Journal of Mathematics and Informatics Vol. 13, 2018, 65-80 ISSN: 2349-0632 (P), 2349-0640 (online) Published 13 May 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/jmi.v13a7

# Journal of Mathematics and Informatics

# **On θg\*-Closed Sets in Topological Spaces**

P. Sathishmohan, V. Rajendran, L. Chinnapparaj<sup>\*</sup> and K. Radha

Kongunadu Arts and Science College, Coimbatore Tamilnadu, India \*Corresponding author. Email: cj.chinnapparaj@gmail.com

Received 1 April 2018; accepted 30 April 2018

Abstract. In this paper, we have introduce a new class of closed sets in topological spaces called  $\theta$ -generalized star closed set (briefly  $\theta g^*$ -closed set) and study some of its properties. Further we introduce the the concept of  $\theta g^*$ -continuous functions,  $\theta g^*$ -irresolute functions and contra  $\theta g^*$ -continuous functions and study the relationship between other existing functions in topological spaces. Also we investigate the composition of the functions between  $\theta g^*$ -continuous functions and between continuous and contra  $\theta g^*$ -continuous functions and between continuous functions and  $\theta g^*$ -continuous functions. Moreover, we introduce the application of  $\theta g^*$ -closed sets as three spaces namely,  $\theta T_{1/2}^*$  spaces,  $\theta T_{1/2}^*$  spaces,  $\theta T_{1/2}^{**}$  spaces in topological spaces and are analyzed.

*Keywords:*  $\theta g^*$ -closed sets,  $\theta g^*$ -continuous functions,  $\theta g^*$ -irresolute functions, contra  $\theta g^*$ -continuous functions,  $\theta T_{1/2}^*$  space,  $\theta T_{1/2}^*$  -space,  $\theta T_{1/2}^*$  -space.

## AMS Mathematics Subject Classification (2010): 54A05

#### **1. Introduction**

The first step of generalized closed sets introduced by Levine [16] in the year of 1970. Velicko [34] defined two subclasses of closed sets namely,  $\delta$  - closed sets and  $\theta$ - closed sets in 1968. Levine [16], Mashhour et.al. [21] and Njastad [23] introduced semi-open sets, pre-open sets,  $\alpha$  -sets and  $\beta$  -sets respectively. Dontchev, Gnanambal [12] and Palaniappan and Rao [25] are introduced a sets namely gsp -closed sets, gpr -closed sets and rg -closed sets respectively. Veerakumar [33] introduced a new class of sets called  $g^*$ -closed sets, which is properly placed in between the class of closed sets and the class of g -closed sets. Arya and Nour [1] are define a set namely, gs -closed sets in 1990. Dontchev and Ganster were introduced semi-generalized closed sets, generalized semi-closed sets,  $\alpha$ -generalized closed sets, generalized closed sets and respectively.

Dontchev and Maki [8] are introduced  $\theta$ -generalized closed sets in topological spaces. Sarasak and Rajesh [26] introduced by  $\pi$ -generalized semi-pre closed sets. Park

[24] introduced  $\pi gp$ -closed sets in topological spaces. Dontchev, Noiri [7], Quasi Normal spaces and  $\pi g$ -closed sets are introduced. Aslin, Caksu Guler and Noiri [3] introduced  $\pi gs$ -closed sets in topological spaces.

Balachandran, Sundaram and Maki were introduced generalized continuous functions [4] in the year of 1991. Dontchev [9] introduce a contra continuous functions in 1996. Dontchev and Maki are introduced  $\theta g$  - continuous functions [8] in the year of 1999. Fomin [11] introduced  $\theta$ -continuous functions in 1943. Veerakumar [30] introduce a new class of sets called  $g^*$ - continuous functions in topological spaces.

In this paper, we introduce the new class of sets namely,  $\theta g^*$ -closed sets in topological spaces and study some basic properties. Also, we study the application of  ${}_{\theta}T_{1/2}^*$ -space,  ${}_{\theta}T_{1/2}^*$ -space and  ${}_{\theta}^*T_{1/2}^*$ - space. Further, we introduce  $\theta g^*$ -continuous functions and  $\theta g^*$ -irresolute functions and study the relationships of existing functions. Moreover we introduce a new generalization of contra-continuity called contra  $\theta g^*$ -continuous functions.

#### 2. Preliminaries

We recall the following definitions, which are the useful in the sequel.

**Definition 2.1.** A subset A of a space  $(X, \tau)$  is called

- a semi-closed set[16] if  $int(cl(A)) \subseteq A$ .
  - a pre-closed set[21] if  $cl(int(A)) \subseteq A$ .
  - a  $\alpha$  -closed set[18] if  $cl(int(cl(A))) \subseteq A$ .
- a semi-pre closed[2] (=  $\beta$ -closed) if  $int(cl(int(A))) \subseteq A$ .
- a r-closed set[27] if A = cl(int(A)).
- a  $\pi$ -closed set[35] if A is the union of regular closed sets.
- a  $\theta$ -closed set[34] if  $A = cl_{\theta}(A)$ ,

where  $cl_{\theta}(A) = x \in X$ :  $int(cl(U)) \cap A \neq \phi, U \in \tau and x \in Uz$ .

### **Definition 2.2.** A subset A of a space $(X, \tau)$ is called

- a generalized closed [17] (briefly g-closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.
- a semi generalized closed [5] (briefly sg -closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$ and U is semi open in X.
- a generalized semi closed [33] (briefly gs-closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$ and U is open in X.
- a generalized  $\alpha$ -closed [20] (briefly  $g\alpha$ -closed) if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$ and U is  $\alpha$ -open in X.
- a  $\alpha$  generalized closed [18] (briefly  $\alpha g$  -closed) if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$ and U is open in X.

