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Abstract. The Quadratic Diophantine equation with three unknowns represented by   
222 65zyx =+  is  analyzed for finding its non-zero distinct integral solutions. Different 

patterns of solutions of the equation under consideration are obtained. A few interesting 
properties among the solutions are presented. 
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1. Introduction 
The quadratic Diophantine equation with three unknowns offers an unlimited field for 
research because of their variety [1-3]. In particular, one may refer [4-16] for quadratic 
equations with three unknowns. This communication concerns with yet another 

interesting equation 222 65zyx =+  representing homogeneous quadratic Diophantine 
equation with three unknowns for determining its infinitely many non-zero integral 
solutions. A few interesting properties among its solutions are given. Also, formulas for 
generating sequences of integer solutions based on its given solution are presented. 
 
2. Notation 

1. 






 −−+=
2

2)(1(
1,

mn
nT nm               - Polygonal Number of Rank n  with side m . 

2. 
2

)1(
,3

+= nn
T n                               - Triangular Number of Rank n. 

3. )1( += nnPRn                               -  Pronic Number of Rank n. 

4. 3
6, nCpn =                                         - Centered  Hexagonal Pyramidal Number of   

                                                          Rank n.       

5. 2
,4 nT n =                                        - Square Number of Rank n. 

6. nnT n 23 2
,8 −=                               - Octogonal number of Rank n. 
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3. Method of analysis 
 The ternary quadratic Diophantine equation to be solved for its non-zero distinct integral 
solution is 

222 65zyx =+                                                                                                                  (1) 
Different patterns of solution of (1) are presented below. 
 
3.1. PATTERN- 1 
Write 65 as 

( )( )ii −+= 8865                                                                                                                (2) 

Assume 22 baz +=                                                                                                           (3)               
 Where ,a b  are non-zero distinct integers. 
 Using  (2) and (3) in (1) we get 

( )( )( )22222 88 baiiyx +−+=+  
Employing the method of factorization the above equation is written as 

( )( ) ( )( )( ) ( )2288 ibaibaiiiyxiyx −+−+=−+  
Equating the positive and negative factors we get, 

( )( )28 ibaiiyx ++=+                                         (4) 
2))(8( ibaiiyx −−=−                                                                                                     (5) 

Equating the real and imaginary part either in (4) or (5) we get 

( )
( ) 




+−=
−−=

abbabay

abbabax

16,

288,
22

22

                                                                                            
(6) 

Thus (6) and (3) represents non-zero distinct integral solutions of (1) 
 
Properties : 
1. ( ) 085101, ,4,3,18 =++−− nnn tttnx  

2. ( ) ( ) ( )2mod022,2, ,4 ≡−+ ntnzny   

 
3.2. PATTERN - 2 
Write 65 as 

( )( )ii 474765 −+=                                                                                                         (7) 

Where ,a b  are non-zero distinct integers,  
Using (7) and (3) in (1) we get 

( )( )( )22222 4747 baiiyx +−+=+  
Employing the method of factorization the above equation is written as 

( )( ) ( )( )( ) ( )224747 ibaibaiiiyxiyx −+−+=−+  
Equating the positive and negative factors we get, 

( )( )247 ibaiiyx ++=+                                                                                                  (8) 
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2(7 4 )( )x iy i a ib− = − −                                                                                                  (9) 

Equating the real and imaginary part either in (8) or (9) we get, 

( )
( ) 




+−=
−−=

abbabay

abbabax

1444,

877,
22

22

                                                                                       
(10)                         

Thus (10) and (3) represents non-zero distinct integral solutions of (1) 
 
Properties : 
1. ( ) 08. ,4 =+ ntnnx  

2. ( ) ( ) 01461,41, ,4 =−++ nn PRtnzny  

3. ( ) ( ) ( )20mod171,1, ,8 =−− ntnynx  

 
3.3. PATTERN -3 
(1)can be written in the form of ratio as 

0,
8

8 ≠=
−
−=

+
+ β

β
α

zx

yz

yz

zx

                                                                                         (11)
 

(11) is equivalent to the system of double equations 
( )





=+−+
=−+−

0)8(

08

zyx

zyx

βαβα
αβαβ

                                                                                               (12)
 

Solving (12) by applying the method of cross multiplication, the corresponding non-zero 
distinct integral solutions to (1) are obtained by 

( ) αββαβα 288, 22 +−=x  

( ) αββαβα 16, 22 ++−=y  

( ) 22, βαβα +=z  
 
Properties : 
1. ( ) ( )2mod0881, ,4 ≡+− ntnx  
2. ( ) ( ) nn tPRnzny ,416161,1, +−+ is even number 

