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Abstract. This paper describes the impact of the Hall current on MHD flow of a couple 
stress fluid in an inclined channel. The fluid is electrically conducting through a porous 
medium in the presence of uniform magnetic field. The system of governing partial 
differential equations are solved analytically. The analytical solution is carried out under 
long wave length and low Reynolds number. Closed form expression for velocity, 
pressure gradient and pressure rise are presented. Important results reflecting the 
influence of embedded parameters in the problem have been pointed by plotting the 
graphs and discussed in detail. 
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1. Introduction 
It is well established fact that peristaltic process is a mechanism for mixing and 
transporting fluids, which is caused by a progressive wave of contraction and expansion 
travelling on the walls of the channel/tube. Such process is encountered in the transport 
of urine from kidney to bladder, swallowing of food through esophagus, lymph transport 
in the lymphatic vessels and in vasomotion of small blood vessels such as arterioles, 
venules and capillaries etc. Roller and finger pumps also work under the peristaltic 
mechanism. Beginning with the first investigation of Latham [8], several theoretical and 
experimental attempts have been made to understand peristaltic action in different 
situation.  Shapiro et al., [13] discussed the theoretical results for both plane and 
axisymmetric geometries. This has attracted several investigators to study the peristaltic 
transport under long wavelength and low Reynolds number.  
           Mekheimer [9] analysed the MHD flow of a conducting couple stress fluid in a slit 
channel with rhythmically contracting walls. Nirmala et al. [10] contributed the hall 



Nirmala P. Ratchagar, V.Balakrishnan and R. Vasanthakumari 

50 
 

 

current effect in oscillatory flow of a couple stress fluid in an inclined channel. Eldabe et 
al. [1] studied the effects of heat and mass transfer on the MHD flow of an 
incompressible, electrically conducting couple stress fluid through a porous medium in an 
asymmetric flexible channel over which a traveling wave of contraction and expansion is 
produced, resulting in a peristaltic motion. Sankad and Radhakrishnamacharya[12] 
contributed towards  the effect of magnetic field on the peristaltic transport of couple 
stress fluid in a channel with different wall properties. Shit and Roy[14] discussed the 
effect of slip velocity on peristaltic transport of a physiological fluid through a porous  
non-uniform channel under the long wave length and  low-Reynolds number 
assumptions. Kothandapani and Srinivas [7] analysed the effect of elasticity of the 
flexible walls on the MHD peristaltic flow of a Newtonian fluid in a two-dimensional 
porous channel with heat transfer under the assumptions of long wavelength and low-
Reynolds number. 
            Gnaneswara et al. [3] studied the effect of thermal radiation and chemical reaction 
on peristaltic MHD slip flow of a couple stress fluid through a porous medium in an 
asymmetric channel. The influence of heat and mass transfer on a peristaltic flow of 
Jeffrey fluid in an inclined asymmetric channel with Hall currents through porous 
medium was analysed by Eldabe et al. [2]. Ravikumar [11] studied the MHD peristaltic 
transportation of a conducting blood flow with porous medium through inclined coaxial 
vertical channel. Hayat et al. [5] analysed the effect of hall current on peristaltic transport 
of couple stress fluid in an inclined asymmetric channel. The theoretical and 
computational study of peristaltic hemodynamic flow of couple stress fluids through a 
porous medium under the influence of magnetic field with slip condition was done by 
Swarnalathamma and Veerakrishna [15]. Govindarajan et al. [4] described the combined 
effect of  Heat and Mass transfer on MHD peristaltic Transport of a couple stress  fluid in 
a inclined asymmetric channel through a porous medium. Veerakrishna and Dharmaiah 
[16] discussed the hall current effect on pulsatile flow of a viscous incompressible fluid 
through a porous medium in a flexible channel under the influence of transverse magnetic 
field. Khalid Nowar [6] has presented the peristaltic flow of an incompressible viscous 
electrically conducting nanofluid in a vertical asymmetric channel through a porous 
medium. 
           The objective of present research is to venture further in the effect of Hall current 
in the peristaltic flow of couple stress fluid in an inclined asymmetric channel. The fluid 
is electrically conducting through an inclined magnetic field. It is to be noted here that the 
role of both slip boundary condition and Hall current [14, 5] on the dynamic fluid have 
not been studied previously and this may be the first to include both the conditions in the 
such study. In the following sections, the problem is formulated and solved.  The 
analytical solutions to the axial velocity, pressure gradient and  pressure rise  are obtained 
using the assumptions of long wave length and low Reynolds number. The numerical 
solutions have been computed using MATHEMATICA  software and presented them 
graphically. 
 
