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1. Introduction

In this article, the existence of commutative propén Parikh matrix is discussed. We
introduce the transpose property of an Anti-diagjaonatrix and check the transpose
property for the same.

We assume that the reader is familiar with thedsasi formal languages. Whenever
necessary, [10] may be consulted. The number afroeaces of a word as a subword
in a wordw, in symbols|w/|,. The term subword means tlmatas a sequence of letters,
containsu as a subsequence. This means that there exidswgr.., x; andyg, ..., Vi
some of them possibly empty, such that x;, ..., x;, andw =y x;y; ... X, V. Subwords
in this sense are often called scattered subwords.

The Parikh matrix of a word which has been receintiyoduced [6] as an extension
of the notion of Parikh vector gives more numeriofbrmation about the word in terms
of certain subwords (also called scattered subwi@Qishan given by the Parikh vector.
Since the introduction of this notion of Parikh matof a word, there has been an
intensive investigation on various theoretical mmies of Parikh matrices (See for
example [2,3,4,5,6,7]).

The Parikh matrix mapping introduced in [2] is arpfosmy,, : Z*—M; ., where
My, 4is a collection of(k + 1)-dimensional upper-triangular matrices with nonrtiega
integral entries and unit diagonal. The clasdraikh vectony(w) appears in the image
matrix as the second diagonal.
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An Anti-diagonal matrix introduced in [8] is a md&igm &y, : X*—M; ., where

Mp,,is a collection of (k + 1)-dimensional right lower-triangular matrices with
nonnegative integral entries and right diagonalng diagonal. The classical Anti-
diagonal vectos (w) appears in the image matrix as the right loweoséaliagonal.

To get more information about a word, one has togahe attention to subwords and
factors. In this article, these notions are urtdexs as follows.

2. Preliminaries
In this section, we recall subwords, Parikh matriaed anti-diagonal matrices of a word.

Subwords
Let X be an alphabet. The set of all words avés denoted*and the empty word is. If
wezx’*, then f|denotes the length of.
Subword is denoted by |,, thenumber of occurrences of word uas a subword iw,
that is the number of mappings that can be defividdrespect to the above definition.
For instancejabbal,, = 2 andaabbc|,p. = 4.

Parikh matrices

The notion of Parikh matrix was introduced in 2]l definitions and results presented in
this subsection can be found in [1, 2, 3]. We ltete definition of a Parikh matrix
mapping introduced and studied in [2]

Definition 2.1. Let 2= {a; < a, < --* < a;} be an ordered alphabet. TRarikh matrix
mapping, denoted 5y, is the monoid morphism:yyy: 2%, -,4) = (Mgyq, -
, Ii+1), defined by the condition: by (ag) = (M j)1<ij<k+1), then foreach <i <
(k + 1),

m;; = 1,mg 441 = 1, and all other elements of the matfixy (a,)are0.

For the ordered alphabél= {a; < a, <-- <ay}, we denote bya;; the word
a;Qi4q - aj, Wherel <i <j <k.

The following theorem characterizes the entriethefParikh matrix:

Theorem 2.1. LetX= {a; < a, < -+ < a;}be an ordered alphabet amdX*. The matrix
Yy (w) = (M j)1<i,j<k+1), as the following properties:

* my;=0,foralll <j <i=<(k+ 1),

e my;=1,foralll <i <(k + 1),

* Myjyq = |W|ai,j’ foralll <i <j <k.

Let M = (m;;)1<i,j<kb€ a triangular matrix. Thalternate matrix of M, denoted by
M, is the matrixM = (m{;)1<;j<k, Wherem}; = (=1)™*/(M;;) for all 1 <i,j <k.
Thereverse of M, denoted by ("¢?), is the matrix¥ "V)= (m;’;)1<; j<x, Wherem]'; =
My p1-jk+1-i> Tor all 1 <i < j <k. (The entries below the main diagonal are the
same inM andM ("e¥) )
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Definition 2.2. [9] Two words wy,w, overE = {a < b < c} are said to satisfy the
ratio property, writenw, ~,w,, if

1 p; P12 P13
0 1 D2 D23

ll)S(Wl) = 0 0 1 D3 and
0 0 0 1
1 q¢@ %12 43

Y3 (wy) = 8 10 qi 123 | satisfy the condition:
0 0 0 1

pi =s.q;(i = 1,2,3),pii+1 = S-qii+1,(i = 1,2), wheres is a constant.
Now we recall the new notion of Anti-diagonal matoif a word.

