Journal of Mathematics and Informatics Vol. 10, 2017, 75-81 ISSN: 2349-0632 (P), 2349-0640 (online) Published 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/jmi.v10a10

Journal of **Mathematics and** Informatics

On the Binary Quadratic Diophantine Equation $y^2=80x^2-16$

M.Devi¹ and T.R.Usha Rani²

¹Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu, India. e-mail: swethadev12345@gmail.com ²Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, Tamilnadu,India.e-mail: usharanisigc@gmail.com

Received 15 November 2017; accepted 4 December 2017

Abstract. The Binary quadratic negative pell equation $y^2 = 80x^2 - 16$ representing a hyperbola is analyzed for its non-zero integer solutions. A few interesting relations among its solutions are presented. Further, employing the solutions of the above equation, we have obtained solutions of other choices of hyperbolas, parabolas and special pythogorean triangles.

Keywords: Binary quadratic, hyperbola, parabola, negative pell equation, integral solutions.

AMS Mathematics Subject Classification (2010): 11D09

1. Introduction

The binary quadratic diophantine equations (both homogeneous and non-homogeneous) are rich in variety. In [1-8] the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. This communication concerns with yet another binary quadratic equation given by $y^2 = 80x^2 - 16$. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited. Further, employing the solutions of the above hyperbola, we have obtained solutions of other choices of hyperbolas, parabolas and special pythogorean triangles.

2. Method of analysis:

The negative pell equation representing hyperbola under consideration is

 $y^2 = 80x^2 - 16$

(1)

whose smallest positive integer solution is $x_0 = 1$, $y_0 = 8$.

To obtain the other solutions of (1), consider the pell equation $y^2 = 80x^2 - 16$ whose solution is given by

$$\widetilde{x}_{n} = \frac{1}{2\sqrt{80}} g_{n}$$
$$\widetilde{y}_{n} = \frac{1}{2} f_{n}$$
75

M.Devi and T.R.Usha Rani

where,

where,

$$f_n = (9 + \sqrt{80})^{n+1} + (9 - \sqrt{80})^{n+1}$$

$$g_n = (9 + \sqrt{80})^{n+1} - (9 - \sqrt{80})^{n+1}$$

Applying Brahmagupta lemma between the solutions (x_0, y_0) and (x_n, y_n) , the other integer solutions of (1) are given by

$$x_{n+1} = \frac{1}{2} f_n + \frac{8}{2\sqrt{80}} g_n,$$

$$y_{n+1} = 4f_n + \frac{40}{\sqrt{80}} g_n, \text{ where } n = -1, 0, 1, \dots$$

Recurrence relations for *x* and *y* are:

$$x_{n+3} - 18x_{n+2} + x_{n+1} = 0,$$

 $y_{n+3} - 18y_{n+2} + y_{n+1} = 0$, where n = -1, 0, 1, ...

Some numerical examples of x and y satisfying (1) are given in the Table1 below:

Table 1: Examples

Lubie II Entemptes				
n	<i>x</i> _n	<i>Y</i> _n		
-1	1	8		
0	17	152		
1	305	2728		
2	5473	48952		

From the above table, we observe some interesting relations among the solutions which are presented below.

- > The values of x_n and y_n are odd and even respectively.
 - > Each of the following expressions is a nasty number.
 - $\frac{1}{16} [192 + 1824x_{2n+2} 96x_{2n+3}]$ • $\frac{1}{288} [3456 + 32736x_{2n+2} - 96x_{2n+4}]$
 - $\frac{1}{16} [192 + 960x_{2n+2} 96y_{2n+2}]$
 - $\frac{1}{144} [1728 + 16320x_{2n+2} 96y_{2n+3}]$
 - $\frac{1}{2576} [30912 + 292800x_{2n+2} 96y_{2n+4}]$
 - $\frac{1}{16} [192 + 32736x_{2n+3} 1824x_{2n+4}]$
 - $\frac{1}{144} [1728 + 960x_{2n+3} 1824y_{2n+2}]$

On the Binary Quadratic Diophantine Equation $y^2 = 80x^2 - 16$

•
$$\frac{1}{16} [192 + 16320x_{2n+3} - 1824y_{2n+3}]$$

• $\frac{1}{144} [1728 + 292800x_{2n+3} - 1824y_{2n+4}]$
• $\frac{1}{2576} [30912 + 960x_{2n+4} - 32736y_{2n+2}]$
• $\frac{1}{144} [1728 + 16320x_{2n+4} - 32736y_{2n+3}]$
• $\frac{1}{16} [192 + 292800x_{2n+4} - 32736y_{2n+4}]$
• $\frac{1}{1280} [15360 + 960y_{2n+3} - 16320y_{2n+2}]$
• $\frac{1}{23040} [276480 + 960y_{2n+4} - 292800y_{2n+2}]$
• $\frac{1}{1280} [15360 + 16320y_{2n+4} - 292800y_{2n+3}]$

