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Abstract. The homogeneous ternary cubic equation giveni«l(1>ya+y3):22w2 is
analysed for its non-zero distinct integer solutioA few interesting relations between
the solutions and special polygonal and pyramidativers are presented.
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1. Introduction

The Diophantine equation offer an unlimited fietst fesearch due to their variety [1-3].
In particular, one may refe[ﬂ,S] for cubic equations with three unknowns. In [6e8bic

equations with four unknowns are studied for itsn4trivial solutions. This
communication concerns with the problem of obtajniton-zero integral solutions of

cubic equation with four variables given B{(xa‘ + y3): 22w?. A few properties among
the solutions and special numbers are presented.

2. Notations
_ (n —1)(m— 2) o
ton =N 1+# - Polygonal number of rank n with sides m

Ct..= M - Centered polygonal number of rank n with sigkes
’ 2

S, =6n(n-1)+1 - Star number of rank n
PR, =n(n+1) - Pronic number of rank n
G, =2n-1 - Gnomonic number of rank n

j, =2"+(-1)" - Jacbosthal-Lucas number of rank n
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3. Method of analysis
The cubic Diophantine equation with four unknowm$é solved is given by

3(x3 + y3) = 2202 (1)
The substitution of the linear transformations

X=Uu+v,y=u-v , z=3u ,u#v#0 2
in (1) leads to

u®+3v? =w? (3)

(3) is solved through different approaches andlifierent patterns of solutions of (1)
obtained are presented below.

3.1. PATTERN 1

Assumew = a2 + 3b?
Write (3) as

u+ivavju-ivav)=la+ivaofa-ivao)
Consider the positive factor
u+iv3v=a? +i2y/3ab-30?
Equating real and imaginary parts
u=a’-3p°
v = 2ab
Substituting u,v in (2), we obtain the non-zerdidcd integral solutions of (1) as

x(a,b) = a® —3b? + 2ab

y(a,b) =a? -3b? - 2ab

z(a,b) = 3a% - 9b?

w(a,b) = a® + 30>

PROPERTIES

z(a, b) + 3W(a, b) -3y, = O(mod 3)
z(1,n)+18t,, - 3= 0(mod9)

6|y(a,b) + 4t,, | is a nasty number
z2n 2")+6j,, +4=0

w2" 2")-4j,, +4=0

=

a r wNn

3.2. PATTERN 2

Assumew = (a2 +3p? )* 1 (4)
Write ‘1’ as
1:£_X<1_)1+"/§4 ~iV3 ®)
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Substituting (4) and (5) in (1) and employing thetihod of factorization, we get
oo iva)= LR o i
Consider,

u+i 3v=§#)(a+i\/§b)2

Equating real and imaginary parts of the above tguave get
U= a?-3b% -6ab
2
. a® -3b® +2ab
2

Assume a=2A, b=2B in the above equations and i vie(2) , we obtain the non —zero
distinct integral solutions of (1) as

x(A B) = 4A2 -12B% -8AB
y(A B)=-16AB
z(A,B) = 6A? -18B% - 36AB
W(A B)=4A? +12B2
PROPERTIES
1. 2x(A,B)-y(A B)-8t,, +12t;; =0(mod12)
2(A-A)-24PR, +12G, +12=0
w(2" 2")-16j,, +16=0
6](W(A, A))] is a Nasty number
x(A A)-y(A A)-32t,, =0

ok 0N

3.3. PATTERN 3
Assumew = (a2 + 302 )*1 (6)
‘1’ can also be written as

_h+iav3fi-iay3)

1 (7
Substituting (6) and (7) in4(91) and employing thethod of factorization, we get
fivanfu-ivan)= BB ) o oo
Consider the positive factor
wrify =28 (o f ®)

7
Equating real and imaginary parts on both sidesaasdme a=7A, b=7B, we get
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u=7A?-21B* -168AB

v =28A? -84B” +14AB
Substituting u & v in (2), we obtain the non-zeistidict integral solutions of (1) as

x(A, B) = 35A? —105B? —154AB
y(A B)=-21A% + 63B% -182AB
z(A B) = 21A% - 638 - 504AB
W(A, B) = 49A% +147B2

PROPERTIES
y(B,B)- x(B,B)-168t,,, = 0(mod84)

z(1,n)+63PR, - 21= 0(mod441)
y(n,n)+w(n,n)- 2Ctg,,, —S, +3= 0(mod56)
6lW(A A)] is a Nasty number

Z2n 27)+ yl2n 27)-322,, +322=0

a bk DN

3.4. PATTERN 4
Consider the linear transformations

u=a+3T
v:a—T}
Substituting (9) in (3) we get,
(@+31) +3@-T)* =w?
4a® +12T% =w? } (10

(9)

Take
w=a’+120? (11)

