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Abstract. We introduce the reduced second hyper-Zagreb index of a graph. Considering 
this index, we define the reduced second hyper-Zagreb polynomial of a graph. Also we 
define the reduced second Zagreb polynomial of a graph. In this paper, we compute the 
reduced second hyper-Zagreb index and its polynomial of certain families of networks 
such as silicate and chain silicate networks. Also we determine the reduced second 
Zagreb polynomial of certain silicate networks. 
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1. Introduction 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The 
degree dG(v) of a vertex v is the number of vertices adjacent to v. We refer [1], for other 
undefined notations and terminologies. 

A molecular graph is a graph such that its vertices correspond to the atoms and 
edges to the bonds. Chemical Graph Theory is a branch of mathematical chemistry, 
which has an important effect on the development of Chemical Sciences. Several 
topological indices have been considered in Theoretical Chemistry and have found some 
applications. 

Recently Furtula et al. proposed the reduced second Zagreb index, defined as [2] 

 ( ) ( )( ) ( )( )
( )

2 1 1 .G G
uv E G

RM G d u d v
∈

= − −∑                          (1) 

Recently, some new reduced indices were studied, for example, in [3, 4, 5, 6, 7]. 
 Considering the reduced second Zagreb index, we introduce the reduced second 
Zagreb polynomial of a graph G as 

 ( ) ( )( ) ( )( )

( )

1 1
2 , .G Gd u d v

uv E G

RM G x x − −

∈

= ∑                           (2) 

We now introduce the reduced second hyper-Zagreb index of a graph G, defined 
as, 
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( ) ( )( ) ( )( )
( )

2

2 1 1 .G G
uv E G

RHM G d u d v
∈

 = − − ∑                          (3) 

Considering the reduced second hyper-Zagreb index, we introduce the reduced 
second hyper-Zagreb polynomial of a graph G as 

 ( ) ( )( ) ( )( )

( )

2
1 1

2 , .G Gd u d v

uv E G

RHM G x x
 − − 

∈
= ∑                           (4) 

 Recently, some new topological indices were studied, for example, in [8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Also some new polynomials were 
studied, for example, in [ 24, 25, 26 27, 28, 29, 30, 31]. 
 In this paper, the reduced second Zagreb polynomial, reduced second hyper-
Zagreb index and its polynomial of silicate and chain silicate networks are computed. For 
more information about silicate networks see [32]. 
 
2. Results for silicate networks 
Silicate networks are obtained by fusing metal oxide or metal carbonates with sand. A 
silicate network is symbolized by SLn, where n is the number of hexagons between the 
center and boundary of SLn. A silicate network of dimension two is shown in Figure 1. 

 

 
Figure 1: Silicate network of dimension two 

 
 Let G be the graph of a silicate network SLn with |V(SLn)|=15n2+3n and 
|E(SLn)|=36n2. By algebraic method, there are three types of edges in G based on the 
degree of end vertices of each edge as in Table 1. 
  

dG(u), dG(v)\ uv � E(G) (3, 3) (3, 6) (6, 6) 
Number of edges 6n 18n2 + 6n 18n2 – 12n 

Table 1: Edge partition of SLn 
 

Theorem 1. The reduced second Zagreb index and its polynomial of a silicate network 
SLn are 
(i) RM2(SLn) = 630n2 + 216n. 
(ii) RM2(SLn, x) = 6nx4 + (18n2+6n)x10 + (18n2 – 12n)x25 . 
Proof: Let G = SLn be the graph of a silicate network.  



Reduced Second Hyper-Zagreb Index and its Polynomial of Certain Silicate Networks 

13 

 

(i) By using equation (1) and Table 1, we obtain 
 ( ) ( )( ) ( )( )

( )
2 1 1n G G

uv E G

RM SL d u d v
∈

= − −∑  

  = (3–1)(3–1)6n + (3–1)(6–1)(18n2+6n) + (6–1)(6–1)(18n2 – 12n) 
  = 630n2 – 216n. 
(ii) By using equation (2) and Table 1, we obtain 

 ( ) ( )( ) ( )( )

( )

1 1
2 , G Gd u d v

n
uv E G

RM SL x x − −

∈

= ∑  

  = 6nx(3–1)(3–1) + (18n2+6n)x(3–1)(6–1) + (18n2 – 12n)x(6–1)(6–1) 
  = 6nx4 + (18n2+6n)x10 + (18n2 – 12n)x25. 