3. ( ) ( ) ( )2mod0161,81, ,4 ≡−+ ntnznx  

 
Remark: In addition to (11), (1) may also be expressed in the form ratio as 

0,
7

4

4

7 ≠=
−
−=

+
+ β

β
α

zx

yz

yz

zx
 

Following the procedure as presented above the corresponding non-zero distinct integral 
solutions to (1) is given by 

( ) αββαβα 877, 22 +−=x  

( ) αββαβα 1444, 22 ++−=y  

( ) 22, βαβα +=z  
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Properties : 
1. ( ) ( ) ( )2mod0142,72, ≡−+ nPRnznx  

2. ( ) ( ) ( )44mod3232,2, ,4 ≡−+ ntnynx  

3. ( ) ( ) ( )2mod08,14,1 ≡−+ nPRnzny  
 
3.4. PATTERN- 4 
Introducing the linear transformations, 

vux += 3 , ,3vuy −= wz 2= (13) 
In (1) it is written as 

222 26wvu =+                                                                                                                (14) 

Assume  
22 baw +=                                                                                                       (15) 

Write as ( )( )ii −+= 5526                                                                                             (16) 

Substituting (15) and (16) in (14) we get, 

( )( ) ( )( )( ) ( )2255 ibaibaiiivuivu −+−+=−+  
Equating the positive and negative parts we get, 

( )( )25 ibaiivu ++=+                                                                                                     (17) 

( )( )25 ibaiivu −−=−                                                                                                    (18) 

Equating the real and imaginary parts either in (17) and (18) we get, 





+−=
−−=

abbav

abbau

10

255
22

22

                                                                                                   

(19) 

Substituting (19) and (16) in (14) the corresponding non-zero integral solution to (1) are 
given by 

( ) abbabax 41616, 22 +−=  

( ) abbabay 3222, 22 −−=  

( ) 22 22, babaz +=  
 
Properties : 
1. ( ) ( ) ( )2mod041,1, ,4 ≡−+ ntnzny  

2. ( ) ( )4mod0161, ,4 ≡− ntnx  

3. ( ) ( ) ( )2mod0322,82, ≡−+ nPRnznx  
 
4. Generation of solutions 
In this section, we obtain general formula for generating sequences of integer solutions to 
(1) based on its initial solution. 
 
Formula 1. Let 0 0 0( , , )x y z be the initial solution to (1) 

Let hxx 801 += ,  01 yy = ,  01 zhz −= (20) 
be the first solution to (1), where h is the non-zero integer to be determined. 
Substituting (20) in (1) and simplifying, we get 
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00 16130 xzh +=  (21) 

Therefore, 001001 12916,1040129 zxzzxx +=+= , 
Expressing the above equations in the matrix form, we have  









=









0

0

1

1

z

x
M

z

x
,  where 








=

12916

1040129
M  

Repeating the above process, the general values of x and z are given by 









=









0

0

z

x
M

z

x n

n

n  

We know that, 

( ) ( ) ( ) ( )IMIMM
nn

n α
αβ

ββ
βα

α −
−

+−
−

=  

where α  and β  are the eigen values of M and I is the unit matrix of order two. 
For our problem, 

6516129 +=α and 6516129 −=β  
Therefore, 














=

nn

nnn

YX

XY
M

651616

10406516

6532

1
 

where nn
nY βα +=  

nn
nX βα −=  

Thus, the general solution to (1) based on its initial solution is  

]10406516[
6532

1
00 zXxYx nnn +=  

0yyn =  

]651616[
6532

1
00 zYxXz nnn +=  

 
Formula 2 
Let 010101 ,4,7 zzhyyhxx =−=−=  
be the first set of solution to(1). Following the procedure presented above, the 
corresponding general solution to (1) is given by 

[ ]00 472
74

1
yXxYx nnn −=  

[ ]00 727
74

1
yYxXy nnn +−=  

0zzn =  

where ( ) ( )nn

nY 7272 −+=  

( ) ( )nn

nX 7272 −−=  



P. Sasipriya and A. Kavitha 

108 
 

Formula 3 
Let 01 xx = , hyy 801 −= , hzz −= 01  be the first set of solution to (1). Following the 
procedure presented above the corresponding general solution to (1) is given by 

0xxn =  

[ ]00 10406516
6532

1
zXyYy nnn −=  

[ ]00 651625816
6532

1
zYyXz nnn ++=  

where  nn
n

nn
n XY βαβα −=+= ,  

 
5. Conclusion 
In this paper, we have made an attempt to obtain infinitely many non-zero distinct 
integer solutions to the equation given by 222 65zyx =+ . As ternary quadratic 
equations are rich in variety, one may search for the other choice of ternary 
quadratic Diophantine equations and determine their integer solutions along with 
suitable properties. 
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