2. Mathematical formulation 
We consider the flow of an incompressible, viscous and electrically conducting couple 
stress fluid flowing through an inclined asymmetric channel under the action of external 
magnetic field. Let ' '

1Y h=   and '
2'Y h=  are upper and lower wall of the channel. The 
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medium is considered to be induced by a sinusoidal wave train propagating with a wave 
speed c along the length of the channel wall (cf. figure 1) such that 

' ' ' ' '
1 1 1

2
( , ) cos[ ( )]h X t d a X ct

π
λ

= + −
             

 (1) 

' ' ' ' '
2 2 2

2
( , ) cos[ ( ) ]h X t d a X ct

π φ
λ

= − − − +               (2) 

where  1d  and 2d  are the mean height of the upper and lower wall of the channel from 

the center line, 1a  and 2a  are the amplitudes of the waves of the channel walls, λ  the 
wave length, (0 )φ φ π≤ ≤  the phase difference between the wave trains of both the walls, 

'X and 'Y are the rectangular co-ordinates with'X measures the axis of the channel and 
'Y the transverse axis perpendicular to 'X . The fluid flow of the channel is exerted by an 

external transverse uniform constant magnetic field of strength 0B  , in which the induced 
magnetic field is neglected because of the low magnetic Reynolds number. 
 

 
Figure 1: Geometry of the problem 

 
Now,  the equations of governing motion for the present problem are as follows: 

' '
0

' '

U V

X Y

∂ ∂+ =
∂ ∂

                                                                                                                    (3) 

22 2 4 4

2 2 4 4 2

'' ' ' ' ' ' '
( ' ' ) ( ) ( ) sin

' ' ' ' ' ' ' (1 )
oB UU U p U U U U

U V g
X Y X X Y X Y m

σρ µ η ρ α∂ ∂ ∂ ∂ ∂ ∂ ∂+ = − + + − + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ +

                    

                                                                                                                                           (4) 
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22 2 4 4

2 2 4 4 2

'' ' ' ' ' '
( ' ' ) ( ) ( ) cos

' ' ' ' ' ' ' (1 )
oB VV V p V V V V

U V g
X Y Y X Y X Y m

σρ µ η ρ α∂ ∂ ∂ ∂ ∂ ∂ ∂+ = − + + − + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ +

                     

                                                                                                                                           (5) 
where ( ', ')U V  are the velocity components in the fixed frame,  µ is the viscosity of fluid, 

η  is the constant associated with couple stress, 'p   the fluid pressure, ρ is the fluid 

density, σ is the electrical conductivity, 0B  is the external magnetic field, α the 

inclination of the channel, g be the acceleration gravity, 0B
m

en

σ=  is the Hall parameter 

(e is the electric charge, n is the number of density of electrons) . Due to the assumption 
of the low magnetic Reynolds number, the induced electric field is neglected. 
     Let us consider a wave frame ( ', ')x y  that moves with the velocity c away from fixed 
frame ( ', ')X Y . Here we use the relation between wave frame and fixed frame as follows: 

' ' , ' ', ' ' , ' 'x X ct y Y u U c v V= − = = − =                                                                                (6) 

Due the time dependence of the channel wall, in the laboratory frame( ', ')X Y  the flow is 
unsteady. Therefore all flow quantities analysed in the wave frame of reference. 
    Let us introduce the following dimensionless variables, 

1 2
1 2

1 2

2
1

1

'( ') '( ')' '
, , ( ) , ( ) ,

'( ')' ' '
, , , ,

h x h xx y
x y h x h x

d d

d p xu v ct
u v p t

c d c c

λ λ
λ

λµ λ

= = = =

= = = =
                                                                  (7) 

