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Abstract. We introduce the reduced second hyper-Zagreb inflexgraph. Considering
this index, we define the reduced second hyperetagolynomial of a graph. Also we
define the reduced second Zagreb polynomial ofaplgrin this paper, we compute the
reduced second hyper-Zagreb index and its polyrioofiaertain families of networks
such as silicate and chain silicate networks. Also determine the reduced second
Zagreb polynomial of certain silicate networks.
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1. Introduction

Let G be a finite, simple, connected graph with verteik\§G) and edge sdf(G). The
degreedg(v) of a vertexv is the number of vertices adjacenwtdNe refer [1], for other
undefined notations and terminologies.

A molecular graph is a graph such that its vertio@sespond to the atoms and
edges to the bonds. Chemical Graph Theory is achraf mathematical chemistry,
which has an important effect on the developmentCbemical Sciences. Several
topological indices have been considered in Thamle€Chemistry and have found some
applications.

Recently Furtula et al. proposed the reduced segagteb index, defined as [2]

RM, (G)= > (dg(u)-1)(ds(v)-1). 1)

WE(G)
Recently, some new reduced indices were studieagx@ample, in [3, 4, 5, 6, 7].

Considering the reduced second Zagreb index, wedunce the reduced second
Zagreb polynomial of a graph as

RM. (G, x) = X(de(u)‘l)(de(v)‘l). 2

2(G.x) WD;(G) €

We now introduce the reduced second hyper-Zagrdxiof a graplG, defined

as,
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2
RHM, (G) = Z;, )[(de (u)-1)(de (v) -1 ] . ®3)
uwlE(G
Considering the reduced second hyper-Zagreb indexintroduce the reduced
second hyper-Zagreb polynomial of a gr&hs

_ [(ds (u)-2)(do (v)-1)
RHM, (G, x) = X . 4
2(G.%) WD;(G) 4)

Recently, some new topological indices were stidier example, in [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2Bo some new polynomials were
studied, for example, in [ 24, 25, 26 27, 28, 29, 3lL].

In this paper, the reduced second Zagreb polyripmeéduced second hyper-
Zagreb index and its polynomial of silicate andictsdlicate networks are computed. For
more information about silicate networks see [32].

2. Resultsfor silicate networks

Silicate networks are obtained by fusing metal exid metal carbonates with sand. A
silicate network is symbolized I8L,, wheren is the number of hexagons between the
center and boundary &,. A silicate network of dimension two is shown iigée 1.

Figure 1. Silicate network of dimension two

Let G be the graph of a silicate netwod, with M(SL,))|=157°+3n and
|E(SL,)|=367. By algebraic method, there are three types okgdgG based on the
degree of end vertices of each edge as in Table 1.

do(u), de(W\ uv T E(G) (3,3 (3, 6) (6, 6)
Number of edge 6n 18n° + 6n 18n°—12n
Table 1. Edge partition o8,

Theorem 1. The reduced second Zagreb index and its polynodfial silicate network
9, are
(i) RM,(SL,) = 6307 + 2160,
(ii) RM,(SLn, X) = 6nx* + (187+6n)x°+ (18n°— 1n)x*>.
Proof: Let G = 9.,be the graph of a silicate network.
12
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® By using equation (1) and Table 1, we obtain

RM,(SL,)= > (ds(u)-1)(ds (v)-1)
wiE(G)
= (3-1)(3-1)6 + (3—1)(6-1)(18%+6n) + (6—1)(6—1)(18% — 1)
= 6307 — 2160,
(i) By using equation (2) and Table 1, we obtain
RM, (9L ,x)= X(dc(u)‘l)(de(v)‘l)
2( " ) uvD;(G)
= g VE-Dy (1812 +6n)x(3—1)(6—1) + (1812 _ 12.]))((6—1)(6—1)
= enx* + (1a7+6n)x'% + (187 — 120)%.
Theorem 2. The reduced second hyper-Zagreb index and its polial of a silicate
networkSL, are
(i) RHM(SL,)) = 13050 — 6804.
(ii) RHM,(SL,, X) = 6nx™® + (1&7+6n)x' %+ (1877 — 120)x°%.
Proof: Let G = 9, be the graph of a silicate network.
® By using equation (3) and Table 1, we obtain

RHM,(SL,) = Y [(do (u)-2)(de (v)-1)T

uwiE(G)
=[(3-1)(3-1)f6n+[(3—1)(6—1)f(18n*+6N)+[(6—1)(6—1)f(18n*~12n)
= 13050° — 6804
(i) By using equation (4) and Table 1, we obtain

RHM S-n X)= X[(de(u)‘l)(dc (V)‘l)]z
2(Sn%) WD;(G)
_ g1 (1?4 K re i L(1g2 1p)K e f
= X + (187%+6n)x % + (187% — 1n)xX°%,

3. Resultsfor chain silicate networ ks
We now consider a family of chain silicate networkkis network is symbolized b§S,
and is obtained by arrangimgetrahedral linearly, see Figure 2.

A__A__A__A
VoY

Figure 2: Chain silicate network

Let G be the graph of chain silicate netwo@S, with M(CS)|=3n+1 and
[E(CS)|=6n. By algebraic method;S,, n(J2, there are three types of edges based on the
degree of end vertices of each edge as in Table 2.

do(u), de(V)\ uv 11 E(G) (3.3 (3,6) (6, 6)
Number of edge n+4 an-2 n-2
Table 2: Edge partition oCS,
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Theorem 3. The reduced second Zagreb index and its polynoofia chain silicate
networkCs, are

0] RM,(CS,) = 6 — 54.

(i) RM,(CS,, X) = (+4)x* + (4n — 2)'%+ (n— 2.

Proof: Let G = CS, be the graph of chain silicate network.

® By using equation (1) and Table 2, we deduce

R,(08)= 3 (6 (8)-1)(de ()1

= (3-1)(3-1)4+4)+(3-1)(6-1)(4 — 2) + (6-1)(6-1)r(— 2)
= 6N — 54.
(i) By using equation (2) and Table 2, we deduce
,(CS,, %) Z e (U

uvDE
— (n+4)x(3 1)(3—l)+ (4n 2)((3—1)(6—1)+ (n _ 2>((6—l)(6—1)
= (n+4)* + (4n—2)0 + (n — 2%,

Theorem 4. The reduced second hyper-Zagreb index and its poliad of a chain
silicate networlkCS, are

@ RHM,(CS,) = 1041 — 1386.

(ii) RHM,(CS,, X) = (n+4)x™® + (4n — 2%+ (n — 2%°%.

Proof: Let G = CS, be the graph of chain silicate network.

® By using equation (3) and Table 2, we deduce

RHM, (CS,) = WD;(G)[(dG (1)-1)(de (v) -3

=[(3-1)(3-1)i(n+4)+[(3-1)(6-1)j(4n-2)+[(6-1)(6-1)}(n-2)
= 1041 - 1386
(i) By using equation (4) and Table 2, we deduce
RHM, (CS,,x) = Z (0o

uvDE

:(n+4)x(3’3(“” Flan— DX ¥y (n_ gylerer
— (n+4)X16 + (4n _ 2)X100+ (4n_ 2))(625.

4. Conclusion

In this paper, the explicit formulas for the rediiteyper-Zagreb index and its polynomial
of silicate and chain silicate networks are comgulehese expressions can correlate the
molecular structure of silicate and chain silicaetworks to information about their
physical structures.
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