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1. Notations 
1. ],,,,[ 3210 naaaaa ⋯ :Continued fraction expansion. 

2. [ ]kx                           : Integer part of kx  

3. )(nPd                       : Polygonal number of order d and rank n. 

 
2. Introduction 
The ancient Greek mathematician Diophantos was one of the first to study polygonal 
numbers. A polygonal number can be defined as a sum of equidistant dots used to 
represent a polygon of a certain size. For example, if you have a square number with rank 
one it is one, rank two is four because you expand the length and width by one dot each 
and fill in the outer layer, then rank three would be nine and it continues in this fashion. 
The rank of a polygonal numbers is the number of dots on a side of the outermost layer of 
the polygonal number. This holds true for all polygonal numbers.  

A polygonal number is denoted by )(nPd  where d is the number of sides to the 

corresponding polygon and n is the rank, or order, of the polygonal number. For instance 

)4(5P would be a pentagonal number with rank four. All polygonal numbers with rank 

one equals one, and all polygonal numbers of rank two are equal to the number of sides 
on the corresponding polygon.  
 

6)3(3 =P  9)3(4 =P 12)3(5 =P  

 



A.Gnanam and S.Krithika 

104 
 

 
 
 
 
 
 

Figure 1: 
Furthermore, you can find any polygonal number by using the formula  

2

)4()2(
)(

2 nnnd
nPd

−+−=  . Note that Nnd ∈, and, since less than three sides would 

not form a polygon.  
 

Table 1: Values of some polygonal numbers 
 
Sides 

d 
Rank of polygonal numbers 

1 2 3 4 5 6 7 8 9 10 11 12 
3 1 3 6 10 15 21 28 36 45 55 66 78 
4 1 4 9 16 25 36 49 64 81 100 121 144 
5 1 5 12 22 35 51 70 92 117 145 176 210 
6 1 6 15 28 45 66 91 120 153 190 231 276 
7 1 7 18 34 55 81 112 148 189 235 286 342 
8 1 8 21 40 65 96 133 176 225 280 341 408 
9 1 9 24 46 75 111 154 204 261 325 396 474 

10 1 10 27 52 85 126 175 232 297 370 451 540 
11 1 11 30 58 95 141 196 260 333 415 506 606 
12 1 12 33 64 105 156 217 288 369 460 561 672 
13 1 13 36 70 115 171 238 316 405 505 616 738 
14 1 14 39 76 125 186 259 344 441 550 671 804 
15 1 15 42 82 135 201 280 372 477 595 726 870 
16 1 16 45 88 145 216 301 400 513 640 781 936 
17 1 17 48 94 155 231 322 428 549 685 836 1002 
18 1 18 51 100 165 246 343 456 585 730 891 1068 
19 1 19 54 106 175 261 364 484 621 775 946 1134 
20 1 20 57 112 185 276 385 512 657 820 1001 1200 
21 1 21 60 118 195 291 406 540 693 865 1056 1266 
22 1 22 63 124 205 306 427 568 729 910 1111 1332 
23 1 23 66 130 215 321 448 596 765 955 1166 1398 
24 1 24 69 136 225 336 469 624 801 1000 1221 1464 
25 1 25 72 142 235 351 490 652 837 1045 1276 1530 
26 1 26 75 148 245 366 511 680 873 1090 1331 1596 
27 1 27 78 154 255 381 532 708 909 1135 1386 1662 
28 1 28 81 160 265 396 553 736 945 1180 1441 1728 
29 1 29 84 166 275 411 574 764 981 1225 1496 1794 
30 1 30 87 172 285 426 595 792 1017 1270 1551 1860 
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Continued fraction plays an important role in number theory.  It is used to represent the 
rational numbers to an another form by using Euclidean algorithm. 
 An expression of the form 
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where ii ba ,  are real or complex numbers is called a continued fraction. 

An expression of the form 
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where ,1 ibi ∀=   and ⋯,,, 210 aaa   are each positive integers is called a simple 

continued fraction. 

The continued fraction is commonly expressed   as 

⋯
+++

+=
321

0

111
aaa

a
q

p
or  simply as ],,,,[ 3210 ⋯aaaa . 

The elements ⋯,,,, 3210 aaaa  are called the partial quotients.  If there are finite number 

of partial quotients, we call  it   finite simple continued fraction, otherwise it is infinite.   

The continued fraction expansion of 22/7 is [3; 7].   Here 30 =a . 

3. The continued fraction algorithm  
Suppose we wish to find continued fraction expansion of .Rx ∈  
Let  [ ].000 xasetandxx ==  

 Define [ ] [ ].1
11

00
1 xasetand

xx
x =

−
=  
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and [ ] [ ] [ ] [ ],....1
,.....,

1

11
22

11
2 kk

kk
k xa

xx
xxa

xx
x =⇒

−
==⇒
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 This process is continued infinitely or to some finite stage till an Nxi ∈ exists such that 

[ ].ii xa =  

 
Examples 

1. Continued fraction expansion of   414/283 =  1.4629 is [ 1; 2, 6, 4, 5] 

2. Continued fraction expansion of 3   and 7 are  [1; 1, 2 , 1, 2, 1, 2,…] and 
[2; 1, 1, 1, 4, 1, 1, 1, 4,…].  Which are known as periodic continued fractions. 

The above periodic continued fractions are also denoted by ]2,1;1[ and

]4,1,1,1;2[ . 

In this paper we try to find some patterns of ratios of consecutive polygonal numbers of 
different sides and different orders using continued fractions. 
 
Theorem 1.  The continued fraction of ratio of consecutive polygonal number of rank 2 
is [ ]d,1;0 where d is the sides of a polygon and 3≥d . 

In other words  [ ]d
P

P

d

d ,1;0
)2(

)2(

1

=
+

, where 3≥d . 

