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Abstract. In the present paper we define and investigamaasubclass of complex valued
harmonic starlike functions that are univalent aadse preserving in the open unit disc.
Coefficient bounds, extreme points, distortion kagjrconvolutin conditions and convex
combination are determined for functions in thiassl Further, we obtain the closure
property of this class under integral operator.
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1. Introduction

A continuous complex-valued functioi =u+iv defined in a domainD JC is a
harmonic inD if u and v are real harmonic ifD. We call h the analytic part and
g the co-analytic part off . In any simply connected domain we can write=h+ @,
where g and h are analytic andg denotes the functiorz — g(z) . Clunie and
Sheil-Small [2] pointed out that a necessary arfficgent condition for f to be locally

univalent and sense preservingIh is that |h'(z) |>|g'(z)| in D. Let H denote the
class of complex-valued harmonic functions which anivalent, orientation preserving,
and normalized in the open unit digk ={z:| z|<1} for which f(0)= f,(0)-1=0.

Functions in’H can be written in the formf = h +§ where

h@=2+3a7 . 9@=3b7 IblL &)

We note that the familyH of orientation preserving, normalized harmonicvatent
functions reduces to the well known claSs of normalized univalent functions itf, if

the co-analytic part off is identically zero, that igy = 0.
In [2], Clunie and Sheil-Small investigated thessld{ as well as its geometric
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subclasses and their properties. Since then, tiere been several studies related to the
class ‘H and its subclasses. Following Clunie and SheildBrfi2), Frasin[3],
Subramanian et al [1], Jahangiri et al. [4, 5,16,Sllverman [10], Silverman and Silvia

[11], and others have investigated various subetasfH and its properties.

Definition 1.1. Let k be any positive integer. A domaiP is said to bek -fold

. . . 27 :
symmetric if a rotation ofD about the origin through an anglek— carries D onto

itself. A function f is said to bek -fold symmetric inD if for every z in D we have
27 27
f(ek zj=ek f(2),z0OD.

The family of all k-fold symmetric functions is denoted h§*, and for k = 2
we get the class of odd univalent functions. Thigonoof ( j, k) -symmetrical functions
(k=2,3,..,and j=0,1,2,..,k—-1) is a generalization of the notion of even, odd,
-symmetrical functions and also generalizes thd-kvelwn result that each function
defined on a symmetrical subset can be uniquelyessed as the sum of an even function
and an odd function. The theory 6f,k) -symmetrical functions has many interesting

applications; for instance, in the investigationhaf set of fixed points of mappings, for the
estimation of the absolute value of some integiatsl for obtaining some results of the
type of Cartan’s uniqueness theorem for holomorpfappings, see [9].

Denote the family of all(j,k) -symmetrical functions byS“* . We observe

that, S®?, S and S™ are the classes of even, odd anesymmetric functions
respectively. We have the following decompositioadrem:

Theorem 1. [9] For every mappingf : i/ — C, and ak -fold symmetric set, there exists
exactly one sequence ¢fj, k) -symmetrical functionsf, , such that

k-1
f(2)=>f, (2,
i=0
where

f, (2 :%kig‘“ f (svz), zOU. 2)

v=0
Remark 1.2. Equivalently, (4) may be written as
fix(@=23,8.2" a =1, @3)
n=1

where
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» 1, n=lk+j;
] :EZ:;E(H_”V: 0, nzlk+j;, (4)

(0N, k=1,2,..,j=0,1,2,...k-1).

Definition 1.3. f=h+§ where h and g are given by (1). Let0O< 8<1 and
a=0. Then f SV (a, p) if and only if

a%(argf(ré"))z @f(r )_R{ﬂzh"(z)+m'(z)+az2 g@+@a-1h@)|, ,

J,k(re ) hj,k+gj,k

(5)

where z=re'’,0<r <1,0s6<27 and f,, =h ,+g,, where h, g,, given
by

h' _ 1 k-1 _th v | :i k-1 i v 6
ix(2) ka (€2, 95(2 kZS 9(£"2). (6)
v=0 v=0

2. Main results
We need the following sufficient condition studieg Jahangiri [7].

Theorem2.1. Let f = h+§ with h and g are given by (1) and let

n+ /3
b, <1, 7
n§2 -5 Ian |+ E I S (7)
where 0< £<1. Then f is harmonlc orientation preserving, and univalent/ and

fO0S,(8).

