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Abstract. An attempt has been made to obtain pattern of non-zero distinct integral
solutions to the homogeneous biquadratic equation with five unknowns represented by
2(x4 - y4) = (z2 —Wz)p2 is analyzed and various interesting relations between the
solutions and special numbers namely polygonal numbers , pyramidal numbers are
exhibited .
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1. Introduction
The Theory of Diophantine Equations offer a rich variety of fascinating problems . In
particular biquadratic Diophantine homogeneous and non-homogeneous have aroused the

interest of numerous mathematicians. Since antiquity [1—3]. In this context, one may
refer [4—7] for various problems on the biquadratic Diophantine equations. However

often we come across homogenous biquadratic equations and as such are may require its
integral solutions in its required general form this paper concern with the homogenous
biquadratic equations with five unknowns equations for determining its infinitely many
non-zero integral solutions. Also a few interesting properties among the solutions are
presented.

2. Notations
1. Palygonal number of rank n with sidesm

ton = n[1+ wzm‘z)}

2. Pronic number of rank n
PR =n(n+1)
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3. Centered hexagonal pyramidal number of rank n
CP_=n’
4. Centered polygonal number of rank n with m sides

_mn(n-1)+2
" 2

5. Stellaoctangular number of rank n

S0, =n(2n* -1)

Ct

3. Method of analysis
The equations representing the biquadratic equation to be solved for its non-zero
distinct integer solutionis

2()(4 _ y4) — (Zz _ Wz)pz (1)
The substitution of linear transformation.

X=U+V, y=u-v, Z=u+4dv, w=u-—-4v ()]
in(l) leads to

u*+v?* =p? 3
Assume that

p=a*+b? 4)
3.1. Pattern-1

Rewrite (3) as

u*+vi=p**l (5
Write 1 as

1:(3+4i)£)3—4i) ®
Substituting (4) and (6) in (5) and using the method of factorization we get ,

(0 +1vfu - 1v)=(a+ib)a-ib) EX4NE=4) ™
Equating the positive and negative factors, the resulting equation are

(u+iv)=(a+ip) E4) ®)
(0-iv)=(a-ip) E=4) ©)

Equating Real and Imaginary partsin (8)

u=[3a - 30" - 8ab)
> (10)
v= %[4a2 — 4p? + 6ab]
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Choose a=5A, b=5B in (10)
u=15A? -15B% - 30AB
v =20A’ - 20B* + 30AB
The non-zero distinct integer solutions of (1) are presented by
x = 35A? -35B* -10AB
y =-5A% +5B* - 70AB
z=95A% -95B% + 80AB
w=-95A +95B°-160AB
p = 25A? + 25B?

(11)

Properties:

1.x(A A)+ y(A A)+80PR, =0(mods5)

2.7(1,B) - w(L, B) - 2Ct,,,, — 240PR, =0(mod 2)
3.x(A A+1)-2Ct, , +10PR, =-2(mod35)

3.2. Pattern-2

The substitution of the linear transformation

X=U+V,y=u-v,zZ=2u+2v, W=2U—-2v

in(l) leads to

u’=p’-v* 12

which is equivalent to

u* =(p+v)(p-v) (13)

which is expressed in the form of solution as

prv__ U M. o (14)
u p-v n

Now (14) is equivalent to that two equations

mu-np-nv=0

nu+mv-mp=20

Applying the method of crossratio, we get

u=2mn

v=m’-n?

p=m*+n’

Thusin view of (2) the non-zero integral solutions of (1) are given by

X=2mn+m?-n?

y=2mn-m’ +n?

z=4mn +2m’ - 2n?

w = 4mn - 2m*+2n?

p=m*+n’
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Properties:
1.z11)+w(L1)-CcP,, =0
2.x(m,m)+ y(mm)-4t, =0
3x(mm+1)+y(mm+1)-4PR =0

3.3. Pattern-3

Instead of (2) one may consider the following transformation
X=Uu+v,y=u-v,z=2uv+2 ,w=2uv-2

