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Abstract. In this paper, some multiplicity theorem is ob&nfor periodic solutions of
nonautomous second order systems with partiallyogier potential by the minimax
methods.
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1. Introduction and main results
Consider the seconarder systems
{U’(t)—DF(t,u(t)):O a.e.[J0T], (1)
u(0)-u(T)=u(0)-u(T)=e(t)
where T>0,andE:[oT]xR" . r Salisfies the following assumption:
H)F@x IS measurable in t for eackOR" and continuously differentiable in x for
aet Dﬁo,T] and there exisa OC(R*,R’), bOL'(0,T;R") such that
\F (t, x)\ < a(\x\)b(t), OF(t, x)\ < a(\x\)b(t)
forall xoxr" and aetO[o,T]. _ _ _
The existence of periodic solutions for problem l{as been studied extensively, a
lot of existence and multiplicity results have bedmained, we refer the readers to [1-17]
and the reference therein.
Suppose thatr¢,x) is T —periodic inX, 1<is<r, thatis

Atx+Skre ]=F (63 )

for allaetofor], xOxR" and all integersk ,1<i<r, where {g}@a<i<r) is the
canonical basis ofR".

With periodic potentials, that is, (2) holding withN, the existence and multiplicity
theorems are obtained for the nonautonomous semmed-system (1) in [1] and [2]
respectively. When the nonlinearity is bounded3i4], Chang and Liu have studied the
nonautonomous second order system (1) with partipériodic (that is,(2)holding
with1<r < N)a- nd partially uniformly coercive potentials ¢ x) . +.for every (x,

%, X ) OR as(x, ., X, [[[Xy) tends to infinity ing+).

In [5], Wu has obtained the following result.

Theorem A. Suppose that F satisfies conditions (H) and (2sufx®e that there exist
gOL*(0,T;R") such that
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OFt®lsgw)  and [ F@xXdt - +oo,

for every (X,% X )OR  as (X..X.,[[LX,) tends to infinity inRN™" .Then
problem (1) has at leagt +1 geometrically distinct solutions 5.
In 2003, Tang [6] generalized Theorem A and obthihe following results.

Theorem B. Assume that there exist, g OL'(0,T;R") and 0<a <1 such that

IOF (t,%)] < f(t)‘xf +g() (3)
for all xOR"and aetO[o,T]. Suppose that F satisfies conditions (H) anda()l

I jOT F(t,x)dt - +oo (4)
for every (¥ -x) IR as (X415 Xp42++-» Xp)tends to infinity in g+ .Then
problem (1) has at least+1 geometrically distinct solutions in43 .

In 2011, Zhang and Tang [7] investigated the eRristeof periodic solutions
for problem (1) and obtained the following results.

Theorem C. Assume that there existgfi1| *(0,T;R") and 0<a <1 such that
IOF t, )] < f ()X +9@),
for all xOR"and a.et [0, T]. Suppose that F satisfies conditions (H) and if2).a
fim vinf X [T F(t,X)dt > — (j f (t)dt)?,

for every (x, x2[l]D<,)DRras(X,+1, oo L X )tends to infinity irR"™ . Then problem
(1) has at least +1 geometrically distinct squtlons mi.
In this paper, we consider the following secondeoisl/stems:

t(t)+ Au(t)+0F (t,u(t))=0,  a.et0[o,T],
u(0)-u(T)=u(0)-u(T)=0 (5)

where 1 >0, Ais antisymmetry constant matric witha|| < 2%
The Hilbert spaced; is defined byH! -{u OT]H RN | u is a absolutely
continuous u(0) = u(T) and uCL? O,T; RN>)T and H} is endowed with the norm

jul = ([ e [ e}
By sobolev embeded theorems, there exist C>0,lfou&H%, such that
Jul.. = Clul- ©)

where Hu” = maﬂu(t)‘ .Motivated by [1-7], The following main results asbtained by
the minimax met ods.

Theorem 1.1. Suppose that F satisfies conditions (H), and tleeist f,g0'QT:R)
such that

IOF @ x)| < f @)X+ g (7)

for allxOR™ and aet0[o,T], where
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=[] o= min{; ZT’f}[l-%ij-

2M1C2<51

Assume that (2) holds and
M7 [ F Xt — oo (8)

as x tends to infinity ingoxg*.Then problem (5) has at least+ 1geometrically distinct
solutions irHt.

Remark 1.1. System (5) generalizes system (1) obviously, ffék= 0, then system (5)
becomes system (1). We consider the system (5) péttially periodic potentials and
linear nonlinearity.

Theorem 1.1 is a new result, which complétegheorem B and theorem C with
a=1 in (3). Theorem 1.1 generalized Theorem A , Whecthe special case of Theorem
1.1 corresponding to f&p.