Using (11) in (10), we get

(ear +ivizT 2o -ivizT )= [(a+ Niv) i\/1_z))]2

Equating the positive factor, we get
(2a +ivi2T)= @ +iv12ab - 1207
Equating real and imaginary parts
= a?-120?
2 (12)
T =2ab

Substituting (12) in (9), we obtain
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U= a?-120% +12ab

a’ —12?2 - 4ab (13)
Ve————

2

To get integer solutions, assume a=2A, b=B in ¢f) hence the non-zero distinct
integer solutions of (1) are given by,

x(A, B)=4A% -12B% + 8AB
y(A B)=16AB

(A, B)=6A? -18B% + 36AB
w(A, B)=4A? +12B>

PROPERTIES
1. y(AB)-2x(A B)+8t, , —12ts, = 0(mod12)
2. Z(AB)-24PR, +12G, +12=0
3. y(A1)+w(A B)-9G, - 2t; , ~12PR, -9 = 0(mod12)
4. x(A A)+z(A A)-24t,, =0
5. 6[W(A,A)], 6[y(A,A)] is a Nasty number

3.5.PATTERN 5
Introducing the linear transformations

u=ag-3T
} (14)
v=a+T
Substituting (14) in (3), we get
(@-3T)P +3(a+T)=w?
4a® +12T2 = WP (15)
Take
w=a?+12b? (16)
Using (16) in (15), we get
(2a+ix/l_2TX2a—i\/1_2T): [(a: ix/l_ZT)(a—ix/l_ZT)]2
Equating the positive factor, we get
(20 +iv12T)= a2 ~120% +i212ab
Equating real and imaginary parts, we get
o= a? -12b?
2 (17)
T =2ab
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Substituting (17) in (14), we get
U= a’ -12b? -12ab

a2 —1252 +4ab (18)
Ve—————

2

Assume a=2A, b=2B in (18) and in view (2) the nanezdistinct integer solution of (1)
are as follows

x(A,B)=4A% - 4882 -16AB
y(A B)=-32AB
z(A,B)=6A? - 72B? - 72AB
w(A,B) = 4A% + 48B2

PROPERTIES
1. Each of the following expressions is a Nasty number

i.  [ZA-A)

i. — 6w(n,n)-x(n,n)-y(n,n)]
x(A, A)+w(A, A)-8t,, =0
x(A1)+y(A1)+w(AD) -8t,, = 0(mod 48)
x(A, A)+210j,, -210=0
w(2",n)-4j,, ~44=0

ok~ LN

3.6. PATTERN 6
Write (3) as
(W+ u)(w— u) =3vv (19)
It can be written in the form of ratio as
V. _wtu_m (20)
w-u K n
which is equivalent to the system of double equatio
mu+nv-mw=0
nu —3mv +nw = O}
Solving (21) by method of cross multiplication, get
w=3m? +n?
, u=3m? -n? (22)
vV =2mn

(21)

Substituting (22) in (2), the non-zero distincteger solutions of (1) are given by,
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x(mn)=3m? -n? + 2mn
y(m,n)=3m? -n? - 2mn
z(m,n) = 9m? - 3n?
w(m, n) = 3m? +n?

PROPERTIES
x(m, n)+ y(m, n)+ 2t,, —6t,,=0

=

2. z(1,n)+6t,,, -9 = 0(mod3)
n(n+1) Y (nh+1) )\ , s _
3. (X(Tnj y(TnD 4P, =0
4. ¢[x(mn)+ y(mn)-2w(mn)] is a Nasty number
5. z(m,n)+y(m, n)—12t4,n =0

3.7.PATTERN 7
Equation (20) can be written as
v w+Uu _m

=—=— (23)
w-u Y n
This is equivalent to the system of double equation
mu+3nv—-mw=20
(24)
nu-mv+nw=0
Solving (24) by method of cross multiplication, get
w=-m’-3n?
u=3n?-m? (25)
vV =-2mn

Substituting (25) in (2), the non-zero distinceiger solutions of (1) are given by,
x(m,n) =3n? - m? - 2mn
y(m,n)=3n% - m? + 2mn
z(m,n) =9n? - 3m?
w(m, n) = -m? -3n?

PROPERTIES:
1. z(m,n)+3w(m,n)+ 12t, ,+6= 0(mod12)

2. y(mn)-x(mn)-4PR,+2G, +2=0
3. 7(2"1)-9j,, +12=0
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4. x(n,n)-y(n,n)+4t,, =0
5. [z(m, m)] is a Nasty number

4. Conclusion
In this paper, an attempt has been made to obthajpossible integer solutions to the

homogeneous ternary cubic equation with four umkre 3(X3 + ys): 22W° . One
may search for other choices of solutions and twiresponding properties.
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