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Diophantine equation ( ) 233 7zwyx =+ is analyzed for its patterns of non-zero distinct 
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1. Introduction 
The Diophantine equation offer an unlimited field for research due to their variety [ ]21− . 

In particular, one may refer [ ]73 −  for the cubic equation with three and four unknowns. 

This communication concerns with yet another interesting equation ( ) 233 7zwyx =+  
representing homogeneous cubic with four unknowns for determining its infinitely many 
non-zero integral points, also a few interesting relations among the solutions are 
presented. 
 
2. Notations 
1) Polygonal number of rank ‘n’ with m sides 

( )( )
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2) Jacobsthal-Lucas number of rank n 
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3) Pronic number of rank ‘n’ 
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4) Centered Polygonal number of rank ‘n’ with m sides           
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5) Centered hexagonal Pyramidal number of rank ‘n’ 
3

6, nCP n =  
 

3. Method of analysis 
The equation representing the homogeneous cubic equation to be solved for its non-zero 
distinct integer solution  
( ) 233 7zwyx =+                                                     (1)    
It is to be noted that, (1) is satisfied by the following two integer quadruples 
( )kkkk 28,80,4,76 , ( )kkkk 16,16,16,32 −  
The substitution of linear transformation 

vux += , vuy −= , uz 2= , 0≠≠ vu                           (2) 
in (1) leads to 

222 73 wvu =+                                          (3) 
Assume that 22 3baw +=   , where 0, ≻ba                          (4) 
 
3.1. Pattern-1 
Write7 as, 

( )( )32327 ii −+=                                         (5) 
Substituting (4) and (5) in (3) 
Using the method of factorization, we get 

( )( ) ( ) ( ) ( )( )32323333
22

iibiabiaviuviu −+−+=−+            (6) 
Equating the positive and negative factors, the resulting equations are  

( ) ( )( )2

3323 biaiviu ++=+                                                                            (7) 

( ) ( )( )2

3323 biaiviu −−=−                            (8)  
Equating the real and imaginary parts, we have 





+−=
−−=

abbav

abbau

43

662
22

22

                            (9) 

Hence in view of (2), the non-zero distinct integer values of wzyx ,,,  of (1) are given by   

abbax 293 22 −−=  
abbay 103 22 −−=  

22 12124 babaz −−=  
22 3baw +=  

 
Properties: 

( ) ( ) 028,3,.1 ,4 =−− ataayaax  

( ) ( ) 02021,1,.2 ,3,4 =+−+++ aa ttaawaay  

( )[ ]1,16.3 w is a nasty number 
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3.2. Pattern-2 
Instead of (5), 7 can be written as 

( )( )
4

3535
7

ii −+=  

Proceeding as in pattern: 1, the non-zero distinct integer solution to (1) are given by 
abbax 293 22 +−=  
abbay 862 22 −−=  

abbaz 6155 22 −−=  
22 3baw +=  

 
Properties: 

( ) 04,,.1 ,4 =− ataaw  

( ) ( ) ( )8mod11,1,.2 ,12 ≡−+ atayax  

( ) 011,1.3 4 =−+ jz  
 
3.3. Pattern-3 
 The substitution of linear transformation       

TXw 3+= , TXV 7+= , Uu 2=                         (10)  
in (3) leads to   

222 21TXU −=  
222 21TUX =−               (11) 

write (11) as  
( )( ) 221TUXUX =−+                           (12)
 The equation (12) is written as the system of two equations as follows: 
 
 
 
 
 
System 1: 
 Consider 

21=+UX  
2TUX =−  

Solving these two equations we get 









+=
+−−=
++=

12

2022

38122
2

2

kT

kkU

kkX

                     

(13)Substituting (13) in (10) and (2), we get the corresponding non-zero distinct integer 
solutions to (1) as follows: 

38122 2 ++−= kkx  
2206 2 +−−= kky  

System 1 2 3 
UX +  21 23T  27T  
UX −  2T  7  3 
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kkz 8840 2 −−=  
1482 2 ++= kkw  

Properties: 
( ) ( ) ( )35mod1.1 ,10 ≡−− ktkykx  

( ) ( ) ( )5mod016.2 ,3 ≡++ ktkykx  

( )8mod442.3 ,4 ≡++
k

twz  

 
System 2: 
Consider,  

23TUX =+  
7=−UX  

Solving these two equations we get 









−=
−−=
+−=

12

266

566
2

2

kT

kkU

kkX

                          (14) 

Substituting equation (14) in (10) and (2), we get the corresponding non-zero distinct 
integer solutions to (1) as follows 

6418 2 −−= kkx  
2206 2 −−= kky  

82424 2 −−= kkz  
26 2 += kw  

 
Properties: 

( ) 61.1 6,2 =− CPx  

( ) ( ) ( )19mod4.2 ,50 −≡−+
k

tkwkx  

( )[ ]126.3 w is a nasty number 
 
System 3: 
Consider, 

27TUX =+  
3=−UX  

Solving these two equations we get 









+=
++=
++=

12

21414

51414
2

2

kT

kkU

kkX

                                                                                                       (15) 

Substituting (15) in (10) and (2) ,we get the corresponding non-zero distinct integer 
solutions to (1) as follows  