Example 1.1. There are functions F satisfying our Theorem hd maot satisfying the
results in [1]-[7]. For example, let

N 2
F(t,X) =1 +1+sinx +sinx, +3Fsinx + Z‘xj

j=r+l

where x ={x,x,[[[x }OR".
Theorem 1.2. Suppose that F satisfies conditions (H), (2),60 a
X" [T F(t, x)dt - —co 9)

as x tends to infinity inJoxg*".Then problem (5) has at least+1 geometrically
distinct solutions iz .

Example 1.2. There are functions F satisfying our Theorem 1.@ aot satisfying the
results in [1]-[7]. For example, let

N 2
F(t,x) = ~(r +1+sinx, +sinx, +I3sinx, + Y |x| )
j=r+l
where x ={x, x,,(x, } OR".

2. Preliminaries
ForuOH; let o =% u(t)ydt ,and G(t) = u(t) —.Then we have Sobolev's inequality

2 T T2
Jal < - [} laco de (10)
and Wirtinger’s inequality
NI
[[fac) dts e [ Jaef (11)
for allulJ H% (see Proposition 1.3 in [8]).

Put G(t)=Pu+Qu+u(t) , where
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PU= Y (1,6)8,QU = Z[(u e)-ITk
i=r+1
and | (1<i<r) is the unique mteger such thets (a, e)-IT <T,
Define the functlonal¢ on HI by

d(u) :—j \u(t)\ dt +7j (Au(t),u(t))dt —f F (t,u(t))dt

Then @ is continuously differentiable by Lemma 1 in [9)dathe solutions of
systems (5) correspond to the critical points ¢0fMoreover one has

(®(u),v) = [} (u(t), v(t)dt + % [ (Au(), v(t))dt - [ (OF (t,u(t)), v(t))dt
Let

={Zr:|qTiq|kiDZ,1$isr}

be a discrete subgroup dfi; and lem: H - H /G be the canonical surjection. It is
obvious that H! /G = Xxv
wherex =y 0 z,Y = ={uDH} [u=0} Z = span{ €., e, } ,andv=span{e Mk} /G is
isomorphic to the torusT".Define Y ;XxY - R

Y(n(u)) = ¢(U)

It follows from (2) that ¢ is well- deflned Moreovert// is continuously differentiable.

3. Proof of theorem
Now we begin to prove our main result, for the sakeconvenience, ¢ denote some
constant.
Proof of Theorem 1.1. the proof relies on the generalized saddle pbi@brem due to
Liu [4]. Assume that7r((u,)) -~ O is a (ps) sequence for that is, ¢(n(u,)) is
bounded andy/ (n(uy)) - 0.Then ¢(u,) is bounded angf(u_) — O .

Let{u }OH: ~ be such that

< C,d)'(un) — O, (n - 00) (12)

First,we shall prove tha{un} is bounded inH%.By contradiction, we assume
o] = @S- .

For{u }OH; let g== ju(t)dt and {(t) = u(t) -u-By (12), for OgO H?,we have

jT (U, @dt + [ (Au,,@)dt - [ (OF (t,u,), @)t = O(g))-
Taking ¢ =0 ,we have

(13)

By the Wirtinger mequallty (11) aan<— we have
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T T .12
>(1-— 1| dt
@ADLl

1411
2T2

210
=min{ 2, 7 }a sl =5 0

where . _ {1 2#}(_%

By (7), (11) and theHslder inequality, one has
u ) dt

.
1_
( 21

=M ,C?u (15)
whereM, =3 fdt .
By (13),(14) and (15), we have
[ (OF(t,u,),T,)dt
2 3| |* - M.C?u |G| - C[ g(t)dt|d,.
Therefore
M
7)< My +c (16)
It follows from (15) and (16) that
[ (DF(t,un),ﬁn)dt\
<M C?u (il
M ’C*
<= Ju|" +Clu+C n

By (16), 2M,C? < sand the boundedness (ﬂﬁ? nH , we have
o] MC 1. (n-e)

Ju | & 2
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Pa, G _[Qul 1 MC', (n_. (18)
u, u, u, 2 o
By (18), for Cg > 0,such thatl _M.C* ___  we have
2 0
1 - (19)
e P
2 0
It follows from (13),(16), (17) and (19) that
T2 T . T ~ ~ 24 )
[ Ju)dt+] (Au,,u)dt <[ (DF(t,un),un)dt+uns'V'16C ulf +duf+c
Mz2C* 1 e _ 20
<M e [Pl dpue @0
2 0
By (16) and (19), we have
__MC? MC* 1 o (21)
0l< 5 v, +c< 5 1_M1c2_€HPu"
2 3
By (6),(7),(21), the H6lder inequality and the boundedness\ﬁtﬁn ,we have

[l F(t,0,)dt - ] F(t, Pa,)at] < [[ [JOF (t, PU, + S(QU, + 1))
T T o~
< J'O f (t)(PT,| +|Qu, +,))|Qu, +T,|dt +_[0 g(t)|Qu, +a,|dt
T - - T _ _
<[ fddPa,|, +ou, +T, )Qu, +T, + jo g(t)dt|Qu, +4,|_
<c?[ f@d(Pa,|+|Qu, +T,pjQu, +,|