Proof: Take 3=d . 

Therefore  .
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3
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Using continued fraction algorithm, 

Take 
4

3
0 =x , so .00 =a Then [ ] .1
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1
1

4

31
1

00
1 =⇒+==

−
= a

xx
x  

[ ] .33
1

2
11

2 =⇒=
−

= a
xx

x  

Therefore  [ ].3,1;0
4

3

)2(

)2(

4

3 ==
P

P
 

The result is true when 3=d . 
Assume the result is true for .4,1 ≥−= kkd  

Therefore [ ].1,1;0
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Take 
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Hence by induction the result is true for all values of d, where 3≥d . 
 
Theorem 2. The continued fraction of ratio of consecutive polygonal number of rank 3 is 
[ ]1,1;0 −d where d is the sides of a polygon and 3≥d . 

In other words  [ ]1,1;0
)3(

)3(

1

−=
+

d
P

P

d

d , where 3≥d . 

Proof: Similar to the proof of theorem 1. 
 
Theorem 3. The continued fraction of ratio of consecutive polygonal number of side ≥4 
and order 3≥ is  




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1
,2,1;0
R

d if R is odd   and 




 −− 2,
2

2
,2,1;0
R

d  if R is even. 

In other words  















 −−






 −−
=

+ evenisRif
R

d

oddisRif
R

d

RP

RP

d

d

2,
2

2
,2,1;0

2

1
,2,1;0

)(

)(

1

 

Proof: 
Case (i): When R is odd ie., .2,12 ≥+= nnR  
Take 3=d and  .5=R  

Therefore  .
25

15

)5(

)5(

4

3 =
P

P
 

Using continued fraction algorithm, 

Take 
25

15
0 =x , so .00 =a  Then [ ] .1
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[ ] 22
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Therefore  [ ].2,1,1;0
25
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Therefore the result is true for 3=d and  .5=R  

Assume the result is true for 1−= kd and  .12 −= nR  

[ ].1,3,1;0
2

22
,3,1;0

)12(

)12(1 −−=




 −−=
−
−− nk

n
k

nP

nP

k

k  

Prove the result is true for kd = and  .12 += nR  
Therefore 

)3()12)(1(

)4()12)(2(

)12)(3()12)(1(

)12)(4()12)(2(

)12(

)12(
2

2

1 knk

knk

nknk

nknk

nP

nP

k

k

−++−
−++−=

+−++−
+−++−=

+
+

+

 

222

242

+−
+−=

nkn

nkn
 

1

12

+−
+−=

nkn

nkn
 

Therefore 
1

12

)12(

)12(

1 +−
+−=

+
+

+ nkn

nkn

nP

nP

k

k  

Using continued fraction algorithm,  

                                                     Take .0
1

12
00 =⇒

+−
+−= a

nkn

nkn
x       Then 

[ ] .1
12

1
12

11
1

00
1 =⇒

+−
+=

+−
+−=

−
= a

nkn

n

nkn

nkn

xx
x  

[ ] .2
1

2
121

2
11

2 −=⇒+−=+−=
−

= ka
n

k
n

nkn

xx
x  

[ ] nan
xx

x =⇒=
−

= 3
22

3

1
 

Therefore  [ ].,2,1;0
)12(

)12(

1

nk
nP

nP

k

k −=
+

+

+

 

Hence by induction the result is true for all value ofd and  R when R is odd and  .3≥d  
Case (ii): When R is even  ie., .2,2 ≥= nnR  
Take 3=d and  .4=R  

Therefore  .
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Using continued fraction algorithm, 
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Take 
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Therefore the result is true for 3=d and  .4=R  
Assume the result is true for 1−= kd and  .12 −= nR  
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Using continued fraction algorithm,  

Take .0
322

442
00 =⇒

+−−
+−−= a

knkn

knkn
x Then                                     

[ ] .1
442

12
1

442

3221
1

00
1 =⇒

+−−
−+=

+−−
+−−=

−
= a

knkn

n

knkn

knkn

xx
x  

[ ] .2
12

2
2

12

4421
2

11
2 −=⇒

−
+−=

−
+−−=

−
= ka

n
k

n

knkn

xx
x  

[ ] 1
2

1
1

2

121
3

22
3 −=+−⇒

−=
−

= nan
n

xx
x  

[ ] 22
1

4
33

4 =⇒=
−

= a
xx

x  

Therefore  [ ].2,1,2,1;0
)2(

)2(

1

−−=
+

nk
nP

nP

k

k  



A.Gnanam and S.Krithika 

110 
 

Hence by induction the result is true for all values ofd and  R when R is even and  

.3≥d  

Hence   
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4. Illustration 
The following table gives the patterns of continued fractions of   consecutive polygonal 
numbers of different orders and ranks. 

Consecutive fractions of polygonal 
numbers 

Continued fraction expansion 

)2(

)2(

6

5

P
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[0; 1, 5] 

)2(

)2(

13

12

P

P
 

[0; 1, 12] 

)3(

)3(

5

4

P

P
 

[0; 1, 3] 

)3(

)3(

16

15

P

P
 

[0; 1, 14] 

)5(

)5(

10

9

P

P
 

[0; 1, 7, 2] 

)6(

)6(

18

17

P

P
 

[0; 1, 15, 2, 2] 

)9(

)9(

11

10

P

P
 

[0; 1, 8, 4] 

)10(

)10(

271

26

P

P
 

[0; 1, 24, 4, 2] 

)12(

)12(

30

29

P

P
 

[0; 1, 27, 5, 2] 

 
5. Conclusion 
In this paper, we have identified various patterns of continued fractions of ratios of 
polygonal numbers of consecutive sizes. This work may be extended to higher order 
figurate numbers like pyramidal numbers. 
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