Each of the following expressions is a cubical integer.

$$\frac{1}{2} \left[\left(2 + \frac{1}{2} \right) + \frac{1}{2} \left(2 + \frac{1}{2} \right) + \frac{1}{2} \left(2 + \frac{1}{2} \right) \right]$$

•
$$\frac{1}{16} [(304x_{3n+3} - 16x_{3n+4}) + 3(304x_{n+1} - 16x_{n+2})]$$

• $\frac{1}{288} [(5456x_{3n+3} - 16x_{3n+5}) + 3(5456x_{n+1} - 16x_{n+3})]$
• $\frac{1}{16} [(160x_{3n+3} - 16y_{3n+3}) + 3(160x_{n+1} - 16y_{n+1})]$
• $\frac{1}{144} [(2720x_{3n+3} - 16y_{3n+4}) + 3(2720x_{n+1} - 16y_{n+2})]$
• $\frac{1}{2576} [(48800x_{3n+3} - 16y_{3n+5}) + 3(48800x_{n+1} - 16y_{n+3})]$
• $\frac{1}{16} [(5456x_{3n+4} - 304x_{3n+5}) + 3(5456x_{n+2} - 304x_{n+3})]$
• $\frac{1}{16} [(5456x_{3n+4} - 304y_{3n+3}) + 3(160x_{n+2} - 304y_{n+1})]]$
• $\frac{1}{144} [(160x_{3n+4} - 304y_{3n+3}) + 3(2720x_{n+2} - 304y_{n+2})]]$
• $\frac{1}{144} [(48800x_{3n+4} - 304y_{3n+3}) + 3(48800x_{n+2} - 304y_{n+3})]]$
• $\frac{1}{144} [(48800x_{3n+4} - 304y_{3n+3}) + 3(160x_{n+3} - 5456y_{n+1})]]$
• $\frac{1}{144} [(48800x_{3n+5} - 5456y_{3n+3}) + 3(160x_{n+3} - 5456y_{n+1})]]$
• $\frac{1}{144} [(2720x_{3n+5} - 5456y_{3n+3}) + 3(160x_{n+3} - 5456y_{n+2})]]$

M.Devi and T.R.Usha Rani

- $\frac{1}{1280} [(160y_{3n+4} 2720y_{3n+3}) + 3(160y_{n+2} 2720y_{n+1})]$
- $\frac{1}{23040} \left[\left(160y_{3n+5} 48800y_{3n+3} \right) + 3 \left(160y_{n+3} 48800y_{n+1} \right) \right]$
- $\frac{1}{1280} [(2720y_{3n+5} 48800y_{3n+4}) + 3(2720y_{n+3} 48800y_{n+2})]$
- Relations among the solutions :
 - $x_{n+1} 18x_{n+2} + x_{n+3} = 0$
 - $9x_{n+1} x_{n+2} + y_{n+1} = 0$
 - $9x_{n+3} 161x_{n+2} y_{n+1} = 0$
 - $x_{n+1} 9x_{n+2} + y_{n+2} = 0$
 - $y_{n+1} + 80x_{n+2} 9y_{n+2} = 0$
 - $9x_{n+1} 161x_{n+2} + y_{n+3} = 0$
 - $9x_{n+3} x_{n+2} y_{n+3} = 0$
 - $80x_{n+1} y_{n+2} + 9y_{n+1} = 0$
 - $1440x_{n+1} y_{n+3} + 161y_{n+1} = 0$
 - $160x_{n+2} y_{n+3} + y_{n+1} = 0$
 - $80x_{n+2} y_{n+3} + 9y_{n+2} = 0$
 - $y_{n+1} 18y_{n+2} + y_{n+3} = 0$
 - $80x_{n+1} 9y_{n+3} + 161y_{n+2} = 0$
 - $161x_{n+1} x_{n+3} + 18y_{n+1} = 0$
 - $x_{n+1} x_{n+3} 2y_{n+2} = 0$
 - $9x_{n+2} x_{n+3} + y_{n+2} = 0$
 - $288y_{n+1} + 2560x_{n+3} 5152y_{n+2} = 0$
 - $x_{n+1} 161x_{n+3} + 18y_{n+3} = 0$
 - $y_{n+1} + 1440x_{n+3} 161y_{n+3} = 0$
 - $y_{n+2} + 80x_{n+3} 9y_{n+3} = 0$

3. Remarkable observations

3.1. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbola which are presented in Table 2 below.