Anti-diagonal matrix

The notion of anti-diagonal matrix was introduced[8]. All definitions and results
presented in this subsection can be found in [Bhe definition of the anti-diagonal
matrix mapping presented below uses a special dfpmatrix product, calledAnti-
diagonal matrix product.

The notion of an anti-diagonal matrix of a word sioler ternary alphabets only. For
integersa; andb; (1 <i < 3), we define the product

&
a, (bl b, Q)=a3bl+a2b2+a1Q.Fortwo matrices
a3
a & oy by by
M;=| a, ag 3 |, My=|b, by
a3 8 & b, b b
G ¢ G a
we defineM,*M,=|c, ¢, G, |wherec=|a,, |b b, b,,)fori=147
G G G &,

where the product definingis as defined above.
LetX = {a,b,c} witha < b < c. Then we define

0
M,(a) =

SO rOoO o
S OoOr o
SO

0
0
1
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0 0 0 1
{0 0 1 0
M,(b) -<0 11 0 and
1 0 0 0
0 0 0 1
{0 0 1 0
M,(c) ‘(o 100/
_ 11 00 o
This can be formulated as an anti-diagonal magfor a ternary wordav as
0 0 1
0 1 |W|a

05 (w) = 1wl Wl

|W|c |W|bc |W|abc

= o OO

where|w|, is the number of inw, |w|, is the number db in w,|w|. is the number of
in w,|w|gp is the number aib inw, [w|,, is the number dbc in w and|w|, is the
number ofabc inw.

For example,
M,(abe) = §5(a) * 63(b) * 5(c)
0 0 0 1 0 0 0 1 0 0 0 1
(0 0 1 1}(0 0 1 O0}(0O O 1 O
0 1.0 O 0 1.1 0 0 1.0 0
1 0 0 0 1 0 0 0 1 1.0 0
Using anti-diagonal matrix product, we get
0 0 0 1
_(0 0 1 1
0 1 1 1
1 111

Ratio property in an anti-diagonal matrix
Definition 2.3. Two wordsw,, w, over: = {a < b < c} are said to satisfy the ratio
property, written as

0 o 0 1 o o O 1
. 0 0o 1 0 0 1
Wi~ wy, i Ss(w) ={ 0 1 4, %12 andss(w2) = 1 ¢, ;’j 5
1 p3 D23 P13 1 g3 923 913
satisfy the conditiop; = s.q;(i = 1,2,3), pii+1 = S.q;i+1,(i = 1,2), wheresis a

constant.

3. Existence of commutativity in Parikh matrices
In this section, we examine commutative propertRanikh matrix of a word.

Lemma3.l. LetX = {a, b} witha < b andw,,w, € . If w,was got by replacing the
word ab to ba (or) ba to ab in any one place of;, thenp, (w,w,) = Y, (w,wy).
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1 pr
Proof: LetX = {a,b} witha < b andw,,w, € X. Lety,(w,) = (0 1 q).

0 0 1
N, (w1), [wila = p, Iwilp = q and|wy|qp =T.

Given thatw,is replacing the wordb to ba (or) ba to ab in any one place of,.
1 p s
We getp, (w,) = (o 1 q>-

0 0 1
In Y, (wy), [walq =D, Iwzlp = q and|w,|gp = S.h(Wiwy) =P, (wy)h,(wy)

1 p r\N/1 p s
:<0 1 q)(O 1 q)
0 0 1/\0 0 1
Using matrix multiplication, we get
1 2p s+pg+r
:<0 1 2q )
0 O 1

Yo (wawy) =1y (Wo)h,(we)
1 p s\/1 p r 1 2p r+pqg+s
= (0 1 q) (0 1 q) = (0 1 2q )
0 0 1/\0 0 1 0 O 1

Hence, (wiwz) =, (wowy).
Now we illustrate the above result.

