR rN − .Then 

problem (1) has at least 1+r  geometrically distinct solutions inHT
1 . 

In 2003, Tang [6] generalized Theorem A and obtained the following results. 
 
Theorem B. Assume that there exist );,0(, 1 +∈ RTLgf  and 10 <α≤  such that 

                    )()(),( tgtfxtF x +≤∇
α

                        (3) 

for all NRx∈ and [ ]Ttea ,0.. ∈ . Suppose that F satisfies conditions (H) and (2). and  

                    +∞→∫
−

dtxtFx
T

0

2
),(

α ,                         (4) 

for every Rxxx r
r ∈)...,,( 21  as )...,,( 21 xxx Nrr ++ tends to infinity in R rN + .Then 

problem (1) has at least 1+r  geometrically distinct solutions in H T
1 . 

In 2011, Zhang and Tang [7] investigated the existence of periodic solutions 
for problem (1) and obtained the following results. 
 
Theorem C. Assume that there exist f, );,0(1 RTLg +∈  and 10 <α≤  such that 

)g()(),( txtfxtF +≤∇ α , 

for all NRx ∈ and [ ]Ttea ,0.. ∈ . Suppose that F satisfies conditions (H) and (2).and  

2

00

2
))((

8
),(inflim dttf

T
dtxtFx

TT

x ∫∫ >α−

∞→
, 

for every r
r Rxxx ∈⋅⋅⋅ ),,( 21 as ),,( 21 Nrr xxx ⋅⋅⋅++ tends to infinity in rNR − .Then problem 

(1) has at least 1+r  geometrically distinct solutions inH T
1 . 

In this paper, we consider the following second-order systems: 

             
[ ]{ ,,0..       ,0))u(,()(u)(u

0)(u)0(u)u()0u(
TteattFtAt

TT
∈=∇++

=−=−
ɺɺɺ

ɺɺ
         (5)  

where 0>T , A is antisymmetry constant matric with TA
π2< . 

The Hilbert space 1
TH  is defined by [ ]{ |,0:1 N

T RTuH ֏= u is a absolutely 
continuous )()0( Tuu =  and });,0(2 NRTLu ∈ɺ  and 1

TH  is endowed with the norm 

( )2

1

0 0

22

∫ ∫+= T T
dtudtuu ɺ , 

By sobolev embeded theorems, there exist C>0, for all Hu T
1∈ , such that 

                         uCu ≤
∞

.                              (6) 

where [ ]
)(max

,0
tuu

Tt∈
=∞ .Motivated by [1-7], The following main results are obtained by 

the minimax methods. 
 
Theorem 1.1. Suppose that F satisfies conditions (H), and there exist );,0(, 1 RTLgf +∈  
such that 

                       )()(),( tgxtfxtF +≤∇ ,                    (7) 

for all NRx ∈  and [ ]Ttea ,0.. ∈ , where 
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Assume that (2) holds and 

                    +∞→∫
= T

dtxtFx
0

2
),( ,                     (8) 

as x tends to infinity in R rN−×∈0 .Then problem (5) has at least 1+r geometrically distinct 
solutions inHT

1 . 
 
Remark 1.1. System (5) generalizes system (1) obviously, for if A= 0, then system (5) 
becomes system (1). We consider the system (5) with partially periodic potentials and 
linear nonlinearity. 
       Theorem 1.1 is a new result, which completes the theorem B and theorem C with 
α=1 in (3). Theorem 1.1 generalized Theorem A , which is the special case of Theorem 
1.1 corresponding to f(t)≡0. 
 
Example 1.1. There are functions F satisfying our Theorem 1.1 and not satisfying the 
results in [1]-[7]. For example, let 

2

1
21 sinsinsin1),( ∑

+=

++⋅⋅⋅++++=
N

rj
jr xxxxrxtF , 

where { } N

N
Rxxxx ∈⋅⋅⋅= ,,, 21

. 

Theorem 1.2. Suppose that F satisfies conditions (H), (2),(7) and 

                     ∫ −∞→T
dtxtFx

0

2
),( ,                       (9) 

as x tends to infinity in R rN−×∈0 .Then problem (5) has at least 1+r  geometrically 
distinct solutions inH T

1 . 
 
Example 1.2. There are functions F satisfying our Theorem 1.2 and not satisfying the 
results in [1]-[7]. For example, let 

)sinsinsin1(),(
2

1
21 ∑

+=

++⋅⋅⋅++++−=
N

rj
jr xxxxrxtF , 

where { } N

N Rxxxx ∈⋅⋅⋅= ,,, 21
. 

 
2. Preliminaries 
For 1

THu ∈ ,let 1
0 ( )
T

Tu u t dt= ∫ ,and ututu −= )()(~ .Then we have Sobolev’s inequality 

                     dttu
T

u
T 2

0

2
)(

12
~ ∫≤ ɺ ,                      (10) 

and Wirtinger’s inequality 

                   ∫∫ ≤
TT

dttu
T

dttu
0

2

2

22

0
)(

4
)(~

ɺ

π
                 (11) 

for all 1
THu ∈  (see Proposition 1.3 in [8]). 

