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Abstract. The connectivity indices are applied to measure the chemical characteristics of 
chemical compounds in chemistry. In this paper, we introduce the multiplicative sum 
connectivity KV index, multiplicative product connectivity KV index, multiplicative ABC 
KV index and multiplicative GA KV index of a molecular graph. We determine these 
multiplicative connectivity KV indices of POPAM dendrimers and tetrathiafulvalene 
dendrimers. 
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1. Introduction 
Let G be a finite, simple connected graph with vertex V(G) and edge set E(G). The degree 
d(v) of a vertex v in G is the number of vertices adjacent to v. Let MG(v) denote the 
product of the degrees of all vertices adjacent to a vertex v. We refer to [1] for undefined 
term and notation. 
 Chemical Graph Theory is a branch of Mathematical Chemistry which has an 
important effect on the development of chemical sciences. Several topological indices 
have been considered in Theoretical Chemistry, especially in QSPR/QSAR research, see 
[1, 2]. 
 Recently, Kulli introduced the first and second KV indices, defined as [4] 
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 Very recently, some novel variants of KV indices were studied such as hyper KV 
and square KV indices [5], connectivity KV indices [6], multiplicative KV indices and 
multiplicative hyper KV indices [7]. 
 We introduce some multiplicative connectivity KV indices of a graph as follows: 
 The multiplicative sum connectivity KV index of a graph G is defined as  
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 The multiplicative product connectivity KV index of a graph G is defined as  
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 The multiplicative atom bond connectivity KV index of a graph G is defined as  
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 The multiplicative geometric-arithmetic KV index of a graph G is defined as  
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 In recent years, some topological indices were studied, for example, in [8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19 ]. In this paper, some multiplicative connectivity KV 
indices for POPAM dendrimers and tetrathiafulvalene dendrimers are computed. For 
dendrimers, see [20]. 
 
2. Results for POPAM Dendrimers 
The family of POPAM dendrimers is denoted by POD2[n]. The graph of POD2[2] is 
shown in Figure 1. 

 
Figure 1: The graph of POD2[2] 

 
Let G = POD2[n]. By algebraic method, we obtain that G has 2n+5 – 10 vertices and 2n+5 – 
11 edges. The edge partition of POD2[n] based on the degree product of neighbors of end 
vertices of each edge is given in Table 1. 
 
MG(u), MG(v)\ uv ∈ E(G) (2, 2) (2,4) (4,4) (4,6) (6,8) 
Number of edges 2n+2 2n+2 1 3×2n+2 – 6 3×2n+2–6 

Table 1: Edge partition of POD2 [n] 
 

Theorem 1. The multiplicative sum connectivity KV index of a POPAM dendrimer 
POD2[n] is  
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Proof: Let G = POD2[n]. By using equation (1) and Table 1, we have  
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Theorem 2. The multiplicative product connectivity KV index of a POPAM dendrimer 
POD2 [n] is 
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Proof: Let G = POD2[n]. From equation (2), we have  

[ ]( )
( ) ( )( )

2

1

uv E G G G

PKVII POD n
M u M v∈

= ∏  

By using Table 1, we deduce 
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Theorem 3. The multiplicative atom bond connectivity KV index of a POPAM 
dendrimer POD2[n] is  
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Proof: Let G = POD2[n]. By using equation (3) and Table 1, we derive  
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Theorem 4. The multiplicative geometric-arithmetic KV index of a POPAM dendrimer 
POD2 [n] 
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Proof: Let G = POD2 [n]. By using equation (4), we obtain  
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Then by using Table 1, we deduce 
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3. Results for tetrathiafulvalene dendrimers 
The family of tetrathiafulvalene dendrimers is denoted by TD2 [n], where n is the steps of 
growth in this type of dendrimers, see Figure 2. 

 
Figure 2: The graph of TD2 [2] 

 
 Let G = TD2[n]. By algebraic method, we obtain that G has 31 × 2n+2 – 24 
vertices and 32 × 2n+2 – 85 edges. The edge partition of G based on the degree product of 
neighbors of end vertices of each edge is given in Table 2. 
 

MG(u), MG(v) \ uv ∈ E(G) Number of edges 
(2, 3) 2n+2 
(3, 6) 2n+2 – 4 
(3, 8) 2 n+2 
(6, 6) 7 × 2 n+2 –16 
( 6,8) 11 × 2 n+2 – 24 
(6, 9) 2 n+2 – 4 
(6, 12) 3 × 2 n+2 – 8 
(9, 12) 8 × 2 n+2 – 24 
(12, 12) 2 × 2 n+2 – 5 

Table 2: Edge partition of TD2[n] 
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Theorem 5. The multiplicative sum connectivity KV index of a tetrathiafulvalene 
dendrimer TD2[n] is  
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Proof: Let G = TD2[n].  From equation (1) and using Table 2, we derive 
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Theorem 6. The multiplicative product connectivity KV index of TD2[n] is 

[ ]( )
2 2 2 2 22 2 4 2 7 2 16 11 2 24

2

1 1 1 1 1

66 3 2 2 6 4 3

n n n n n

PKVII TD n

+ + + + +− × − × −
                 = × × × ×                      

 

2 2 2 22 4 3 2 8 8 2 24 2 2 5
1 1 1 1

123 6 6 2 6 3

n n n n+ + + +− × − × − × −
             × × × ×                 

 

Proof: Let G TD2[n].  From equation (2) and by using Table 2, we obtain  
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Theorem 7. The multiplicative atom bond connectivity KV index of TD2[n] is  
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Proof: Let G = TD2[n]. By using equation (3) and Table 2, we deduce  
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Theorem 8. The multiplicative geometric-arithmetic KV index of TD2[n] is  
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Proof: Let G = TD2[n]. By using equation (4) and Table 2, we obtain  
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