- a regular generalized closed [25] (briefly rg-closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is regular open in X.
- a generalized pre-closed [19] (briefly gp-closed) if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$ and U is open in X.
- a generalized star closed [33] (briefly  $g^*$ -closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$ and U is g -open in X.
- a generalized star semi closed [30] (briefly  $g^*s$ -closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g-open in X.
- a generalized pre-regular closed [12] (briefly gpr-closed) if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is regular open in X.
- a weakly generalized closed [22] (briefly wg-closed) if  $cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.
- a regular weakly generalized closed [22] (briefly rwg-closed) if  $cl(int(A)) \subseteq U$ whenever  $A \subseteq U$  and U is regular open in X.
- a  $\pi$ -generalized closed [7] (briefly  $\pi g$ -closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$ and U is  $\pi$  open in X.
- a  $\pi$ -generalized  $\alpha$  closed [15] (briefly  $\pi g \alpha$ -closed) if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\pi$  open in X.
- a  $\pi$ -generalized  $\beta$ -closed [26] (briefly  $\pi g \beta$ -closed) if  $\beta cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\pi$  open in X.
- a  $\pi$ -generalized pre-closed [24] (briefly  $\pi gp$ -closed) if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\pi$  open in X.
- a  $\pi$ -generalized semi-closed [3] (briefly  $\pi gs$ -closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\pi$  open in X.
- a  $\theta$ -generalized closed [8] (briefly  $\theta g$ -closed) if  $cl_{\theta}(A) \subseteq U$  whenever  $A \subseteq U$ and U is open in X.
- a weakly-closed [28] (briefly w-closed) if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in X.
- a semi weakly generalized-closed[22] (briefly swg -closed) if  $cl(int(A)) \subseteq U$ whenever  $A \subseteq U$  and U is semi-open in X.
- a  $g^{\#}s$  closed [31] (briefly  $g^{\#}s$  closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\alpha g$  -open in X.
- a  $\psi$ -closed [31] (briefly  $\psi$ -closed) if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is sg-open in X.

**Definition 2.3.** A function  $f:(X,\tau) \to (Y,\sigma)$  from a topological space X into a topological space Y is called

- continuous[16] if  $f^{-1}(V)$  is a closed in X for every closed set V of Y.
- r-continuous[27] if  $f^{-1}(V)$  is a r-closed in X for every closed set V of Y.
- $\pi$ -continuous[24] if  $f^{-1}(V)$  is a  $\pi$ -closed in X for every closed set V of Y.
- $\pi gr$  -continuous[14] if  $f^{-1}(V)$  is a  $\pi gr$  -closed in X for every closed set V of Y.
- $\pi g$  -continuous[7] if  $f^{-1}(V)$  is a  $\pi g$  -closed in X for every closed set V of Y.
- $\pi g \beta$  -continuous[19] if  $f^{-1}(V)$  is a  $\pi g \beta$  -closed in X for every closed set V of Y.
- gp-continuous[17] if  $f^{-1}(V)$  is a gp-closed in X for every closed set V of Y.
- gs-continuous[33] if  $f^{-1}(V)$  is a gs-closed in X for every closed set V of Y
- gpr-continuous[12] if  $f^{-1}(V)$  is a gpr-closed in X for every closed set V of Y.
- $\pi gs$ -continuous[3] if  $f^{-1}(V)$  is a  $\pi gs$ -closed in X for every closed set V of Y.

**Definition 2.4.** A function  $f:(X,\tau) \to (Y,\sigma)$  from a topological space X into a topological space Y is called  $g^*$ -irresolute [4] if  $f^{-1}(V)$  is a  $g^*$ -closed in X for every  $g^*$ -closed set V of Y.

**Definition 2.5.** A function  $f:(X,\tau) \to (Y,\sigma)$  from a topological space X into a topological space Y is called contra-continuous [9] if  $f^{-1}(V)$  is a closed in X for every open set V of Y, contra  $\alpha$  - continuous [13] if  $f^{-1}(V)$  is a  $\alpha$ -closed in X for every open set V of Y.

#### **Definition 2.6.** A space $(X, \tau)$ is called a

- 1.  $T_b$ -space[6] if every gs-closed set in it is closed.
- 2.  $T_{1/2}$ -space[10] if every g -closed set in it is closed.
- 3.  $_{\alpha}T_{d}$  -space[18] if every  $\alpha g$  -closed set in it is g -closed.
- 4.  $T_d$ -space[5] if every gs-closed set in it is g-closed.
- 5.  $T_{1/2}^*$ -space[30] if every  $g^*$ -closed set in it is closed.

**Lemma 2.7.** If A and B are subsets of a topological space  $(X, \tau)$ , then  $cl_{\theta}(A \cup B) = cl_{\theta}(A) \cup cl_{\theta}(B)$  and  $cl_{\theta}(A \cap B) = cl_{\theta}(A) \cap cl_{\theta}(B)$ .

### 3. $\theta g^*$ -closed sets

In this chapter, we introduce and study the notion of  $\theta g^*$ -closed sets in topological spaces and obtain some of its basic properties.

**Definition 3.1.** A subset A of a topological space  $(X, \tau)$  is called  $\theta g^*$ - closed set if

 $cl_{\theta}(A) \subseteq U$ , whenever  $A \subseteq U$  and U is g-open in  $(X, \tau)$ .

**Theorem 3.2.** Every r-closed set is  $\theta g^*$ -closed but not conversely. **Proof**: Suppose that A be a r-closed set in X. Let U be a g-open set such that  $A \subseteq U$ . Since A is r-closed, then we have  $rcl(A) = A \subseteq U$ . But,

 $cl_{\theta}(A) \subseteq rcl(A) \subseteq U$ . Therefore  $cl_{\theta}(A) \subseteq U$ . Hence A is a  $\theta g^*$ -closed set.

**Example 3.3.** Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}, r$ -closed=  $\{X, \phi, \{b, c\}, \{a, c\}\}$  and  $\theta g^*$ -closed set=  $\{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}.$ Let  $A = \{a\}$ . Then the subset A is  $\theta g^*$ -closed but not a r-closed set.