Put )(~)(ˆ tuuQuPtu ++= ，where 
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and r)i1( ≤≤il  is the unique integer such that 
iiii TTleu <−≤ ),(0  

Define the functional ϕ  on 1
TH  by 

dttutFdttutAudttuu
T TT

∫ ∫∫ −+=ϕ
0 0

2

0
))(,())(),((

2

1
)(

2

1
)( ɺɺ

 

Then ϕ  is continuously differentiable by Lemma 1 in [9] and the solutions of 
systems (5) correspond to the critical points of ϕ . Moreover, one has 

dttvtutFdttvtAudttvtuvu
T TT

∫ ∫∫ ∇−+=ϕ
0 00

))()),(,(())(),((
2

1
))(),((),(     

Let 

1

| ,1
r

i i i i
i

G k T e k Z i r
=

 = ∈ ≤ ≤ 
 
∑  

be a discrete subgroup of 1
TH  and let :π 1 1

TT
H H G→  be the canonical surjection. It is 

obvious that 1
TH G X V= × , 

where ZYX ⊕= , { }0|11~ =∈== uHuY TTH }{ Nr eespanZ ,,1 ⋅⋅⋅+= ,and { }1, , rV span e e G= ⋅⋅⋅  is 
isomorphic to the torus rT .Define ψ ; RYX →×  by 

)())(( uu ϕπψ = . 
It follows from (2) that ψ  is well-defined. Moreover, ψ is continuously differentiable. 
 
3. Proof of theorem 
Now we begin to prove our main result, for the sake of convenience, c denote some 
constant. 
Proof of Theorem 1.1.  the proof relies on the generalized saddle point theorem due to 
Liu [4]. Assume that  0))(( →nuπ  is a )(PS  sequence for ψ ,that is, ))(( nuπψ  is 
bounded and 0))(( →′ nuπψ .Then )( nuϕ  is bounded and 0)( →′ nuφ  . 

Let{ } 1
Tn Hu ∈   be such that 

                )(,0)(,)( ∞→→ϕ′≤ϕ nucu nn
                (12) 

First,we shall prove that { }nu  is bounded in 1
TH .By contradiction, we  assume 

∞→nu  as ∞→n . 

For{ } 1
Tn Hu ∈ ,let dttu

T
u

T

∫=
0

)(
1 ,and ututu −= )()(~ .By (12), for 1

TH∈φ∀ ,we have 

)(0)),,((),(),(
000

φ=φ∇−φ+φ ∫∫∫ dtutFdtAudtu
T

n

T

n

T

n
ɺɺɺ . 

Taking 
nu~=φ ,we have 

      
n

T

nn

T

nn

T

n udtuutFdtuAudtu ~)~),,((),(
00

2

0
≤∇−+ ∫∫∫ ɺɺ .         (13) 

By the Wirtinger inequality (11) and 2

T
A π≤ , we have 

dtuAudtu
T

nn

T

n ∫∫ +
0

2

0
),( ɺɺ  
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By (7), (11) and the lderoH ɺɺ  inequality, one has 

dtuutF
T
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0
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dttfM 0 )(1  . 

By (13),(14) and (15), we have 
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Therefore 
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It follows from (15) and (16) that 
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By (16), δ<2
12 CM and the boundedness of Qun , we have 
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By (18), for 0>ε∀ ,such that 0
2

1 2

1 >ε−
δ

− CM ,we have 
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It follows from (13),(16), (17) and (19) that 
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By (16) and (19), we have 
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By (6),(7),(21), the lderoH ɺɺ  inequality and the boundedness of Qun ,we have 
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By (20) and (22), we have 
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Since u n → ∞ as ∞→n , by (19), we have ∞→nuP as ∞→n . 
Let ε small enough, by (8), we get that −∞→)( nuφ  as ∞→n ,this contradicts 

(12) and hence { }un  is bounded in 1HT .Arguing then as in Proposition 4.1 in [9], we 
conclude that the (PS) condition is satisfied. 

Now we check the link condition that 
(a) { } −∞>×∈ππψ XYuu )(|))((inf . 
(b) −∞→πψ ))(( x  uniformly for )(Qxπ  as ∞→Px ,where NRx ∈ . 

For VYu ×∈π )( , uQuu += ~ . 
In a similar way to (22), we can get that 
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It follows from (24), TA π2<  and the boundedness of nuQ  that 
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By δ<2
12 CM , we have +∞→))(( xπψ , as ∞→u , for all VYu ×∈π )( ,which 

implies (a). 
It follows from (7) and the boundedness of Q un that 
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for all NRx∈ .Hence we have, by (8),(b) is satisfied. It follows from the generalized 
saddle point theorem (Theorem 1.7 in [4]) that has at least 1+r  critical points .Hence 
ϕ has at least 1+r  geometrically distinct critical points. Therefore, problem (5) has at 
least 1+r  geometrically distinct solutions in1

TH  . 
 

Proof of Theorem 1.2 the proof relies on Theorem 4.12 in [8]. In a similar 
way to (22), we can get that 

        ∫ ∫−T T
dtuPtFdtutF

0 0
),()ˆ,(  

       cucuCMuPcuuPCM ++++≤ ~~~ 22

1

2

1
                   (25) 

It follows from (14) and (25) that 
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                 (26) 

By δ<2
12 CM  and (9), we get that ϕ  is bounded from below. Moreover, the 

functional ϕ  satisfies the 
GPS)( condition; that is, for every sequence )( nu  in 1

TH  
such that 0)( →nuϕ  is bounded and 0)( →nuϕ ,the sequence )( nuπ has a convergent 
subsequence (see Definition 4.2 in [8]). In fact, the boundedness of )( nuϕ , (9) and (26) 
imply that )~( nu  and )( nPu  are bounded. Hence )ˆ( nu  bounded. As in the proof of 
Proposition 4.1 in [8], )ˆ( nu  has a convergent subsequence, so we have )ˆ()( nn uu π=π . 

Now the Theorem in this case follows from Theorem 4.12 in [8]. 
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