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1. Introduction 
In [1] a function NNA →:  is defined by  ( ) mnA =  where m  is the smallest  natural 

number such that ∑
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2 . In [2] a function )(nA  such that mnA =)(  
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are given. In this communication, we obtain a function )(nA  such that mnA =)(  where 

m is some centered polygonal numbers, such that nPP2   divides 

)( polynomialcubicalam +  
 

Notations: 

( )nnPPn += 3

2

1
be a pentagonal pyramidal number  of rank n  

122 2 +−= nnCSn be a centered  square number  of rank n  

144 2 +−= nnCOn be a centered  octagonal number  of rank n  
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166 2 +−= nnCDn be a centered  dodecagonal number  of rank n  

177 2 +−= nnCTn be a centered  tetradecagonal number  of rank n  

188 2 +−= nnCH n be a centered  Hexadecagonal number  of rank n  
 
2. Method of analysis 
SECTION A: Evaluation of centered square number 
Let  NNA →:  be defined by ( ) mnA =  where m is the smallest  natural number such 

that nPP2   divides ( )132 23 −+−+ nnnm  . If nPP2 divides ( )132 23 −+− nnn ,  

then 122)( 2 +−= nnnA , otherwise ( ) rnnnA −+−= 122)( 2  where r  is the least 

non negative remainder when  ( )132 23 −+− nnn  is divided by nPP2 . Hence A is  

defined for all n . By division algorithm such remainder is given by 

( ) nqPPnnn 2132 23 −−+−  where q  is the quotient when ( )132 23 −+− nnn  is 

divided by nPP2  and is given by the greatest integer function of 
( )

nPP

nnn

2

132 23 −+−
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That is 
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SECTION B: Evaluation of centered octagonal number 
Let  NNA →:  be defined by ( ) mnA =  where m is the smallest  natural number such 

that nPP2   divides ( )1642 23 −+−+ nnnm  . If nPP2 divides ( )1642 23 −+− nnn ,  

then 144)( 2 +−= nnnA , otherwise ( ) rnnnA −+−= 144)( 2  where r  is the least non 
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negative remainder when  ( )1642 23 −+− nnn  is divided by nPP2 . Hence A is  

defined for all n . By division algorithm such remainder is given by 

( ) nqPPnnn 21642 23 −−+−  where q  is the quotient when ( )1642 23 −+− nnn  is 

divided by nPP2  and is given by the greatest integer function of 
( )

nPP

nnn

2
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That is 
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SECTION C : Evaluation of centered dodecagonal  number                                                            
Let  NNA →:  be defined by ( ) mnA =  where m is the least   natural number such 

that nPP2 divides ( )1963 23 −+−+ nnnm  . If nPP2 divides ( )1963 23 −+− nnn ,  

then 166)( 2 +−= nnnA , otherwise ( ) rnnnA −+−= 166)( 2  where r  is the least non 

negative remainder when  ( )1963 23 −+− nnn  is divided by nPP2 . Hence A is  defined 

for all n . By division algorithm such residue is given by ( ) nqPPnnn 21963 23 −−+−  

where q  is the quotient when ( )1963 23 −+− nnn  is divided by nPP2  and is given by 

the greatest integer function of 
( )

nPP

nnn
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Section D: Evaluation of tetradecagonal number 
Let  NNA →:  be defined by ( ) mnA =  where m is the smallest   natural number such 

that nPP2 divides ( )1972 23 −+−+ nnnm  . If nPP2 divides ( )1972 23 −+− nnn ,  

then 177)( 2 +−= nnnA , otherwise ( ) rnnnA −+−= 177)( 2  where r  is the least non 

negative remainder when  ( )1972 23 −+− nnn  is divided by nPP2 . Hence A is  

defined for all n . By division algorithm such remainder is given by 

( ) nqPPnnn 21972 23 −−+−  where q  is the quotient when ( )1972 23 −+− nnn  is 

divided by nPP2  and is given by the greatest integer function of 
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323 187)( nnnnnnA +++−+−= ( )
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SECTION E: Evaluation of centered hexadecagonal  number 
Let  NNA →:  be defined by ( ) mnA =  where m is the lowest   natural number such 

that nPP2 divides ( )11183 23 −+−+ nnnm  . If nPP2 divides ( )11183 23 −+− nnn ,  

then 188)( 2 +−= nnnA , otherwise ( ) rnnnA −+−= 188)( 2  where r  is the least non 

negative remainder when  ( )11183 23 −+− nnn  is divided by nPP2 . Hence A is  

defined for all n . By division algorithm such remainder is given by 

( ) nqPPnnn 211183 23 −−+−  where q  is the quotient when ( )11183 23 −+− nnn  is 

divided by nPP2  and is given by the greatest integer function of 
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3. Conclusion 
In this communication, we find the centered polygonal numbers through the divisibility 
algorithm. In this manner, one can find the some special numbers through the divisibility 
algorithm.  
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