The first theorem of this section determines thiicgent coefficient condition
for function f =h+g belong to the clas§! " (a, B).

Theorem 2.2. Let f =h+g of the form (1) andf, =h,, +g,, with h;, and g,
given by (6) If
= (an*-an+n- /34, ;) = (an*+an-n-f4, ;)
> lay =), b2 ®
n=1 (1_:8)51,1 n=1 (1_13)51,1'

for some 8, (0< B <1) and a =20 then f is harmonic,orientation preserving,and
univalentin/ and f 0SS (a, B).
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Proof:. Since (n—-fB)<an(n-1)+n-£ and (n+B)<an(n+1)+n+ [, (n=1), it
follows from Theorem 7 thatf 0S¥ (a, 8) and hencef is harmonic, orientation
preserving, and univalent ib{. Now, we only need to show that if (8) holds then

2! 1 2 1
R4 N @+ D) +aZ’g"(9+2a-1)Z'() |, 5_ Q{A(z)} . ©
hy+9,, B(2)
Using the fact thatRgw) = £ if and only if |[1- S+w |1+ S —w]|, it suffices to
show that

|A(2) +(1- B)B(2) | -| A(2) - (1+ B)B(z)| 2 0, (10)
where A(z) = az’h"(2) + 2(2) +a2°g" () + (20 -1)zy'(2) and B() =h,, +7,,

Substituting A(z) and B(z) in (10), we obtain

| A(2) +(1- B)B(2) | - | A(2) - (1+ B)B(2)|

= laZ’ti'(2)+ 21(2) + 029" (2) + (20 ~1)a () + (1= A (2) + ;. ()

~|azh(2)+ #1(2)+ 02’9 () + 2a -1 (D~ (1+ AN, (D +8,,(2)

=1+ (1- Aa, )2+ SJann-1)+n+(1- A3, Ja, 2+ S](an(n+1)-n+(1+ A3, b, 7

-l(1-(1+ B3, )2+ (ann-1)+n-(1+ A3, Ja, 2+ S)(anin+1)-n-(1+ A3, T 7

>2(1- §)5,, | 2|~ [an? +an-n+(1- B)3, , +an® —an+n-(1+ £)3, , 1|a, | 2" |
-3 [an? +an-n+(1- B)3, , +an? +an-n—(1+§)3, 1|, |2 |

22(1-f)4,; 1z|-2) (an® -an+n+-433,;) |4, 112" | -2 (an® +an-n- 534, ;) |b, || 2" |
n=2

n=1

@ (an* -an+n- 9. ) = (an*+an-n- 9. )
=>2(1-P)o, | z||1- o - ™2 b,
=A% '{ 2 wps, L was, ™
>0 by@8).
The harmonic function
- (1-B)o, = 1-B)4;
Y A e LU

where

ZIX I+Zlynl 1.

n=2
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The functions of the form (8) are 6" (a, B) because

o (@ -an+n-p3,)  S(@a’ran-n-po,) &S
—|a, |+ =14 ) 1% [+ 1y, =2,
2 wps, A a-pa, 2 Palv2,
12)
If j=k=1 will getthe following result introduced by [8].
Corollary 2.3.
-~ (an(n-1)+n-/) -~ (an(n+1)+n+f)
la, |+ |b, [ 2. (13)
iy ML S cay

for some 5, (0< £ <1) and a =20 then f is harmonic, orientation preserving and
univalentin/ and f OS, (a,B).

We denote bySy " (a,3) the class of functionf [ S (a,B) whose
coefficients satisfy the condition (7).
Theorem 24. Let 0<a,<a, and 0< S <1. Then éﬁj'k)(a’z,ﬂ) O éjgj’k)(al,ﬁ)

Proof: For f Déﬁj’k) (a,, ), it follows from (7) that

 (an*—an+n-po, .  (an*+an-n-p0, .
22( (1_5)5‘,8 ,J)lan|+z( e B ,J)lbnl
n= 1,j n=1 1,
© (a,n’—an+n-p3, )
— | b, |
;L (1- ,3)51,1 (14)
o 2 = BSK
. (a,n” +an-n- S, (a,B)o, ;) b, < 2.