Using the transformation (6) and dimensionless equations (7) into governing 
 Equations (3) to (5) becomes 

2 2 4 4 2
2 4

2 2 2 4 4 2

1 ( 1) Re
Re {( 1) } ( ) ( ) sin

(1 )

u u p u u u u H u
u v

x y x x y x y m Fr
δ δ δ α

γ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ++ + = − + + − + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ +

             

                                                                                                        (8) 

2 2 4 4
3 2 2 2 4

2 2 4 4
Re {( 1) } ( ) ( )

v v p v v v v
u v

x y y x y x y
δ δ δ δ γ δ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − + + − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

2
2

2

Re
cos

1

H
v

m Fr

δδ α−
+

                                                                                            (9) 

                         

where 
1Re

cdµ
µ

=  is the Renolds number, δ=  is the wave number, 

1oH B d
σ
µ

=  is the Hartmann number,   
2

1d

ηγ
µ

=  is the couple stress parameter and 
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2

1

c
Fr

gd
=  is the Froude number. 

 Under the assumption of long wave length (λ) that is δ<<1 and low Reynolds number 
Re<<1 (cf.Shapiro[2]), the equations (8) and (9) reduces to 

2 4 2

2 2 4 2

1 ( 1) Re
sin 0

1

p u u H u

x y y m Fr
α

γ
∂ ∂ ∂ +− + − − + =
∂ ∂ ∂ +

                                                            (10) 

0
p

y

∂ =
∂

                             (11) 

 The volumetric flow rate in the fixed frame is given by 

1 '

2 '

'( ', ', ') '
h

h

Q U X Y t dY= ∫                                                                                                      (12) 

where 1 'h  and 2 'h  are functions of X’ and t’. 
The rate of volume flow in the wave frame is found to be 

1 '

2 '

'( ', ') '
h

h

q u x y dy= ∫                                                                                                         (13) 

where 1 'h  and 2 'h  are functions of x’ alone. 
Using transformation ' 'U u c= + in equation (12) and using (13) we have 

1 2( ' ')Q q c h h= + −                (14) 
The time mean flow rate over a period T at a fixed position X’ is defined to be 

1

0

1
'Q Qdt

T
= ∫                 (15) 

 Use equation (14) into equation (15) we have 

1 2'Q q cd cd= + +               (16)  
The non dimensional form of equation (16) will be 

1F dθ = + +                (17) 
where    

2

1 1 1

'
, and .

dQ q
F d

cd cd d
θ = = =                                             

The boundary conditions for the present problem can be written as: 

Slip boundary condition: 1 at y=h ( ),and
u

u x
y

β ∂= −
∂   

2 at y=h ( )
u

u x
y

β ∂= +
∂

 

Vanishing of couple stress:  
2

1 22
0,  at ( ) and ( )

u
y h x y h x

y

∂ = = =
∂

                                                                         (18) 



Nirmala P. Ratchagar, V.Balakrishnan and R. Vasanthakumari 

54 
 

 

Solving equation (10) by using the boundary conditions (18) we have the axial velocity 
“u” is obtained as 

2

2

1 1 2 1 3 2 4 2 2 2

2

Re
sin

1cosh( ) sinh( ) cosh( ) sinh( )

1

H p

Fr m xu c m y c m y c m y c m y
H

m

α

γ

∂− −
+ ∂= + + + +

+

                                

                                                                                                                                         (19) 
where the constants  ( 1  4)ic i to=  in equation (19) can be calculated by simple algebraic 
calculations. 

  Similarly the expression for 
dp

dx
 can be derived from equation (10) and hence the non 

dimensional expression for pressure rise per wave length p∆   can be obtained as,  
1

0

dp
p dx

dx
∆ = ∫   

 
3. Results and discussions 
The analytical solutions for axial velocity, pressure gradient and pressure rise per wave 
length have been discussed in the previous sections. In the present study for numerical 
results, it is necessary to assign the following default physical parameter values and are 
adopted as [3, 12]:  

0φ = ,
4

πα = , 1H = , 3γ = , 1β = , 0.3Fr = , 0.5
dp

dx
= , 1m= , Re 0.71= , 0.5a b= = , 

, 0x = ,. 1d =   
These values kept as common in the entire study except for the varied values as  
displayed in figures 2 to 22. 
 