165642 2 ++= kkx  
814 2 −= ky  

85656 2 ++= kkz  
82014 2 ++= kkw  
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Properties: 

( )[ ]216.1 −y is a nasty number 

( ) ( ) 0856.2 =−−+
k

PRkykx  

( ) ( ) ( )8mod028.3 ≡−+
k

PRkwky  

 
3.4. Pattern-4 
(11) can be re-written as 

222 21 UTX +=  
which is satisfied by 









=
−=
+=

mnT

nmU

nmX

2

21

21
22

22

                          (16) 

Using (16) in (11) we get 









++=
++=

−=

22

22

22

621

1421

242

nmnmw

nmnmv

nmu

                          (17)

 Thus in view (2) and (3) ,the non-zero distinct integer solutions to (1) are 
obtained by 

mnnmx 1463 22 +−=  
mnnmy 14321 22 +−=  

22 484 nmz −=  
mnnmw 621 22 ++=  

 
Properties: 

( ) ( ) ( )8mod04,1,1.1 ,4 ≡+− ntnwny  

( ) ( )26mod011,.2 ,44 ≡−− mtmw  

( ) ( )87mod011,.3 ,154 ≡+−+
m

tmmw  

 
3.5. Pattern-5 
Consider (12) as 
( )( ) 221TUXUX =−+                                       (18)  
Case:1 
  Write (18) in the form of ratio as  
( )

( ) 0,
21 ≠=

−
=+ β

β
α

UX

T

T

UX
 

 which is equivalent to the following two equations 
0=−+ TUX αββ  

021 =−− TUX βαα  
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On employing the method of cross multiplication, we get 
22 21βα −=U  
2221 αβ +=X  

αβ2=T  
Thus, in view of (10) we get 









++=
++=

−=

22

22

22

216

2114

422

βαβα
βαβα

βα

w

v

u

                          (19) 

Substituting in (2), we get 
( )
( )
( )
( ) 












++==
−==

−−==
−+==

22

22

22

22

216,

844,

6314,

21143,

βαβαβα
βαβα

βαβαβα
βαβαβα

ww

zz

yy

xx

                                                                                 (20) 

Thus (20) represents non-zero distinct integer solution of (1) 
 
Properties: 

( ) ( ) ( )2mod021,1,.1 ,4 ≡−+ ααα tyx  

( ) ( )8mod480,1.2 ,4 ≡++ αββ tz  

( ) ( ) ( )16mod111,1,.3 ,8 ≡−− ααα tyz  

Case 2: 
Write (18) in the form of ratio as, 
( )

( ) 0,
7

3
≠=

−
=+ β

β
α

UX

T

T

UX
 

Proceeding as in case (1), we get 
( )
( )
( )
( ) 












++==
−==

−−==
−+==

22

22

22

22

763,

2812,

21143,

7149,

βαβαβα
βαβα

βαβαβα
βαβαβα

ww

zz

yy

xx

                        (21) 

Thus (21) represents the non-zero distinct integer solution of (1) 
 
Properties: 

( ) ( ) ( )33mod141,1,.1
,14

≡−− ααα tyx  

( ) ( )12mod8121,.2 ≡− αα PRz  
( ) ( ) 016,,.3

,4
=++ ααααα tyx  

 
4. Remarkable observations 
Triple 1:  
Let 0u , 0v , 0w  be the initial solution of ( )3  
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                                                                                                                (22) 

  be the second solution of ( )3 , where h  is a non-zero integer to be determined. 

Then from ( )3 , we get 

00 2818 wvh −=  

∴

01

001

001

8455

3655

uu

wvv

vww

=
−=

+−=
 

Hence the matrix representation of the above solution is  
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−
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where, 
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Repeating the above process, the general values for v  and w  are given by 









=









0

0

v

w
A

v

w
n

n

n  

( ) ( ) ( ) ( ) ( ) ( )
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Then we get the thn  solution as 

( ) ( ) ( ) ( ) ( ) ( )
00 36

2

1
36

2

1
56

2

1
54

2

1
vww

nnnn

n 
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−−+−=  

0uu
n

=  

In view of ( )2 , the general solution of ( )1  is  

nnn
vux +=  

( ) ( ) ( ) ( ) ( )
000 54

2

1
56

2

1
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2

1
84

2

1
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nnn
vuy −=  

( ) ( ) ( ) ( ) ( )
000 54

2

1
56

2

1
84

2

1
84

2

1
vwu

nnn










−
−++







 −+−−=  

nn
uz 2=  



C.Pathmapriya and Dr.G.Sumathi 

36 
 

02u=  
 
Triple 2: 
Let 0u , 0v , 0w  be the initial solution of ( )3  
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 be the second solution of ( )3 , 

Following the procedure as above, the corresponding integer solutions to ( )1  is given by  
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Triple 3:  
Let 0u , 0v , 0w  be the initial solution of ( )3  
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be the second solution of ( )3  

In this case, the corresponding integer solutions to ( )1  is given by 

nnn vux +=
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5. Special relations 
Employing the solutions ( )yx,  of (1) each of following expressions among the special 
polygonal, centred polygonal, pronic numbers and pyramidal numbers is a congruent to 
zero under modulo 7. 
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6. Conclusion 
To conclude one may search for other patterns of solutions and their corresponding 
properties to the considered on the homogeneous cubic equation with four unknowns. 
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