**Example 3.4.** Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}\}, \theta g^*$ -closed=  $\{X, \phi, \{c\}, \{b, c\}, \{a, c\}\}, rg$ -closed,  $\pi g$  -closed,  $\pi g \alpha$ -closed,  $\pi g p$ -closed,  $\pi g s$ -closed,  $\pi g \beta$ -closed,  $rg \beta$ -closed, g p r-closed, and  $\alpha g r$ closed set= $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ . Let  $A = \{a\}$ . Then the subset A is rg-closed,  $\pi g$ -closed,  $\pi g \alpha$ -closed,  $\pi g p$ -closed,  $\pi g s$ -closed,  $rg \beta$ -closed, g p r-closed,  $\alpha g r$ -closed but not  $\theta g^*$ -closed.

**Example 3.5.** Let  $X = \{a, b, c\}$ ,  $\tau = \{X, \phi, \{a\}\}$ ,  $\theta g^*$ -closed=  $\{X, \phi, \{b, c\}\}$ , gp and gs-closed=  $\{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ . Let  $A = \{a, b\}$ . Then the subset A is gp-closed and gs-closed but not  $\theta g^*$ -closed.

**Remark 3.6.** The following diagram shows that the relationships of  $\theta g^*$ -closed sets with other known existing sets.



P. Sathishmohan, V. Rajendran, L. Chinnapparaj and K. Radha

 $A \rightarrow B$  represents A implies B but not conversely.

### 4. Properties of $\theta$ -generalized star closed sets

In this section, we discuss the properties of  $\theta$ -generalized star closed sets.

# **Theorem 4.1.** The union of two $\theta g^*$ -closed subsets are $\theta g^*$ -closed.

**Proof:** Let A and B any two  $\theta g^*$ -closed sets in X. Such that  $A \subseteq U$  and  $B \subseteq U$ where U is g-open in X and so  $A \cup B \subseteq U$ . Since A and B are  $\theta g^*$ -closed.  $A \subseteq cl_{\theta}(A)$  and  $B \subseteq cl_{\theta}(B)$  and hence  $A \cup B \subseteq cl_{\theta}(A) \cup cl_{\theta}(B) \subseteq cl_{\theta}(A \cup B)$ . Thus  $A \cup B$  is  $\theta g^*$ -closed set in  $(X, \tau)$ .

**Example 4.2.** Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$  and  $\theta g^*$ -closed =  $\{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ . Let  $A = \{a\}$  and  $B = \{c\}$ , then  $A \cup B = \{a, c\}$  is also  $\theta g^*$ -closed set.

**Theorem 4.3.** The intersection of two  $\theta g^*$ -closed subset are  $\theta g^*$ -closed.

**Proof:** Let A and B any two  $\theta g^*$ -closed sets in X. Such that  $A \subseteq U$  and  $B \subseteq U$ where U is g-open in X and so  $A \cap B \subseteq U$ . Since A and B are  $\theta g^*$ -closed.  $A \subseteq cl_{\theta}(A)$  and  $B \subseteq cl_{\theta}(B)$  and hence  $A \cap B \subseteq cl_{\theta}(A) \cap cl_{\theta}(B) \subseteq cl_{\theta}(A \cap B)$ . Thus  $A \cap B$  is  $\theta g^*$ -closed set in  $(X, \tau)$ .

**Example 4.4.** Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, b\}\}$  and  $\theta g^*$ -closed=

 $\{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}.$  Let  $A = \{a, b\}$  and  $B = \{a, c\}$ , then  $A \cap B = \{a\}$  is also  $\theta g^*$ -closed set.

**Theorem 4.5.** The intersection of a  $\theta g^*$ -closed set and a  $\theta$ -closed set is always  $\theta g^*$ -closed.

**Proof:** Let A be a  $\theta g^*$ -closed set and let F be  $\theta$ -closed. Let U be an open set such that  $A \cap F \subseteq U$ . Set  $G = X \setminus F$ . Then  $A \subseteq U \cup G$ . Since G is  $\theta$ -open,  $U \cup G$  is open and since A is  $\theta g^*$ -closed,  $cl_{\theta}(A) \subseteq U \cup G$ . Now by Lemma [2.4],

$$\begin{split} cl_{\theta}(A \cap F) &\subseteq cl_{\theta}(A) \cap cl_{\theta}(F) \; = \; cl_{\theta}(A) \cap F \\ &\subseteq \; (U \cup G) \cap F = \; (U \cap F) \cup (G \cap F) = \; (U \cap F) \cup \phi \subseteq U \; . \end{split}$$

**Theorem 4.6.** The intersection of a  $\theta g$  -closed set and a  $\theta g^*$ -closed set is always  $\theta g$  -closed.

**Proof:** Let A be a  $\theta$  generalized-closed set and let F be  $\theta g^*$ -closed. Let U be an open set such that  $A \cap F \subseteq U$ . Set  $G = X \setminus F$ . Then  $A \subseteq U \cup G$ . Since G is  $\theta g^*$ -open,  $U \cup G$  is open and since A is  $\theta g$ -closed,  $cl_{\theta}(A) \subseteq U \cup G$ . Now by Lemma [2.4],  $cl_{\theta}(A \cap F) \subseteq cl_{\theta}(A) \cap cl_{\theta}(F) = cl_{\theta}(A) \cap F$  $\subseteq (U \cup G) \cap F = (U \cap F) \cup (G \cap F) = (U \cap F) \cup \phi \subseteq U$ .

**Theorem 4.7.** For any element  $x \in X$ . The set X is  $\theta g^*$ -closed set or g -open. **Proof:** Suppose  $X \setminus \{x\}$  is not g -open, then X is the only g -open set containing  $X \setminus \{x\}$ . This implies  $cl_{\theta}X \setminus \{x\} \subseteq X$ . Hence  $X \setminus \{x\}$  is  $\theta g^*$ -closed or g -open in X.

### 5. Separation axioms of $\theta g^*$ -closed sets

As applications of  $\theta g^*$ -closed sets, three spaces namely,  ${}_{\theta}T_{1/2}^*$  spaces,  ${}^*_{\theta}T_{1/2}^*$  spaces,  ${}^*_{\theta}T_{1/2}^*$  spaces,  ${}^*_{\theta}T_{1/2}^*$  spaces are introduced and investigated.