T _ - _ _ _ B —2 T _ ~
C[ g(t)dt|Qu, +3,| = m.c?py, [lau, +8,|+M.c7Qu, +a,F +C[ g(idt|Qu, +,|

MZC* 1 ,
M2c* 1 _ _ +. M.c2lPa

< 15 1_l\/léc:z_‘ngunHZ+CHF>unH+C 52 (%—MlTCZ—E 2 1 || n||
2 0

= M12C4 1 _ 5 HPU H2 +C|| PUn” +C

o 1 Mlc2 1 I\/IICZ . R

—-1" _r 7_7—5)
2 9 2 5
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1
=ML 2 |Pa,’+dPa,+c (22)
5 [L_MC .
2 o
By (20) and (22), we have
u,) =¢(a M C* 1 2
o(u,) =9(0,) < 5 E_MlCz_g)zHPu“H +d|Pg,[+c
2 o
T ~ T
-['[F .0, -Ft Pa)t-[ F, Pt
24 1
B e v
oo ame 0 (F-"-e)
2 o
.
+dPu,|+c- [ F(t,Pg,)dt
Mzc* 1-¢ 1 T _
== —- F(t, P, )dt
5| A NS, g b PP
2 5
(23)

[Pa,|+dlPa,| +c

Since unl-* as n - «, by (19), we havepy | _ as n - o.
i_", -0 as n - oo,this contradicts

Let € small enough, by (8), we get that(u,
(12) and henc unj‘ is bounded inHi .Arguing then as in Proposition 4.1 in [9], we

conclude that the (PS) condition is satisfied.
Now we check the link condition that
(2) inf{u(n(u)) [n(u) OY x X} > ~co.
(b) W(n(x)) — —oo uniformly for n(Qx) as |px — «,where xJR".
or n(u_?DYXV,u =u+Qu.
In a similar way to (22), we can get that

UOT F(t,T(t) +Qu)dt - [ F(t ,O)dt‘

<M +M,TlCla]+c, (24)

It follows from (24)|A| <22 and the boundedness §@G,| that

W(n(u)) = Y(n(T +Qu)) = (T +Qu) = [l ct+ [} (Au), u()

_[ [ Fe.am+Qmadt-[ F ,O)dt} -[F ot
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1 T
> 2minf2 2 La- T |yl - T Cl]+ o~ [ F .ok

By 2mC*<d, we have y(n(x) - +o, as HUH ~ oo, for all n(u)0Oy xv ,which
implies (a).
It follows from (7) and the boundedness &Un‘ that

W(n(x)) = d(x) = 6(R) =~ F(t, Px+Qx)dt
= [0 [(OF (t, Px+ sQx), Qx)dsatt — | F (t, Px)dt
< - F(t,PX)dt + [ M,|Px+Qx|QxX{dt + [ M,|Qxdt
S_EF(t,PX)dt+C‘PX‘+C:_‘P)4 [ ‘ J‘ F(t PX)dt ‘ ‘ ‘ C ,
P
for all xoR*.Hence we have, by (8),(b) is satisfied. It follolvem the generalized
saddle point theorem (Theorem 1.7 in [4]) that &taleast I +1 critical points .Hence
has at least” +1 geometrically distinct crltlcal points. Therefoprpblem (5) has at

least r +1 geometrically distinct solutions I1=|

Proof of Theorem 1.2 the proof relies on Theorem 4.12 in [8]. In a &mi
way to (22), we can get that

UOT F(t,0)dt - [ F(t, PU)dt‘

<M C*|Palja] + c|Pa] + M,C*[@]" + ¢l +c (25)

It follows from (14) and (25) that
b (u) = (1)

=Sl -[[ Fe oyt - [ R, Py - [ P et
— ~ T _
> (S -mehfaf -mcpafja] +clPul+c] +c-[ F(t,Po)

=@ -mojal- ZMCPu} Pl +dfal+e

(§-MC)

oMt
45 -M.CY [P’

j F(t, Pu)dt}" P’
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2

5 o 1~ M C? _ - =

=(5=MC) [a] -—5~=—[Pul | +dJPul+cfi] +c

_| M, C - [ F(t, Po)dt ||Pal’ (26)
4(7— M.C%) HP I

By 2M,C*<d and (9), we get that® is bounded from below. Moreover, the
functional ﬁ satisfies the(ps)_condition; that is, for every se uengel ) in H
such thatg(u,) - 0 is bounded andg(u,) - 0, the sequence(U, ) has a convergent
subsequence (see Definition 4.2 in [85) In faloe boundedness o&(u ). (9) and (26)
imply that (u,) and (Pu,) are bounded. Hencél,) bounded. As in the proof of
Proposition 4. " in [8],(G.) has a convergent subsequence so we hfue) = n(ad, ) -

Now the Theorem in this case follows from Theoref®4n [8].
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