Pressure rise per wave length ( p∆ ): 
Figures 2 to 8 give the variation in pressure rise per wave length (p∆ ) versus volumetric 

flow rate (θ) for different values of parameters β, γ, Fr, α, H, m. Figure 2 shows the effect 
of  ‘β’ on pressure rise. The pressure rise gradually decreases with increase of volumetric 
flow rate ‘θ’, where as the pressure rise increases with the increase of slip parameter ‘β’. 
The pressure rise increases with the increase of couple stress parameter γ in the pumping 
region ( 0p∆ > ) and decreases in the co-pumping region ( 0p∆ < ). From the figure 3, it is 

observed that the convergence of γ value is obtained at 
 θ = 2. 
             Figure 4 displays the effect of Froude number (Fr) on p∆ . The pressure rise per 
wave length decreases when Fr increases. This happens due to the presence of the term 
Fr in the denominator of equation (10). Thep∆  increases with increase of inclination (α ) 
and  is observed from the figure 5 that there is equal interval of increase for every 

015 inclination. 
           Figure 6 represents the effect of Hartmann number (H) on p∆ . The pressure rise  
per wave length is proportional to H  in the pumping region( 0p∆ > ), and is inversely 
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proportional to the co-pumping region, ie, a negative pumping is observed. It is also 
observed that p∆  decreases with increase of Hall parameter value (m), as shown in the 
figure 7,  at 2θ ≥ .  
           Figure 8 indicates the effect of phase difference (ϕ) on ∆p. The pressure rise per 
wavelength is higher for higher phase difference but when θ approaches higher value the 
role of phase difference on ∆p get decreases. 
 

-1 0 1 2 3
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∆p

θ

 β =0
 β =1.0
 β =2.0

 
Figure 2: Variation in Pressure rise ∆p 
with θ for different values of β.  
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 Figure 3: Variation in Pressure rise ∆p 
with θ for different values of γ.  
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         Figure 4: Variation in Pressure rise      
         ∆p with θ for different values of Fr.  
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        Figure 5: Variation in Pressure rise 
∆p with θ for different values of α. 
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Figure 6: Variation in Pressure rise ∆p 
with θ for different values of H.  
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      Figure 7: Variation in Pressure rise ∆p    
       with θ for different values of m.
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Figure 8: Variation in Pressure rise ∆p with θ for different values of ϕ. 

Pressure gradient (
dp

dx
): 

The variation in pressure gradient ,  along the axial distance over one wave length for 
different values of physical parameters β, γ, Fr, α, H, m are ploted in figure 9 to 15. From 
these figures we note that through the region x ϵ (0.2, 0.8), the channel path is narrowed 
and  the flow cannot pass easily. Therefore it requires more pressure gradient to make it 
as normal flow. In the wider part of the channel x ϵ (0, 0.2) and x ϵ (0.8, 1.0) fluid can 
pass easily because of the lower pressure gradient. Figure 9 shows the effect of slip 
parameter ( β) on pressure gradient. We observe that the value of slip parameter increases 
the magnitude of the axial pressure gradient also increases slightly. The pressure gradient 
also increases with increase of couple stress parameter γ and  is illustrated in figure 10. 
           Figure 11 depicts the effect of Froude number (Fr) on pressure gradient. When 
Froude number increases, the pressure gradient also get increases in the wider region and 
decreases in the narrow region of the channel. Figure 12 presents the effect of pressure 
gradient on inclination (α); no  remarkable change in pressure gradient is  observed with 
change in α.  
            Figure 13 shows the effect of Hartmann number, H (magnetic parameter), on 
pressure gradient. Increase of Hartmann number follows the increase of pressure 
gradient. It shows that when strong magnetic field is applied to the flow field then higher 
pressure gradient is needed to pass the flow. This result suggests that fluid pressure can 
be controlled by the application of suitable magnetic field strength. This phenomenon is 
useful during critical surgery to control excessive bleeding. In figure 14, when the Hall 
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parameter (m) increases, the pressure gradient decreases (positive, at m<3 and negative, 
at m>3). Figure 15 illustrates that a lesser amount of pressure gradient (dp/dx) is required 
to pass the flow through the channel when phase difference (ϕ) increases. 
 