**Definition 5.1.** A space  $(X, \tau)$  is called

• a  $_{\theta}T_{1/2}^{*}$  space if every  $\theta g^{*}$ -closed set of  $(X, \tau)$  is a closed set.

• a  ${}^*_{\theta}T_{1/2}$  space if every  $\theta g^*$ -closed set of  $(X, \tau)$  is a  $g^*$ -closed set.

• a  $_{\theta}T_{1/2}^{**}$  space if every  $\theta g^{*}$ -closed set of  $(X, \tau)$  is g-closed.

**Theorem 5.2.** Every  $T_b$  space is  ${}_{\theta}T_{1/2}^*$  space but not conversely.

**Proof:** Let  $(X, \tau)$  be a  $T_b$  space. Let A be a  $\theta g^*$ -closed set of  $(X, \tau)$ . Then A is also a gs-closed set. Since  $(X, \tau)$  is a  $T_b$  space, then A is a closed set of  $(X, \tau)$ . Therefore  $(X, \tau)$  is a  ${}_{\theta}T_{1/2}^{*}$  space.

**Example 5.3.** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ . Then the space  $(X, \tau)$  is not a  $T_b$  space. Since  $\{a\}$  is a gs-closed set but not a closed set of  $(X, \tau)$ . However  $(X, \tau)$  is a  ${}_{\theta}T_{1/2}$  \* space.

**Theorem 5.4.** Every  $T_{1/2}$  space is  $T_{1/2}^{*}$  space but not conversely.

**Proof:** Let  $(X,\tau)$  be a  $T_{1/2}$  space. Let A be a  $g^*$ -closed set of  $(X,\tau)$ . Then A is also a g-closed set. Since  $(X,\tau)$  is a  $T_{1/2}$  space, then A is a closed set of  $(X,\tau)$ . Therefore  $(X,\tau)$  is a  $T_{1/2}^*$  space.

**Example 5.5.** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a\}\}$ . Then the space  $(X, \tau)$  is not a  $T_{1/2}$  space. Since  $\{b\}$  is a g-closed set but not a closed set of  $(X, \tau)$ . However  $(X, \tau)$  is not a  $T_{1/2}^{*}$  space.

**Theorem 5.6.** Every  $T_{1/2}$  space is  ${}^*T_{1/2}$  space but not conversely.

**Proof:** Let  $(X,\tau)$  be a  $T_{1/2}$  space. Let A be a g-closed set of  $(X,\tau)$ . Then A is also a g-closed set. Since  $(X,\tau)$  is a  $T_{1/2}$  space, then A is a  $g^*$ -closed set of  $(X,\tau)$ . Therefore  $(X,\tau)$  is a  $^*T_{1/2}$  space.

**Example 5.7.** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{a, c\}\}$ . Then the space  $(X, \tau)$  is not a  $T_{1/2}$  space. Since  $\{a, b\}$  is a g-closed set but not a closed set of  $(X, \tau)$ . However  $(X, \tau)$  is not a  ${}^*T_{1/2}$  space.

**Remark 5.8.** The diagram of Figure 2 shows that the relationship of  ${}_{\theta}T_{1/2}$ \*-space, \*  ${}_{\theta}T_{1/2}$ -space, and  ${}_{\theta}T_{1/2}$ \*\*-space with other known existing sets.



 $A \rightarrow B$  represents A implies B but not conversely.

**Example 5.9.** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ . Then the space  $(X, \tau)$  is not a  ${}_{\theta}T^*_{1/2}$  space. Since  $\{c\}$  is a  $\theta g^*$ -closed set but not a closed set of  $(X, \tau)$ . However  $(X, \tau)$  is a  $T_{1/2}$  space and  $T^*_{1/2}$  space.

**Example 5.10.** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ . Then the space  $(X, \tau)$  is not a  ${}^*_{\theta}T_{1/2}$  space. Since  $\{c\}$  is a  $\theta g^*$ -closed set but not a  $g^*$ -closed set of  $(X, \tau)$ . However  $(X, \tau)$  is a  ${}_{\alpha}T_c$  space.

**Example 5.11.** Let  $X = \{a, b, c\}$  and  $\tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$ . Then the space  $(X, \tau)$  is not a  ${}_{\theta}T_{1/2}$ <sup>\*\*</sup> space. Since  $\{c\}$  is a  $\theta g^*$ -closed set but not a g-closed set of  $(X, \tau)$ . However  $(X, \tau)$  is a  ${}_{\alpha}T_d$  space.

**Theorem 5.12.** A space  $(X, \tau)$  is a  $T_{1/2}$  space if and only if it is  $T_{1/2}$  and  $T_{1/2}^*$ . **Proof: Necessity:** Follows from the Theorems [5.4] and [5.5]. **Sufficiency:** Suppose  $(X, \tau)$  is both  $T_{1/2}^*$  and  $T_{1/2}$ . Let A be a g-closed set of  $(X, \tau)$ . Since  $(X, \tau)$  is  $T_{1/2}$  space, then A is  $g^*$ -closed. Since  $(X, \tau)$  is a  $T_{1/2}^*$  space, then A is a closed set of  $(X, \tau)$ . Thus  $(X, \tau)$  is a  $T_{1/2}$  space.

### 6. $\theta g^*$ -continuous functions and $\theta g^*$ -irresolute functions

This section is devoted to introduce  $\theta g^*$ -continuous functions and  $\theta g^*$ -irresolute functions and discussed the relationships between the other known existing functions.

**Definition 6.1.** A function  $f:(X,\tau) \to (Y,\sigma)$  is called  $\theta g^*$ -continuous if  $f^{-1}(V)$  is a  $\theta g^*$ -closed set of  $(X,\tau)$  for every closed set V of  $(Y,\sigma)$ .