On the Binary Quadratic Diophantine Equation $y^2 = 80x^2 - 16$
Table 2: Hyperbola

S. No	Hyperbola	(X_*,Y_*)
1	$80X_n^2 - Y_n^2 = 81920$	$[(304x_{n+1} - 16x_{n+2}), (160x_{n+2} - 2720x_{n+1})]$
2	$80X_n^2 - Y_n^2 = 26542080$	$[(5456 x_{s+1} - 16 x_{s+3}), (160 x_{s+3} - 48800 x_{s+1})]$
3	$80X_n^2 - Y_n^2 = 81920$	$[(160 x_{a+1} - 16 y_{a+1}), (160 y_{a+1} - 1280 x_{a+1})]$
4	$80X_n^2 - Y_n^2 = 6635520$	$[(2720 x_{s+1} - 16 y_{s+2}), (160 y_{s+2} - 24320 x_{s+1})]$
5	$80X_n^2 - Y_n^2 = 2123448320$	$[(48800 x_{n+1} - 16 y_{n+3}), (160 y_{n+3} - 436480 x_{n+1})]$
6	$80X_n^2 - Y_n^2 = 81920$	$[(5456 x_{n+2} - 304 x_{n+3}), (2720 x_{n+3} - 48800 x_{n+2})]$
7	$80X_n^2 - Y_n^2 = 6635520$	$[(160 x_{s+2} - 304 y_{s+1}), (2720 y_{s+1} - 1280 x_{s+2})]$
8	$80X_n^2 - Y_n^2 = 81920$	$[(2720 x_{s+2} - 304 y_{s+2}), (2720 y_{s+2} - 24320 x_{s+2})]$
9	$80X_n^2 - Y_n^2 = 6635520$	$[(48800 x_{n+2} - 304 y_{n+3}), (2720 y_{n+3} - 436480 x_{n+2})]$
10	$80X_n^2 - Y_n^2 = 2123448320$	$[(160 x_{s+3} - 5456 y_{s+1}), (48800 y_{s+1} - 1280 x_{s+3})]$
11	$80X_n^2 - Y_n^2 = 6635520$	$[(2720 x_{s+3} - 5456 y_{s+2}), (48800 y_{s+2} - 24320 x_{s+3})]$
12	$80X_n^2 - Y_n^2 = 81920$	$[(48800 x_{n+3} - 5456 y_{n+3}), (48800 y_{n+3} - 436480 x_{n+3})]$
13	$80X_n^2 - Y_n^2 = 52428800$	$[(160 y_{s+2} - 2720 y_{s+1}), (24320 y_{s+1} - 1280 y_{s+2})]$
14	$80X_n^2 - Y_n^2 = 1698693120 \ 00$	$[(160 y_{s+3} - 48800 y_{s+1}), (436480 y_{s+1} - 1280 y_{s+3})]$
15	$80X_n^2 - Y_n^2 = 524288000$	$[(2720 \ y_{s+3} - 48800 \ y_{s+2}), (436480 \ y_{s+2} - 24320 \ y_{s+3})]$

3.2. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabola which are presented in Table 3 below.