=] (1-5)d,
Hence S (a, B).

Theorem 255. Let f =h+g of the form (1) andf, =h, +g;, with h;, and g;,

given by (6) andf Dgﬁj’k)(a,ﬁ). Then for|z|=r <1, we have

(1_,3)51,1' _20'_1_:851,1' 2
|f(z)|s(1+|Q|)r+{2a_1_% IRy Ty |b1|}r , (15)

_ _ (1—,8)51']. _20'—1—,85“ )
| f(2) 2 (1=, )r {Za_l_% 2a+2_[),521j|loll}r, (16)
where
(1_,3)51,1
Bk e o )
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Proof: Let fDSéJ )(a,,B).Then we have

f@ <@ b+ X (3, 1+1b, D
< @B+ Y (la, [+1, Dr’

(-p)3, [s2a+2-p,; - 20 +2- 33,
S(”'bl')”zmz—ﬂdz,j{; ape, 'L ape, " '}
(1-A4, [eain-1n-3]  eain-D-n-53,1 |,
s(1+|bl|)r+2a+2_%{; s AT |bn|}r
1- ,8511 _20'—1—,85“ 5
S@rln e o {1 a5 |bl|}r
(1-B)3, 2a-1-55,
SRy
and

12 1br =X (3, 1+1b, Dr
> (- Ib)r =Y (la, |+1b, Dr?

(1—,8)5“ il 20'+2—,6’52 > 2a +2- [30. 2. )
= e, {Z epa, =L ape, ™ '}r
1-9)d; | -1)+n-f4,) . -1)-n-/f9,, 2
51] 2 _1_ 51,] 2
2l {1— G |bl|}r
1-3)0, . 2 1- 3o
> (1 [ r ~{ P 270

20-1-B3,, 2a+2- 6,

The upper bound given foff DSH (a,,[>’) is sharp and the equality occurs for the
function

f(z):z+1+|bl|2+{ (1-po, _2a-1-po,

20 -1- 9, | 2a+2- B0,

'|bl|}‘2 (z=r1), (19
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1- .
i. This completes the proof of theorem.

where | b, |<
2a+2-[30,,
if j =k =21 will get the following results proved by [8].

Corollary 2.6. Let f = h+§ of the form (1) andf D§H (a,pB). Thenfor|z|=r <1,

we have
| (@)l 1+ by +{26(¥1+‘f_) PR el |}r2, a9)
|2 (1= Iby —{Zc‘rljf_) PRl |}r2, (20)
where
b s 112

Using definition (5), and according to the argutsegiven in [4] we obtain the

following the extreme points of the closed convexlsh of §:j'k)(a,,b’) denoted by

clcosy ™ (a,D).
Theorem 2.7. Let f =h+@ where g and h are given by (1). Then
= (i k) . .
f OclcoSk  (a, f) if and only if
f(2) =2 (r.h, +1,9,),
n=1

1-8)4, .
where h(2) =z, h(2)=z+— 1= 5, z",(n=2,3,4,...) and
(an _an+n_ﬂ5n,j)
(1_,3)511' = ®
z7)=z+ : z",(n=1,2,3,...), r,+A,)=1,r,20 and
9= 2 gy b 2ot A
A, 20, In particular, the extreme points g.ﬂj’k) (a,p) are{h}and{g,}, andJ,

(22)

given by (3).
Proof. For a function f of the form (22) we have
f(2) =2 (r.h, +A.0,)
n=1

-~ : (1-P)o, - (1-P)9, o
‘nZ:;(T”+A")Z+Z(a§-cm+n—ﬂ5n,j)r"z +;(a§+m_n_ﬁ5ﬁ)/\nz

n=2
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1
N
+

- (1_18)51,1 I (1_18)51,1 n
2@ —anen-a,) " A @ ran-n-go,) "
@ -an+n-p5,)(  a-pa,
n=2 (1_,3)51,1 (ar? _Cm+n_185n,j) "
Lo@ran-n-gs,)(  a-pg,

; (1_,3)51,1' (0’.3 +Cm_n_:35n,j) "
2

Thus f OclcoSy ™ (a, B).