**Theorem 6.2.** For a function  $f:(X,\tau) \to (Y,\sigma)$ , every continuous function is  $\theta g^*$ -continuous but not coversely.

**Proof:** Let f be a continuous function and let V be a closed set in  $(Y, \sigma)$ , then  $f^{-1}(V)$  is closed set in  $(X, \tau)$ . Since every closed set is  $\theta g^*$ -closed set,  $f^{-1}(V)$  is  $\theta g^*$ -closed set in  $(X, \tau)$ . Therefore f is  $\theta g^*$ -continuous.

**Example 6.3.** Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{a\}, \{a, c\}, X\}$  and  $\sigma = \{\phi, \{c\}, Y\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be defined by f(a) = b, f(b) = a, f(c) = c. Then f is  $\theta g^*$ -continuous but not continuous. Since for the closed set  $\{a, b\}$  in Y,

 $f^{-1}(\{a,b\}) = \{a,b\}$  is  $\theta g^*$ -closed but not closed set in  $(X,\tau)$ .

**Theorem 6.4.** For a function  $f: (X, \tau) \to (Y, \sigma)$ , the following hold.

Every  $\theta g^*$ -continuous function is rg-continuous, gpr-continuous, gs-continuous, gp-continuous,  $\pi g$ s-continuous,  $\pi g \beta$ -continuous.

**Proof:** Let f be a  $\theta g^*$ -continuous function and let V be a closed set in  $(Y, \sigma)$ , then  $f^{-1}(V)$  is  $\theta g^*$ -closed set in  $(X, \tau)$ . Since every  $\theta g^*$ -closed set is rg-closed set (gpr-closed, gg-closed, gg-closed,  $\pi g$ -closed,  $\pi gg$ -closed),  $f^{-1}(V)$  is rg-closed (gpr-closed, gg-closed, gg-closed, gg-closed,  $\pi gg$ -closed,  $\pi gg$ -closed) set in  $(X, \tau)$ . Therefore f is rg-continuous (gpr-continuous, gg-continuous, gg-continuous,  $\pi gg$ -continuous).

#### Example 6.5.

1. Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$  and  $\sigma = \{\phi, \{c\}, Y\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be defined by f(a) = b, f(b) = a, f(c) = c. Then f is rg-continuous but not  $\theta g^*$ -continuous. Since for the closed set  $\{a, b\}$  in Y,  $f^{-1}(\{a, b\}) = \{a, b\}$  is rg-closed but not  $\theta g^*$ -closed set in  $(X, \tau)$ .

2. Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$  and  $\sigma = \{\phi, \{b\}, Y\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be defined by f(a) = c, f(b) = b, f(c) = a. Then f is gpr-continuous but not  $\theta g^*$ -continuous. Since for the closed set  $\{a, c\}$  in Y,  $f^{-1}(\{a, c\}) = \{a, c\}$  is gpr-closed but not  $\theta g^*$ -closed set in  $(X, \tau)$ .

3. Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{a\}, \{a, c\}, X\}$  and  $\sigma = \{\phi, Y, \{b\}, \{a, b\}\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be an identity function, then f is gs-continuous but not  $\theta g^*$ -continuous. Since for the closed sets  $\{a, c\}$  and  $\{c\}$  in Y,  $f^{-1}(\{a, c\}) = \{a, c\}$ and  $f^{-1}(\{c\}) = \{c\}$  is gs-closed but not  $\theta g^*$ -closed set in  $(X, \tau)$ .

4. Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{a\}, \{a, b\}, X\}$  and  $\sigma = \{\phi, Y, \{a, c\}\}$ . Let the function  $f : (X, \tau) \to (Y, \sigma)$  be an identity function, then f is gp-continuous but not  $\theta g^*$ -continuous. Since for the closed set  $\{b\}$  in Y,  $f^{-1}(\{b\}) = \{b\}$  is gp-closed but not  $\theta g^*$ -closed set in  $(X, \tau)$ .

5. Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$  and  $\sigma = \{, \{b\}, \{c\}, \{b, c\}, \{a, c\}, Y\}$ . Let the function  $f : (X, \tau) \to (Y, \sigma)$  be an identity function, then f is  $\pi g$ -continuous but not  $\theta g^*$ -continuous. Since for the closed set  $\{\{a, b\}, \{a, c\}, \{a\}, \{b\}\}\$  in  $Y, f^{-1}(\{a, b\}) = \{a, b\}, f^{-1}(\{a, c\}) = \{a, c\},$  $f^{-1}(\{a\}) = \{a\}$  and  $f^{-1}(\{b\}) = \{b\}$  is  $\pi g$ -closed but not  $\theta g^*$ -closed set in  $(X, \tau)$ .

6. Let  $X = Y = \{a, b, c\}$  with  $\tau = \{, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$  and  $\sigma = \{, \{c\}, \{a, c\}, \{b, c\}, Y\}$ . Let the function  $f : (X, \tau) \to (Y, \sigma)$  be defined by f(a) = c, f(b) = b, f(c) = a. Then f is  $\pi$  gs- continuous but not  $\theta g^*$ - continuous. Since for the closed set  $\{a, b\}, \{b\}, \{a\}$  in Y,  $f^{-1}(\{a, b\}) = \{b, c\}, f^{-1}(\{b\}) = \{b\}$  and  $f^{-1}(\{a\}) = \{c\}$ , which is  $\pi$  gs- closed but not  $\theta g^*$ - closed set in  $(X, \tau)$ .

7. Let X=Y= {a,b,c} with  $\tau = \{\phi, \{a\}, \{a,b\}, X\}$  and  $\sigma = \{\phi, \{a\}, \{b,c\}, Y\}$ . Let the function f:(X,  $\tau$ )  $\rightarrow$  (Y, $\sigma$ ) be defined by f(a)= b, f(b)= c, f(c)= a. Then f is  $\pi g \beta$ -continuous but not  $\theta g^*$ - continuous. Since for the closed set {a} and {b,c} in Y, f<sup>-1</sup>({a}) = {c} and f<sup>-1</sup>({b,c}) = {a,b} which is  $\pi g \beta$ - closed but not  $\theta g^*$ - closed set in (X,  $\tau$ ).