Theorem 2. The reduced second hyper-Zagreb index and its polynomial of a silicate 
network SLn are 
(i) RHM2(SLn) = 13050n2 – 6804n. 
(ii) RHM2(SLn, x) = 6nx16 + (18n2+6n)x100 + (18n2 – 12n)x625 . 
Proof: Let G = SLn be the graph of a silicate network.  
(i) By using equation (3) and Table 1, we obtain 

 ( ) ( )( ) ( )( )
( )

2

2 1 1n G G
uv E G

RHM SL d u d v
∈

 = − − ∑  

  =[(3–1)(3–1)]26n+[(3–1)(6–1)]2(18n2+6n)+[(6–1)(6–1)]2(18n2–12n) 
  = 13050n2 – 6804n. 
(ii) By using equation (4) and Table 1, we obtain 

 ( ) ( )( ) ( )( )

( )

2
1 1

2 , G Gd u d v

n
uv E G

RHM SL x x
 − − 

∈
= ∑  

  ( )( )[ ] ( ) ( )( )[ ] ( ) ( )( )[ ]2 2 2
3 1 3 1 2 3 1 6 1 2 6 1 6 16 18 6 18 12− − − − − −= + + + −nx n n x n n x  

  = 6nx16 + (18n2+6n)x100 + (18n2 – 12n)x625. 

3. Results for chain silicate networks 
We now consider a family of chain silicate networks. This network is symbolized by CSn 
and is obtained by arranging n tetrahedral linearly, see Figure 2. 

 
Figure 2: Chain silicate network 

 Let G be the graph of chain silicate network CSn with |V(CSn)|=3n+1 and 
|E(CSn)|=6n. By algebraic method, CSn, n�2, there are three types of edges based on the 
degree of end vertices of each edge as in Table 2. 
 

dG(u), dG(v)\ uv � E(G) (3, 3) (3, 6) (6, 6) 
Number of edges n + 4 4n – 2 n – 2 

Table 2: Edge partition of CSn 
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Theorem 3. The reduced second Zagreb index and its polynomial of a chain silicate 
network CSn are 
(i) RM2(CSn) = 69n – 54. 
(ii) RM2(CSn, x) = (n+4)x4 + (4n – 2)x10 + (n – 2)x25 . 
Proof: Let G = CSn be the graph of chain silicate network.  
(i) By using equation (1) and Table 2, we deduce 
 ( ) ( )( ) ( )( )

( )
2 1 1n G G

uv E G

RM CS d u d v
∈

= − −∑  

  = (3–1)(3–1)(n+4)+(3–1)(6–1)(4n – 2) + (6–1)(6–1) (n – 2) 
  = 69n – 54. 
(ii) By using equation (2) and Table 2, we deduce 

 ( ) ( )( ) ( )( )

( )

1 1
2 , G Gd u d v

n
uv E G

RM CS x x − −

∈

= ∑  

  = (n+4)x(3–1)(3–1) + (4n – 2)x(3–1)(6–1) + (n – 2)x(6–1)(6–1) 
  = (n+4)x4 + (4n – 2)x10 + (n – 2)x25. 
 
Theorem 4. The reduced second hyper-Zagreb index and its polynomial of a chain 
silicate network CSn are 
(i) RHM2(CSn) = 1041n – 1386. 
(ii) RHM2(CSn, x) = (n+4)x16 + (4n – 2)x100 + (n – 2)x625. 
Proof: Let G = CSn be the graph of chain silicate network.  
(i) By using equation (3) and Table 2, we deduce 

 ( ) ( )( ) ( )( )
( )

2

2 1 1n G G
uv E G

RHM CS d u d v
∈

 = − − ∑  

  =[(3–1)(3–1)]2(n+4)+[(3–1)(6–1)]2(4n–2)+[(6–1)(6–1)]2(n–2) 
  = 1041n – 1386 
(ii) By using equation (4) and Table 2, we deduce 

 ( ) ( )( ) ( )( )

( )

2
1 1

2 , G Gd u d v

n
uv E G

RHM CS x x
 − − 

∈
= ∑  

  ( ) ( )( )[ ] ( ) ( )( )[ ] ( ) ( )( )[ ]2 2 2
3 1 3 1 3 1 6 1 6 1 6 14 4 2 2− − − − − −= + + − + −n x n x n x  

 = (n+4)x16 + (4n – 2)x100 + (4n – 2)x625. 
 
4. Conclusion 
In this paper, the explicit formulas for the reduced hyper-Zagreb index and its polynomial 
of silicate and chain silicate networks are computed. These expressions can correlate the 
molecular structure of silicate and chain silicate networks to information about their 
physical structures. 
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