Remark 3.1. Note that we consider binary alphabets in the abeselts in Parikh matrix
of words. But this result is not possible for #hietter words in Parikh matrix.

Lemma 3.2. LetX; = {a,b,c} witha <b <c. Lew;,w,,w; andw, € X3 such that
wy,w,,wy and w, satisfy the ratio propertw; ~,.w, , wy~,w; and w,~,w,. Then
Wi~ Wy, Wy~,W, andws~,w,.

Proof: Let wy,w,,ws; andw, over X; = {a < b < ¢} are said to satisfy theatio

property, written wy~,w, , wy~,w; andw,~,ws.

1 p; P12 P13
0 1 D2 P23
If wyp) = ’
l»1)3( 1) 0 0 D3
0 0 O 1
1 q@ %12 q13
0 1 92 Q23
wy) = )
I»DB( 2) 0 0 1 qs
0 0 0 1
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1 u; Uiz U3
0 1 Uz U3
w3) = ~ |and
1/)3( 3) 0 0 1 Us
0 O 0 1
1 vy Viz Vi3
0 1 Uy V23
W =
1/)3( 4-) 0 0 1 V3
0 O 0 1
If wy~,w,, we haved:=P2 = Pz — P12 _ P23 _ 1)
q1  qz2 q3 q1,2 qz2,3
u Uu:
If wy~,wy, we havet =22 = 28— L2 23—y )
P1 D2 1% P1,2 P23
Vo — Vs _ Mz _ Y2z (3)

V1 _
If wy~,w,, we havelt === == =
a1 92 q3 q1,2 423

By eqn., (1)
Pi1_g
q1

Usingeqn., (3), we get

le V1 V1
Pr_ g
V1
Likewise, 22 = B2 = P12 — P23 _  "\which meansv; ~,w,
V2 VU3 V1,2 V2,3
By eqn., (2)
Uq
_ b1
Usingegn., (1), we get
Ug U
— =t=>—= st
. Sqx 0
Usingeqn., (3), we get
l t t
= st=>—"2=st=>2=>=m [ = k]
- vy V1 l l
Ug
—=m
U1
Likewise,2 = X8 = 22 — 223 _ 4 \which meansv;~,w,
V2 V3 V1,2 V2,3
By eqn., (2)
Ug
— =t
. b1
Usingeqn., (1), we get
Up Uy
—=t=>—=st=n

t
" " " uS‘h q;
Likewise, 2 = =2 = 22 = 22 = p_which meansv;~,w,
qz q3 q1,2 qz2,3
Hence,Wl ~rWy, W3~ Wy andW3 ~rWy.
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Theorem 3.1. LetX; = {a,b,c} witha < b < c. Lew,;,w,,w; andw, € X3 such that
wy, w,, ws andw, satisfy the ratio property; ~,.w, , wy~,w; andw,~,ws.

Then ()3 (wywy) = P3(wawy),

(i) Y3(wawy) = P3(waws) and

(iii) Y3(wowz) = P3(waw,)

Proof: Let £; = {a,b,c} witha <b <c. Lew;,w,, w;,w, € X3 andw;,w,,w; and
w, satisfy the ratio property such that~,.w, , ws~,w; andw,~,w,.

From Lemma 3.2, Sinog; ~,wy, w3 ~,w, andw;~,.w,.

If wi~, Wy, From i) of Lemma 1 in [9]

Henceys(wywy) = 3(wawy).

Likewise, ii) and iii) are proved.

4. Existence of commutativity in an anti-diagonal matrices
In this section we examine transpose property iAmidiagonal matrix of a word.

Proposition 4.1. The transpose of an Anti-diagonal matrix is also aami-diagonal
matrix.