**Remark 6.6.** The following diagram shows the relationship of  $\theta g^*$  - continuous with other known existing sets.



 $A \rightarrow B$  represents A implies B but not conversely.

**Definition 6.7.** A function  $f: (X, \tau) \to (Y, \sigma)$  is called  $\theta g^*$ -irresolute if  $f^{-1}(V)$  is a  $\theta g^*$ -closed set of  $(X, \tau)$  for every  $\theta g^*$ -closed set of  $(Y, \sigma)$ .

**Theorem 6.8.** For a function  $f: (X, \tau) \to (Y, \sigma)$ , every  $\theta g^*$ -irresolute function is  $\theta g^*$ -continuous but not conversely.

**Proof:** Let V be a closed set in  $(Y, \sigma)$ . Since every closed set is  $\theta g^*$ -closed set. Therefore V is  $\theta g^*$ -closed set of Y. Since f is  $\theta g^*$ - irresolute, then  $f^{-1}(V)$  is  $\theta g^*$ -closed set in X. Thus f is  $\theta g^*$ -continuous.

**Example 6.9.** Let  $X = Y = \{a, b, c\}$  with  $\tau = \{\phi, \{c\}, X\}, \theta g^* = \{\phi, \{a, b\}, X\}, \theta g^* = \{\phi, \{a,$ 

 $\boldsymbol{\sigma} = \{ \phi, \{a\}, \{b,c\}, X\} \text{ and } \theta g^* = \{ \phi, \{a\}, \{b,c\}, Y\}. \text{ Define a function } f(a) = a, f(b) = b, \text{ and } f(c) = c \text{ then } f^{-1}(\{a\}) = \{a\}, f^{-1}(\{b,c\}) = \{b,c\} \text{ which is not } \theta g^* \text{ - irresolute. Since it is } \theta g^* \text{ - closed set of } Y \text{ but the inverse is not } a \theta g^* \text{ - closed set of } X. \text{ But it is } \theta g^* \text{ - continuous.}$ 

**Theorem 6.10.** Let a function  $f:(X,\tau) \to (Y,\sigma)$  be a  $\theta g^*$ - continuous function. If  $(X, \tau)$  is  $_{\theta} T_{1/2}^*$ - space, then f is continuous function.

**Proof:** Let V be a closed set in  $(Y, \sigma)$ . Since f is  $\theta g^*$ -continuous,  $f^{-1}(V)$  is  $\theta g^*$ - closed in  $(X, \tau)$ . Since  $(X, \tau)$  is  ${}_{\theta} T_{1/2}^{*}$ ,  $f^{-1}(V)$  is closed in  $(X, \tau)$ . Therefore f is continuous.

**Remark 6.11.** The composition of two  $\theta g^*$  - continuous functions need not be  $\theta g^*$  - continuous as shown in the following example.

**Example 6.12.** Let  $X=Y=Z=\{a,b,c\}$  with  $\tau = \{\phi,\{a\},\{a,b\},X\}, \sigma = \{\phi,\{b\},\{b,c\},Y\}$  and  $\eta = \{\phi,\{c\},\{a,b\},Z\}$ . Define  $f:(X,\tau) \to (Y,\sigma)$  by f(a)=a, f(b)=b, f(c)=c. Define  $g:(Y, \sigma) \to (Z, \eta)$  by g(a)=b, g(b)=a, g(c)=c. Then  $\theta g^*C(X, \tau) = \{\phi,X,\{c\},\{b,c\},\{a,c\}\}$  and  $\theta g^*C(Y, \sigma) = \{\phi,Y,\{a\},\{a,b\},\{a,c\}\}$ . Here  $\{a,b\}$  is a closed set in  $(Z, \eta)$ . But  $(g \circ f)^{-1}(\{a,b\}) = \{a,b\}$  is not a  $\theta g^*$  - closed set in  $(X, \tau)$ . Therefore  $g \circ f$  is not  $\theta g^*$  - continuous.

## 7. Contra $\theta g^*$ -continuous functions

In this section, we introduce a new class of continuous function called contra  $\theta g^*$ -continuous functions and studied the composition between  $\theta g^*$ -continuous functions and  $\theta g^*$ -irresolute functions.

**Definition 7.1.** A function  $f:(X,\tau) \to (Y,\sigma)$  is said to be contra  $\theta g^*$  - continuous if  $f^{-1}(V)$  is  $\theta g^*$  - closed set in X for every open set V in Y.

**Theorem 7.2.** For the function  $f: (X, \tau) \to (Y, \sigma)$ , the following hold.

**[a]** Every contra r-continuous function is contra  $\theta g^*$ -continuous.

**[b]** Every contra  $\theta g^*$ -continuous function is contra rg-continuous (contra gpr-continuous, contra gs-continuous, contra gp-continuous, contra  $\pi$  g-continuous, contra  $\pi$  g $\beta$ -continuous).

**Proof:** [a] Suppose we take V be an open set in Y. Since f is contra r-continuous, then  $f^{-1}$  (V) is r-closed in X. Since every r- closed set is  $\theta g^*$  - closed,  $f^{-1}(V)$  is  $\theta g^*$  - closed in X. Thus we have f is contra  $\theta g^*$  - continuous.

**[b]** Suppose we take V be an open set in Y. Since f is contra  $\theta g^*$ - continuous, then f<sup>-1</sup>(V) is  $\theta g^*$ - closed in X. Since every  $\theta g^*$ - closed set is rg- closed (gpr-closed,gs-closed,gp-closed,  $\pi$  gs-closed,  $\pi$  g  $\beta$ -closed), f<sup>-1</sup>(V) is rg-closed (gpr-closed,gs- closed,gp-closed,  $\pi$  gs-closed,  $\pi$  gs-closed,  $\pi$  g  $\beta$ -closed) in X. Thus we have f is contra rg-continuous (contra gpr-continuous, contra gs-continuous, contra  $\pi$  gs-continuous, contra  $\pi$  gs-continuous).