Following the procedure presented in pattern 2, the other choices of integral solutions of
(1) are obtained by

X=2mn+m?-n?

y=2mn-m’+n’

z = 4mn(m® - n?)+ 2

w = 4mn(m? - n?)-2

p=m*+n’

Properties:

1.x(m,m)+ y(m,m)-4t, =0
2.z(m1)+w(ma)-8Cp,, = 0(mod8)
3.x(m1)+w(m1)-2s0, -t,, =0(mod3)

3.4. Pattern-4

Instead of (2) one may consider the following transformation

X=Uu+v,y=u-v, z=4w+l,w=4uw-1

Following the procedure presented in pattern 2, the other choices of integral solution of
(1) are presented by

X=2mn+m?-n?

y=2mn-m’+n’

z=8mn(m? —-n?)+1

w =8mn(m* - n?)-1

p=m*+n’

Properties:

1.p(m1)-t,, -1=0

2.x(m,l) - 2y(m,l) -t,., = O(mod 3)
3w(m1)-8CP,, = -1(mod8)

3.5. Pattern-5
(3)is also satisfied by
u=2rs
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2(x*-y)=(Z-w)p?

v=r?-¢°
p:rZ+SZ

Substituting the values of u,v in (2) the non-zero integer solutions of (1) are given

below
X=2rs+r*-s’
y=2rs-r®+s?
Z=2rs+4r? -4’
W=2rs—4r? +4s?
pzrz +52

Properties:

1.6(x(1,1) + y(11))is a nasty number
2x(r2)+z(r1)-4PR -t,, +5=0
3.y(1, s) - W(l, s) -5, = O(mod 5)

4. Remarkable observations

Triple L:

Let Uy,V,, P, betheinitial solution of (3)

u=nu,+h, v, =nv,+h, p, =np,

be the2™ solution of (3) where hisanon-zero integer to be determined
Then, from (3) we get

h=-nu, —nv,

u, =-nv,,v, =-nu,, p, = Np,

0771

Hence the matrix representation of the above solutionis

Rt

[0 —n}
A=
—n 0

Repeating the above process the general valuesfor Uand v are given by
_un_ - An|:u0:|
_Vn_ Vo

17\ n 1\ n
R ORI —(—n)]m

oy -] 2oy ]

Thus, the n™ solution as by

Vo
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u, =3[0 + e, =S - o)
v, ==y ) b -2+ )

Inview of (2), the general solution of (1) is given by
Xn = un +Vn

X, =U,(=n)" +v,(=n)’

Yy, =u, -V,

Y, =u,(n)" =v,(n)’

z =u, +4v

2, =u) S0+ Cor -2 -] v oy - e+ o]

w =u —4v,

w, =0 30 o T 2oy~ (o) ]| w0y o T 2oy (o) ]

pn = npO

Triple2:
Let uy,V,, p,be theinitial solution of (3)
u =nu,+h,v,=nv,-h, p,=np, (16)

Following the procedure as above the corresponding integer solutions of (1) are given by

=u,(n)" +v,(n)
)’ - ()

=, (-
u[ [ty +4 (] 3l - oy e oy + o) ]
[ =] Sl o]y o]

w, =u

l\)ll—‘ N |

Triple3:
Let U,,V,, P, betheinitial solution of (3)

u =nu,—h, v, =nv, —h, p, =np, 17)
In this case, the corresponding integer solution (1) isgiven by
X, =U,(n) +v, (n)

v, =) o)
2, =0, 300+ 12y o] - Sl o) ]2+ (o) ]

2
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2(xy")=(Z-wA)p®
w = uo[1 [(n) +(- n)] + 2[(n)n -(- n)]} -V, F [(n) -(- n)] + 2[(n)” +(- n)]}

2 2
pn = npl)

5. Conclusion
To conclude one may consider biquadratic equation withmultivariables(>—,5) and search
for their non-zero distinct integer solutions along with their corresponding properties.
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