M.Devi and T.R.Usha Rani

|--|

S. No	Parabola	(X_{κ},Y_{κ})
1	$1280 X_n - Y_n^2 = 81920$	$[(32+304 x_{2s+2} - 16 x_{2s+3}), (160 x_{s+2} - 2720 x_{s+1})]$
2	$23040 \ X_n - Y_n^2 = 26542080$	$[(576 + 5456 x_{2n+2} - 16 x_{2n+4}), (160 x_{n+5} - 48800 x_{n+1})]$
3	$1280 X_n - Y_n^2 = 81920$	$[(32 + 160 x_{2n+2} - 16 y_{2n+2}), (160 y_{n+1} - 1280 x_{n+1})]$
4	$11520 X_n - Y_n^2 = 6635520$	$[(288 + 2720 x_{2s+2} - 16 y_{2s+3}), (160 y_{s+2} - 24320 x_{s+1})]$
5	$206080 X_n - Y_n^2 = 2123448320$	$\left[(5152 + 48800 x_{2a+2} - 16 y_{2a+4}), (160 y_{a+3} - 436480 x_{a+1}) \right]$
6	$1280 X_n - Y_n^2 = 81920$	$\left[(32 + 5456 x_{2n+3} - 304 x_{2n+4}), (2720 x_{n+3} - 48800 x_{n+2}) \right]$
7	$11520 X_n - Y_n^2 = 6635520$	$\left[(288 + 160 x_{2s+3} - 304 y_{2s+2}), (2720 y_{s+1} - 1280 x_{s+2}) \right]$
8	$1280 X_n - Y_n^2 = 81920$	$\left[(32 + 2720 x_{2s+3} - 304 y_{2s+3}) (2720 y_{s+2} - 24320 x_{s+2}) \right]$
9	$11520 X_n - Y_n^2 = 6635520$	$\left[(288 + 48800 x_{2n+3} - 304 y_{2n+4}), (2720 y_{n+3} - 436480 x_{n+2}) \right]$
10	206080 $X_n - Y_n^2 = 2123448320$	$\left[(2254 + 160 x_{2*+4} - 5456 y_{2*+2}) (48800 y_{*+1} - 1280 x_{*+3}) \right]$
11	$11520 X_n - Y_n^2 = 6635520$	$\left[(230 + 2720 x_{2n+4} - 5456 y_{2n+3}) (48800 y_{n+2} - 24320 x_{n+3}) \right]$
12	$1280 X_n - Y_n^2 = 81920$	$\left[(32 + 48800 x_{2s+4} - 5456 y_{2s+4}), (48800 y_{s+3} - 436480 x_{s+3}) \right]$
13	$102400 X_n - Y_n^2 = 52428800$	$[2560 + (160 y_{2\star+3} - 2720 y_{2\star+2}), (24320 y_{\star+1} - 1280 y_{\star+2})]$
14	$1843200 \ X_n - Y_n^2 = 1698693120 \ 00$	$\left[(46080 + 160 y_{2s+4} - 48800 y_{2s+2}), (436480 y_{s+1} - 1280 y_{s+3}) \right]$
15	$102400 X_n - Y_n^2 = 524288000$	$[(2560 + 2720 y_{2n+4} - 48800 y_{2n+3}), (436480 y_{n+2} - 24320 y_{n+3})]$

3.3. Consider $m = x_{n+1} + y_{n+1}$, $n = x_{n+1}$, observe that m > n > 0.

Treat *m*, *n* as the generators of the pythogorean triangle $T(\alpha, \beta, \gamma)$,

 $\alpha = 2mn, \ \beta = m^2 - n^2, \ \gamma = m^2 + n^2.$ Then the following interesting relations are observed.

1)
$$\alpha - 40\beta + 39\gamma = 16$$

2)
$$41\alpha - \gamma - \frac{160A}{R} = 16$$

$$P$$
 804

3)
$$21\alpha - 20\beta + 19\gamma - \frac{80A}{P} = 16$$

4)
$$\frac{2A}{P} = x_{n+1}y_{n+1}$$

On the Binary Quadratic Diophantine Equation $y^2 = 80x^2 - 16$

4. Conclusion

In this paper, we have presented infinitely many integer solutions for all hyperbola represented by the negative pellequation $y^2 = 80x^2 - 16$. As the binary quadratic Diophantine equations are rich in variety, one may search for the other choices of equations and determine their integer solutions along with suitable properties.

REFERENCES

- 1. R.A.Mollin and A. Srinivasan, A note on the negative pell equation, *International Journal of Algebra*, 4(19) (2010) 919-922.
- 2. E.E.Whitford, Some solutions of the Pellian equation $x^2 Ay^2 = \pm 4$, Annals of *Mathematics*, 1 (1913-1914) 157-160.
- 3. S.Ahmet Tekcan, Bet W Gezer and Osman Bizim, On the integer solutions of the pellEquations $x^2 dy^2 = 2^t$, *World Academy of Science, Engineering and Technology*, 1 (2007) 522-526.
- 4. S.Ahmet Tekcan, The pell equation $x^2 (k^2 k)y^2 = 2^t$, World Academy of *Science, Engineering and Technology*, 19 (2008) 697-701.
- 5. V.Sangeetha, M.A.Gopalan and M.Somanath, On the integral solutions of the pell equation $x^2 = 13y^2 3^t$, *International Journal of Applied Mathematical Research*, 3(1) (2014) 58-61.
- 6. M.A.Gopalan, G.Sumathi and S.Vidhyalakshmi, Observations on the hyperbola $x^2 = 19y^2 3^t$, *Journal of the Engineering and Technology*, 2(2A) (2014) 152-155.
- 7. M.A.Gopalan,S.Vidhyalakshmi and A. Kavitha, On the integral solutions of the binary quadratic equation $x^2 = 15 y^2 11^t$, *Scholars Journal of the Engineering and Technology*, 2(2A) (2014) 156-158.
- 8. S.Vidhyalakshmi, V.Krithika and K.Agalya, On the negative pell equation, *Proceeding of the National Conference on MATAM*, (2015) 4-9.