Remark 4.1. Here the Anti-diagonal matrix differs from Pariktatrix as its transpose is
not at all a Parikh matrix.

Corollary 4.1. Transpose of an Anti-diagonal matrix is not theeas the reverse matrix
as given in Parikh matrices [2].

Example4.1l. LetYX = {a < b} andv € X. Letw = abaabab,

0 0 1
6,(w) = 6,(abaabab) = (0 1 4)
1 3 8

00 1\ /0 0 1
S,wH=(0 1 4] =0 1 3
1 3 8 1 4 8
Since (W)Y = (abaabab)™®’ = babaaba, we get §,(w"®") = §,(babaaba) =
0 0 1
(0 1 4)
1 3 4
Therefores, (w) # §,(w")

Theorem 4.1. LetE = {a,b} witha < b. The word &,,w, overX satisfy transpose
property, ther{d, (wy * wy)]t = [8,(wy)]t = [8,(w;)]t. Here we mead,(w; * w,) as
82(w1) *62(wz).

Proof: LetX = {a,b} witha < b. Letw;,w, € X.

0 0 1

1 g r
29
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0 0 1
1 m n

8wy * wy) = 6, (wy) * 8,(ws)
0 0 1 0 0 1
1 g r 1 m n

0 0 1
:<0 1 p+l ) as anti-diagonal matrix product
1 g+m r+pm+n

0 0 1 L0 0 1
[62(W1*W2)]t=<0 1 p+1 ):(0 1 qg+m )
1 g+m r+pm+n 1 p+l r+pm+n
0 0 1, 0 0 1
[52(W1)]t=<0 1 P>=(0 1 q) and
1 g r 1 pr
0 0 1\ 0 0 1
[6,(wy)] = (0 1 l) :<o 1 m)
1 m n 1 I n

0 0 1 0 0 1
[62(w2)]" * [6,(wp)]* = (0 1 m) * (0 1 Q>
1 I n 1 pr

0 0 1

= (0 1 m+q ) as anti-diagonal matrix product.
1 l+p n+mp+r

Hence[8, (wy * wy)]" =[8,(wp)]" * [8,(wy)]".

0 0 1
Example 4.2. Letw; = abaabab, 6,(w,) = (0 1 4) andw, = ababa and

1 3 8

0 0 1

62(W1)= 0 1 3)
1 2 3

0 0 1 0 0 1
62(W1 * Wz) = 62(W1) * 62(W2) = (0 1 4) * (0 1 3)
1 3 8 1 2 3

0 0 1
= (0 1 7 ) as Anti-diagonal matrix product
1 5 19

0 0 1
[02(wy = Wz)]t = (0 1 5 )
1 7 19

0 0 1\* ,0 0 1
[52(w1)]t=(0 1 4) =<0 1 3) and
1 3 8 1 4 8

30



Existence of Commutativity in Parikh and Anti-Diangd Matrices

0 0 1\ ,0 0 1
[52(w2)]t=(0 1 3) =<0 1 2)
1 2 3 1 3 3
0 1

[62(w)]" * [6,(w]" =(0

0 1
1 7 19

Hence,[8,(wy * wp)]" = [6,(w2)]" * [8,(wp)]".

[N
_ oW L O
w N

*
N\
= o O
N
0 w
N~

Theorem 4.2. LetX = {a,b} witha < b. Letw € X satisfying transpose property, then
[82(w * mi(w))]* = [8,(mi(w))]* * [62(w)]".
Proof: LetX = {a,b} witha < b. LetweX.

0 0 1
d,(w) = (0 1 p) and
1 g r

0 0 1
S,(mi(w)) = (0 1 p)
1 g s

The proof is similar to the proof of Theorem 4.1

5. Conclusion

The topic of Parikh matrices is a promising areaeskarch related to combinatorics on
words. In this paper we have obtained certairegatfor words so that their Parikh
matrices and Anti-diagonal matrices are commuteabse of the non-commutativity of
words. Most of problems are difficulties to handiathematically in formal languages.
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