Conversely,
Suppose thatf [J cleoSy™ (a,p)
(@, —an+n-53,))
(1_,5)51,1'
_(as+an-n-f33, )
" (1-p9,
0<r,<1 (n=2,34,..) and0<4 <1 (n=1,2,3,...).

Define 7, =1->"" 1 =>"" A  and note thatr, > 0.

n=2 N n=f N

Setr, = la,| (n=2,3,4,...) and

b, | (n=1,2,3,...) Then by the inequality (7), we have

Thus we obtainf (z) = Z‘::l(rnhn +A,0,) . This completes the proof.

3. Convolution and convex combinations
Definition 3.1. For two harmonic functions

f(2=1,(2=h,(2+9,(D=2+>0, a2 +>0, b7,
n=2 n=1

F(2)=z+)AZ'+> B2,
n=2 n=1
we define their convolution

(F*F)2)=2+34,A8,2 + 24, B2 (23)
n=2 n=1

—k "k ) .
Using this definition, we show that the cIaSs(.J )(a, p) is closed under convolution.

Theorem 3.2. For 0< <1 and a =0, let f,F Déﬁj'k)(a’,ﬂ) . Then

(f*F)0Sy (@, ).
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Proof: We observe thath, <1 and b, <1, For the convolution( f * F), we have

© (an*-an+n-f3, ;) © (an*+an-n-f3, ;)

Z; (1_@51] |Aa, |+ 2. -3, |IBb,| (24
© (an*-an+n-fJ, (an*+an-n=-7, )
Z a-pa, > >, apa, | F

*(5.K)

Therefore (f *F)OSk " (a, f).

=ik : I
Theorem 3.3. The cIassS.gJ )(a' [) is closed under convex combination.

Proof: For i =1,2,3,..., let f, 0sy” )(a,,B) where f.(z) is given by

f(z)—z+z Jamz”+25mbm"‘. (25)

then by (7) we have
= (an’-an+n-pJ, )

|ani |
n=2 (1 - ﬁ)al,j (26)
o 2 -n-
_Z(an +an-n ﬁdn'j)“)m <1,
=} (1-p)o,

for Zzlti ,0<t <1, the convex combination of may be written as

gﬂ —Z+Z(Zt.5n,aﬂJz +Z(Zt. ¥ J (27)

n=2\_i=1 n=1\_i=1

Again by (7) we have

e (an*—an+n-L9, )| (an*—an+n-0, )|, -
y b
Zz (1-P)4, =4 Zl (1-B)4,, Zf ni
e (& (an*-an+n-f0, (@n?-an+n-f3, )
S;t‘(nzz (1-pa, il Zl (1-pB)9,, 15 'J (¢8)

*(1:K)

Therefore Y "t f, OSa'(a, p).

4. Class preserving integral operator
. . . —*(J.k
In this section , we consider the closure propeftyhe cIassS.g] )(a’,,B) under the
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Bernardi integral operatoF (z) , which is defined by

F( )_— j t(c'l’h(t)dt+c 1] tPg()dt (c>-1). (29)

Theorem4.1. Let f =h+@ beinthe classSy” )(a,,b’) where h and g are given

by (1). ThenF(z) defined by (29) also belongs to the cIaSre(?.J )(a' £).

Proof: From the representation d¥ , we have
00 +1
F)=2z+Y =0, +Z—5mbn-” (30)
2 C*tn

Now

i(anz—an+n—ﬁ5n,j)(c+1|a lj
n=2

(1_,5)51,1 c+n
= (an*-an+n-60. )(c+1 o
i vy (“”'b”lj
eyt oain=fa,) g antranon-g5,) by(7).

= (1-5)d, = (1-8)9,

Thus F(2) DSl-(|] !

(a.p).
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