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Abstract. A search is made for obtaining infinitely many non-zero distinct integer 
solutions to the non-homogeneous quadratic equation given by x2-xy+y2+2(x+y)+4=12z2. 
Different choices of integer solution to the above equation are obtained. A few interesting 
relations between the solutions and special polygonal numbers are obtained. 
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1. Introduction 
The Diophantine equations offer on unlimited field for research due to their variety [1-3]. 
In particular, one may refer [4-8] for quadratic equations with three unknowns. This 
communication concerns with yet another interesting equation x2-xy+y2+2(x+y)+4=12z2 
representing non-homogeneous quadratic equation with three unknowns for determining 
its infinitely many non-zero integral points. Also, few interesting relations among the 
solutions are presented. 
 
2. Notation 

1. Polygonal number of rank n with sides m 
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2. Pronic number of rank n 
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3. Centered hexagonal pyramidal  number of rank n 
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4. Square number of rank n 

                                         
2

,4 nt n =  



N.Bharathi and S. Vidhyalakshmi 

136 
 

3. Method of analysis 
The ternary quadratic Diophantine  equation to be solved for its non-zero solution is 

( ) 222 1242 zyxyxyx =++++−                                                                                     (1) 
We present below different patterns of integer solutions to (1) 
Introducing the linear transformation ( )0≠≠ vu  

vuyvux −=+= ,    (2)  

in(1), it leads to 222 123 zvU =+ (3) 
where 2+= uU (4) 
The above equation (3) is solved through different approaches and then, in view of 2 
we obtain different patterns of integer solutions to (1) 
 
3.1. Pattern-1 
Write 12 as  

( )( )333312 ii −+= (5) 

Assume 22 3baz += (6) 
where 0, ≻ba  
Using (5) and (6) in (3) 

( )( )( )2222 333333 baiivU +−+=+ and 
employing the method of factorization define 

( )( ) ( )( )( ) ( )22
33333333 biabiaiiivuivu −+−+=++  

Equating the real and imaginary parts, we get 

( )
( ) 22

22

36,

2693,

baabbavv

abbabaUU

−+==

+−−==
 

In view of (2) we get  

( ) 2124, 22 −−== babaxx (7) 

( ) 21262, 22 −−−== abbabayy (8) 
Thus (6),(7),(8) represents non-zero distinct integral solution of (1) in two parameters 
 
Properties: 

1. ( ) ( ) apRaayaax 2421,21, =−+−+  

2. ( ) ( ) )11(mod021,1, ,3 ≡−−−− atazax  

3. ( ) ( ) 024,2, 6, =−− ncPbaybax  

3.2. Pattern-2 
Write (3)  in form of  ratio as 

( )
0,

3

3 ≠=
−
−=

+
+ β

β
α

zU

vz

vz

zU
(9) 

which is equivalent to the following two equations  
( ) 03 =−+− αβαβ zvU (10) 
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( ) 033 =++−− αββα zvU (11) 
Solving (10) and (11) by the method of cross-multiplication, we have  

( ) αβαββα 639, 22 −−== UU (12)   

( ) αβββαβα 333, 22 −+−== vv (13)    

( ) 223, αββα −−== zz (14)                                                                                                                                                     

Substituting U and v  values in (4) and (2), we get 

( ) 29326, 22 −−−−== αββαββαxx (15) 

( ) 233412, 22 −−+−== αββαββαyy (16) 
Thus (14),(15),(16) represents non-zero distinct integral solution of (1) in two parameters. 
 
Properties: 

1. ( ) ( ) )29(mod21,12,1 ,44 ≡−− βββ txy  

2. ( ) 02, ,4 =+ ααα tz  

3. ( ) ( ) ( )24mod141,1, ≡+++ αααα yx  

3.3. Pattern-3 
Consider 

TXz 3+= (17) 
TXv 12+= (18) 

wU 3= (19) 
Substituting (17),(18),(19) in (3), we get 

222 36 wTX += (20) 
which is in the form of Pythagorean equation and is satisfied by  

22

22

9

9

SRw

RST

SRX

−=

=
+=

 

In view of (2), the integer solutions are given by 

RSSRz

RSSRy

RSSRx

39

212418

212236

22

22

22

++=

−−−=

−+−=

 

 
Properties: 

1. ( ) ( ) ( )2mod048,, ,4 ≡−+ RtRRyRRx  

2. ( ) ( )11mod011, ,20 ≡−− RtRz  

3. ( ) ( ) ( )24mod182,1,1 ,4 ≡−− StSySx  

Also, note that (20) is satisfied by   
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( )
( )

RSw

SR

SR

72

6

36
22

22

=
−=Τ

+=Χ

 

in this case the corresponding solutions to (1) are given by  

22

22

22

1854

361082126

361082216

SRz

SRRy

SRRSx

+=

+−−=

−+−=

 

 
Properties: 

1. ( ) 072, ,4 =− RtRRz  

2. ( ) ( ) 02144,2, ,4 =+−− StSSzSSx  

3. ( ) ( ) ( )233mod69,1,1 ,38 ≡−+ StSySy  

3.4. Pattern- 4 
Note that (20) is expressed as the system of double equations as follows: 
 System1 System2 System3 

wX +  2T  26T  T12  

wX −  36  6  T3  
 
Solving each of the above systems, the corresponding solutions to (1) are given below: 
 
Solution for system 1: 
Solving the double equations, we have  

kT

kw

kX

2

182

182
2

2

=
−=

+=

 

 
In view of (2), the integer solutions are given by 

  

1862

74244

38248

2

2

2

++=

−−=

−+=

kkz

kky

kkx

 

Properties: 
1. ( ) ( ) 011212 ,4 =+−+ ktkykx  

2. ( ) ( )7mod4,6 ≡− ktkz  

3. ( ) ( ) ( )15mod142 ,10 ≡−− ktkzkx  

Solution for system 2: 
Solving the double equations, we have  
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99

33

33

2

2

2
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+=
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In view of (2) ,the integer solutions are given by 

  

333

14246

81212

2

2

2

++=

−−=

−+=

TTz

TTy

kTx

 

Properties: 
1. ( ) ( )3mod06 ,3 ≡− TtTz  

2. ( ) ( ) ( )7mod017 ,4 ≡−+ TtTyTx  

3. ( ) ( ) ( )10mod62 ,12 ≡−− TtTzTx  

Solution for system 3: 
Solving the double equations, we have  

kT

kw

kX

2

9

15

=
=
=

 

In view of (2), the integer solutions are given by 

  

kz

ky

kx

21

212

266

=
−−=

−=
 

 
4. Conclusion 
In this paper, we have made an attempt of find all integer solutions to the ternary 

quadratic equation given by ( ) 222 1242 zyxyxyx =++++−  .As quadratic equations in 
three unknowns are rich in variety, one way attempt to find integer solutions to other 
choices of ternary quadratic equations along with suitable properties. 
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