#### Example 7.3.

**[a]** Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$  and  $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b,c\}\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be the identity function. Then f is contra  $\theta g^*$  - continuous but not in contra r-continuous. Since for the open set {c} in Y,  $f^{-1}(\{c\}) = \{c\}$  is  $\theta g^*$  - closed but not a r- closed set in (X,  $\tau$ ).

**[b]** Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{c\}, \{b,c\}\}$  and  $\sigma = \{Y, \phi, \{b,c\}\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be the identity function. Then f is contra rg- continuous but not in contra  $\theta g^*$ -continuous. Since for the open set {b,c} in Y, f<sup>-1</sup>({b,c})={b,c} is rg- closed but not  $\theta g^*$ - closed set in (X,  $\tau$ ).

[c] Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{a\}, \{a,b\}\}$  and  $\sigma = \{Y, \phi, \{b\}, \{a,b\}\}$ . Let the function  $f : (X, \tau) \to (Y, \sigma)$ . Define a set f(a)=b, f(b)=a, f(c)=c. Then  $f^{-1}(\{b\})=\{a\}$  and  $f^{-1}(\{a,b\})=\{a,b\}$  which is contra gpr - continuous but not in contra  $\theta g^*$ -continuous. However f is contra gpr- continuous.

[d] Let X= {a,b,c} =Y with  $\tau = {X, \phi, {a}}$  and  $\sigma = {Y, \phi, {a}, {a,b}}$ . Let the function  $f : (X, \tau) \to (Y, \sigma)$ . Defined by the set f(a)=b, f(b)=a, f(c)=c. Then  $f^{-1}({a})={b}$ ,  $f^{-1}({a,b})={a,b}$ , which is contra gs - continuous but not in contra  $\theta g^*$ -continuous. However f is contra gs- continuous.

[e] Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{c\}, \{b,c\}\}$  and  $\sigma = \{Y, \phi, \{b\}\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be the identity function. Then f is contra gp - continuous but not in contra  $\theta g^*$  - continuous. Since for the open set {b} in Y, f<sup>-1</sup>({b})={b} is gp - closed but not  $\theta g^*$  - closed set in (X,  $\tau$ ).

[f] Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{c\}, \{b,c\}\}$  and  $\sigma = \{Y, \phi, \{b\}, \{b,c\}\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be the identity function. Then f is contra  $\pi$  g - continuous but not in contra  $\theta g^*$ -continuous. Since for the open sets {b} and {b,c} in Y, f<sup>-1</sup>

 $(\{b\})=\{b\}$  and  $f^{-1}(\{b,c\})=\{b,c\}$  which is  $\pi$  g- closed but not  $\theta g^*$ - closed set in  $(X,_{\tau})$ .

**[g]** Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{b\}, \{c\}, \{b,c\}\}\)$  and  $\sigma = \{Y, \phi, \{b\}\}\)$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be the identity function. Then f is contra  $\pi$  gs - continuous but not in contra  $\theta g^*$ -continuous. Since for the open set {b} in Y, f<sup>-1</sup>({b})={b} is  $\pi$  gs-closed but not  $\theta g^*$ - closed set in (X,  $\tau$ ).

**[h]** Let X= {a,b,c} =Y with  $\tau = \{X, \phi, \{a\}, \{b\}, \{a,c\}\}$  and  $\sigma = \{Y, \phi, \{a\}\}$ . Let the function  $f: (X, \tau) \to (Y, \sigma)$  be the identity function. Then f is contra  $\pi \neq \beta$  - continuous but not in contra  $\theta g^*$ -continuous. Since for the open sets {a} in Y, f<sup>-1</sup> ({a})={a} is  $\pi \neq \beta$  - closed but not  $\theta g^*$ - closed set in (X,  $\tau$ ).

**Theorem 7.4.** Let  $f:(X,\tau) \to (Y,\sigma)$  be a contra  $\theta g^*$  - continuous function and  $g:(Y, \sigma) \to (Z, \eta)$  be a continuous function then gof:  $(X, \tau) \to (Z, \eta)$  is contra  $\theta g^*$  - continuous.

**Proof:** Let V be any open set in Z. Since g:(Y,  $\sigma$ )  $\rightarrow$  (Z,  $\eta$ ) be a continuous, g<sup>-1</sup>(V) is open in Y. Since  $f:(X,\tau) \rightarrow (Y,\sigma)$  be a contra  $\theta g^*$ - continuous, f<sup>-1</sup>(g<sup>-1</sup>(V)) is a  $\theta g^*$ - closed set in X. Hence (gof)<sup>-1</sup>(V)=f<sup>-1</sup>(g<sup>-1</sup>(V)) is a  $\theta g^*$ - closed set in X. Therefore gof: (X,  $\tau$ )  $\rightarrow$  (Z,  $\eta$ ) is contra  $\theta g^*$ - continuous.

**Theorem 7.5.** Let  $f:(X,\tau) \to (Y,\sigma)$  be a  $\theta g^*$  -irresolute and  $g:(Y, \sigma) \to (Z, \eta)$  be a contra  $\theta g^*$ - continuous function then gof:  $(X, \tau) \to (Z, \eta)$  is contra  $\theta g^*$ - continuous.

**Proof:** Now we take V be any open set in Z. Since g:(Y,  $\sigma$ )  $\rightarrow$  (Z,  $\eta$ ) be a contra  $\theta g^*$ -continuous, g<sup>-1</sup> (V) is  $\theta g^*$ - closed in Y. Since  $f:(X,\tau) \rightarrow (Y,\sigma)$  be a  $\theta g^*$ -irresolute, f<sup>-1</sup>(g<sup>-1</sup>(V)) is a  $\theta g^*$ - open set in X. Therefore gof: (X,  $\tau$ )  $\rightarrow$  (Z,  $\eta$ ) is contra  $\theta g^*$ - continuous.