0.0 0.2 0.4 0.6 0.8 1.0

8

12

16

20

dp
/d

x

x

 β = 0
 β = 1.0
 β = 2.0

Figure 9: Variation in Pressure  
gradient dp/dx for different values of β. 
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 Figure 12: Variation in Pressure  
  gradient dp/dx for different values of α.  
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Figure 10: Variation in Pressure  
gradient dp/dx  for different values of γ. 
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Figure 13: Variation in Pressure  
 gradient dp/dx for different values of H. 
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Figure 11: Variation in Pressure gradient 
dp/dx for different values of Fr.  
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Figure 14: Variation in Pressure gradient  
  dp/dx for different values of m. 
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    Figure 15: Variation in Pressure gradient  dp/dx  for different values of ϕ 
 
Velocity profile (u) 
Figures 16 to 22 give the distribution of axial velocity ‘u’ versus height of the channel ‘y’ 
for various parameters. Figure 16 shows the effect of slip parameter (β) on velocity 
profile. The velocity profile increases as slip parameter increases. However from figure 
17, we observe that the velocity profile decreases as couple stress parameter (γ) increases. 
Figure 18 presents the effect of Froude number (Fr) on velocity profile. The velocity 
profile decreases with an increase of Froude number. Figure 19 represents that the 
velocity profile increases as α increases and it is obvious that when the angle of 
inclination of the channel increases the velocity of the fluid increases.  
          Figure 20 shows the effect of Hartmann number (H) on velocity profile. The 
velocity profile decreases as the values of Hartmann number increases, whereas it 
increases with the increasing values of Hall parameter (m) and  is shown in figure 21. 
         From figure 22 we observe that at the lower half of the channel there is a shift in the 
velocity in the reverse direction to the phase value and the shift is found to be 
proportional to the ϕ value. But at the upper half of the channel the effect of phase on 
velocity get decreases and it gets nullified at the upper wall of the channel. It is quite 
interesting to confirm this result with standard fluid dynamics statement that the velocity 
goes on increasing from lower to upper layer of the fluid. 
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Figure 16: Variation in axial velocity for different values of β. 
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Figure 17. Variation in axial velocity for 
different values of γ.  
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Figure 18: Variation in axial velocity for 
different values of Fr.  
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    Figure 19: Variation in axial velocity for  
     different values of α.  
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    Figure 20. Variation in axial velocity for  
    different values of H.  
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    Figure 21: Variation in axial velocity for  
    different values of m.  
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Figure 22: Variation in axial 
velocity for different values of ϕ. 

 
4. Conclusions 
The present study of MHD peristaltic flow of couple stress fluid in an inclined channel 
with Hall effects are taken into account. The main observations of this work are 
summarised as follows: 
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• The pressure rise per wave length ‘∆p’ increases in all pumping regions when slip 
parameter ‘β’ and angle of inclination ‘α’ increases, where as it decreases when 
Froude number ‘Fr’ increases. 

• The pressure rise per wave length ‘∆p’ decreases in the retrograde region and it 
increases in the co-pumping region when the Hall parameter ‘m’ increases. 

• The pressure gradient dp/dx increases in the narrow part of the channel and it 
decreases in the wider part of the channel with increasing values of  β, α and H.

 
 

• The pressure gradient dp/dx decreases when Hall parameter m increases. 
• A lesser amount of pressure gradient (dp/dx) is required to pass the flow through 

the channel when phase difference (ϕ) increases 
• Increased values of slip parameter β, α and m, increases the velocity profile u. 
• Velocity profile decreases when couple stress parameter γ, Fr and Hartmann 

number ‘H’  increases. 
• Our findings on the influence of magnetic parameter (Hartmann number, H) on the 

pressure gradient suggests that the pressure of a fluid such as blood, etc., can be 
controlled by applying suitable magnetic field, which may have a potential 
application in critical surgery for controlling excessive bleeding of blood. 
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