#### 8. Conclusion

In this paper, a new class of sets called  $\theta g^*$ - closed sets has been introduced and some of its properties has been studied. Based on this sets, some of the functions called  $\theta g^*$ - continuous functions,  $\theta g^*$ - irresolute functions and contra  $\theta g^*$ -continuous functions are also introduced in the topological spaces and some of its properties has been studied. Further, the application of  $\theta g^*$ -closed sets has been introduced interms of spaces namely,  $_{\theta}T_{1/2}^*$ - spaces and investigated its properties.

#### REFERENCES

- 1. S.P.Arya and T.M.Nour, Characterization of s-normal spaces, *Indian J. Pure Appl. Math.*, 21(8) (1990) 717-719.
- 2. D.Andrijevic, Semi pre-open sets, Mat. Vesnik, 38(1) (1986) 24-32.
- 3. G.Aslim and A.Caksu Guler, Noiri On  $\pi$  gs- closed sets in topological spaces, *Acta*. *Math. Hunger.*, 112(4) (2006) 275-283.
- 4. K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Kochi Univ. Ser. A, Math.*, 12 (1991) 5-13.
- 5. P.Bhathacharyya and B.K.Lahiri, Semi generalized closed sets in topological spaces, *Indian J.Pure Apple.Math.*, 29 (1987) 376-382.
- 6. R.Devi, H.Maki and K.Balachanran, Semi generalized homeomorphisms and generalized semi homeomorphisms, *Indian J. Pure. Appl. Math.*, 26(3) (1995) 271 -284.
- 7. J.Dontchev and T.Noiri, Quasi normal spaces and  $\pi g$  -closed sets, *Acta Math. Hungar.*, 89(3) (2000) 211-219.
- 8. J.Dontchev and H.Maki, On  $\theta$ -generalized closed sets, *Int.J. Math. Math. Sci.* 22 (1999) 239-249.
- 9. J.Dontchev, Contra-continuous functions and strongly s- closed spaces, *International Journal of Mathematical Sciences*, 19(2) (1996) 303-310.
- 10. W.Dunham, T<sub>1/2</sub> space, Kyungpook Math.J., 17 (1977) 161-169.
- 11. S.V.Fomin, Extensions of topological spaces, Ann. of Maths., 44 (1943) 471-480.
- 12. Y.Gnanambal, On generalized pr-closed sets in topological spaces, *Indian. J. Pure Appl. Math.*, 28 (1997) 351-360.
- 13. S.Jafari and T.Noiri, Contra-  $\alpha$  -continuous functions between topological space, *Iranian International Journal of Science*, 2(2) (2001) 153-167.
- 14. V.Jeyanthi and C.Janaki,  $\pi$  gr- closed sets in topological spaces, Asian Journal of Current Engg. Math., 1 (2012) 241-246.
- 15. C.Janaki, Studies on  $\pi g \alpha$  closed sets in topological spaces, Ph.D Thesis, Bharathiar University, Cbe (2009).
- 16. N.Levine, Semi-open and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1963) 36-41.
- 17. N.Levine, Generalized closed sets in topological spaces, *Rend. Circ. Mat. Patermo*, 2 (19) (1970) 89-96.
- 18. H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized  $\alpha$ -closed sets and  $\alpha$ -generalized closed sets, *Mem. Fac. Sci. Kochi Univ. Ser. A. Math.*, 15 (1994) 51-63.
- H.Maki, J.Umehara and T.Noiri, Every topological space is pre-T<sub>1/2</sub>, Mem. Fac.Sci. Kochi Univ. Ser. A. Math., 17 (1996) 33-42.
- 20. H.Maki, R.Devi and K.Balachandran, Generalized  $\alpha$ -closed sets in topology, *Bull Fukuoka Univ. Ed.*, 42 (1993) 13-21.
- 21. A.S.Mashhour, M.E.Abd, El.Monsef and S.N.E.Deebl, On pre continuous and weak pre continuous mappings, *Proc. Math. and Phys. Soc. Egypt*, 53 (1982) 47-53.
- 22. N.Nagaveni, Studies on generalized homeomorphisms in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.

- 23. O.Njastad, Some classes of nearly open sets, Pacific J. Math., 15 (1965) 961-970.
- 24. J.H.Park, On  $\pi$  gp-closed sets in topological spaces, *Indian J. Pure Appl. Math*, 2004.
- 25. N.Palaniappan and K.C.Rao, Regular generalized-closed sets, *Kyung-pook Math. J.*, 33 (1993) 211-219.
- 26. M.S.Sarasak and N.Rajesh,  $\pi$  -Generalized semi-preclosed sets, International *Mathematical Forum*, 5 (2010) 473-478.
- 27. M.Stone, Application of the theory of boolean rings to general topology, *Trans. Amer. Math. Soc.*, 41 (1937) 374-481.
- 28. M.Sheikjohn, w- closed sets in topology, Acta Ciencia Indica, 4 (2000) 389-392.
- 29. M.K.R.S.Veerakumar, Semi-closed sets and semi-pre-closed sets, *Rend. Intit. Mat. Univ. Trieste*, XXXII (2000) 25-41.
- 30. M.K.R.S.Veerakumar, g<sup>\*</sup>-semi-closed sets in topology, *Acta Ciencia India*, 29M(1) (2003) 81-90.
- 31. M.K.R.S.Veerakumar, g<sup>#</sup>-semi-closed sets in topology, *Indian J. Math.*, 44(1) (2002) 73-87.
- 32. M.K.R.S.Veerakumar, Between closed sets and g- closed sets, *Mem. Fac.Sci. Kochi* Univ. (Math.) 21 (2000) 1-19.
- 33. M.K.R.S.Veerakumar, gs- closed sets in topological spaces, *Kochi University Series A*, 21 (2000)1-19.
- 34. N.V.Velicko, H-closed topological spaces, *Trans. Aner. Math. Soc.*, 78 (1968) 103-118.
- 35. Zaitsev, On certain classes of topological spaces and their bicomactifications, *Donkl. Akad. Nauk. SSSR.*, 178 (1968) 778-779.