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Abstract. The connectivity indices are applied to measurectiemical characteristics of
chemical compounds in chemistry. In this paper,imteoduce the multiplicative sum
connectivityKV index, multiplicative product connectivi§/ index, multiplicativeABC

KV index and multiplicativeGA KV index of a molecular graph. We determine these
multiplicative connectivityKV indices of POPAM dendrimers and tetrathiafulvalene
dendrimers.
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1. Introduction

Let G be a finite, simple connected graph with vei€) and edge sd(G). The degree
d(v) of a vertexv in G is the number of vertices adjacentuolLet Mg(v) denote the
product of the degrees of all vertices adjacerat Wertexv. We refer to [1] for undefined
term and notation.

Chemical Graph Theory is a branch of Mathemat{@laémistry which has an
important effect on the development of chemicakmsceés. Several topological indices
have been considered in Theoretical Chemistry,asibein QSPR/QSAR research, see
[1, 2].

Recently, Kulli introduced the first and secdfd indices, defined as [4]

KV, (G)= > [Mg () + M (V)]

ue(G)

KV, (G)= " [Mg (Mg (W),

uve(G)

Very recently, some novel variantskKW¥ indices were studied such as hyp&f
and square&V indices [5], connectivityKV indices [6], multiplicativeKV indices and
multiplicative hypelKV indices [7].

We introduce some multiplicative connectividy indices of a graph as follows:

The multiplicative sum connectivitgV index of a grapl® is defined as

1
KVII (G) =
UVQG)\/MG (u)+ Mg (v)

(1)
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The multiplicative product connectiviV index of a grapit is defined as

1
PKVII (G) = _ 2

The multiplicative atom bond connectiviiy/ index of a grapl® is defined as

ABCKVII (G)= [] \/MG(UHMG(V)_Z (3
)

weE(G MG (U) MG (V)
The multiplicative geometric-arithmeticV index of a grapi® is defined as

GAKVII (G)= [] (Mo (WM (v) @)
weE(G) MG (U>+ MG (V>
In recent years, some topological indices werdistly for example, in [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 ]. In this pageme multiplicative connectiviti{\VV
indices for POPAM dendrimers and tetrathiafulvaletendrimers are computed. For

dendrimers, see [20].

2. Resultsfor POPAM Dendrimers
The family of POPAM dendrimers is denoted B@D,[n]. The graph ofPOD,[2] is

shown in Figure 1.
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Figure 1: The graph oPOD,[2]

Let G = POD,[n]. By algebraic method, we obtain tf@ahas 2*° — 10 vertices and"? —
11 edges. The edge partitionRDD,[n] based on the degree product of neighbors of end
vertices of each edge is given in Table 1.

Mo(u), Ms(W\WOE@G) (2.2, (24) (44 (4.6) (6,8)
Number of edge 2me M 1 3x2™_6  3x2™_6
Table 1. Edge partition oPOD, [N]

Theorem 1. The multiplicative sum connectivitikV index of a POPAM dendrimer
POD,[n] is
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Proof: Let G = POD,[n]. By using equation (1) and Table 1, we have

1
SKVII (POD, [n]) = do (Mo W+ Mo W)

X226

KVII (POD, [n]) = [%]2 X

B A R

Theorem 2. The multiplicative product connectivitgV index of a POPAM dendrimer
POD; [n] is

2ﬂ+2 2ﬂ+2 3<2'H»27 6 % 2+27 6
PKVII(PODz[n])_[%] ><[ 1} N [ 1} x[ 1}

N~

22) a2/ 43

Proof: Let G = POD,[n]. From equation (2), we have
PKVII (POD,[n]) = L

UVQG) \ MG (U) MG (V)

By using Table 1, we deduce
1 sz”z [ 1 Jl [ 1 J&z‘ﬂe [ 1 ;x o2 ¢
X X X | ——
J2x 4 Vacd W« J &

1 2n+2
J2x2

[_]2+ X[ ]2" X_x[ 1 &T*ZGX[ 1J&2+26

2 242 4" 2/6 4/3 '

17" (1 1
Theorem 3. The multiplicative atom bond connectivitdV index of a POPAM

dendrimePOD,[n] is
3 1 4x2"2_6 1 xI2_6
— | X|= X|—= .
\fs [2] [Jé}

Proof: Let G = POD,[n]. By using equation (3) and Table 1, we derive
M (WM (V)

PKVII (POD, [n]) =

X

ABCKVII (POD, [n])=

ABCKVII (POD, [n])= ] \/
ueE(G)

2m2 o 1 XI5 X 92_ ¢
_[ 2+2-2 X[ 24 4- 2 X[ 4+¢jx[ 4+6T X[ @8]2
N 2% 2 2x 4 4 4 4 6 & 8
[ § X[}]ztxz"*zsx _l XxF2_6
8) (2 J3 '

Theorem 4. The multiplicative geometric-arithmetkKV index of aPOPAM dendrimer
POD, [n]
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22 x2"2-6 X226
GAKVII (POD, [n]) = [ZT*/EJ x [2—*/_6J x [isj .

5 7
Proof: Let G = POD, [n]. By using equation (4), we obtain

2. M M
GAKVII (POD, [nl)= ] s WM (V)
uweE(G) MG (U)+ MG (V)
Then by using Table 1, we deduce
on+2 o2 1 3 F2_g 392 ¢
GAKVII(PODz[nDz[Z\'zXZ X[2V2><4] X[ 2/ & 1X[ 42 T X[ ' }3
2+ 2 2+ 4 4+ 4 4 6 6 8
2 se2_

3 5 7

2n+2

3. Resultsfor tetrathiafulvalene dendrimers
The family of tetrathiafulvalene dendrimers is dexobyTD, [n], wheren is the steps of
growth in this type of dendrimers, see Figure 2.

Figure2: The graph offiD, [2]

Let G = TD,[n]. By algebraic method, we obtain th@thas 31 x 22 — 24
vertices and 32 x"%? — 85 edges. The edge partition®@based on the degree product of
neighbors of end vertices of each edge is giverale 2.

Mg(u), Mc(V) \uv O E(G) Number of edge
(2, 3: 2n+2
(3,6 2™ _4
(3, 8: 2n+2
(6,6 7x 2™ _16
(6,8 11x2™2_24
(6,9 2™2_4
(6, 12 3x2™ -8
(9,12 8x 2™ _24
(12, 12 2x2™_5

Table 2: Edge partition offD,[n]
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Theorem 5. The multiplicative sum connectivitKV index of a tetrathiafulvalene
dendrimerfTD,[n] is

R e

1 2M2_g 1 23 1 & 22— 24 1 2 2t
x| —— X |—= X|—= X =
W

Proof: Let G =TD,[n]. From equation (1) and using Table 2, we derive

1
SKVII (TD, [n]) =
(10, n) e ML W)+ My V)

1 1% 22— 2
5

:[J21+ 3] X[J31+ G]TX[T;J X[ﬁﬁigwﬁﬁx |
S S
R
e

Theorem 6. The multiplicative product connectiviV index of TD,[n] is

22 22 g 2 & 2216 1% 2% 2
PKVH(TDZ[n]):[iJ x[ L J x| 2 x[gl] X[T/l_J

_ v 2 % +2_% -
s Gl e

Proof: Let G TDy[n]. From equation (2) and by using Table 2, we iobta

PKVII (T, [n]) = ] ———e——
uweE(G) MG(U)MG(V)
[ 1 2”*2>< 1 2 4X[ 1 ]21 x[ 1 kaﬂex[ 1 Jlxrz 2
V2x3 V3% 6 V3 8 \ B¢ \ &
1 2M2_4 1 xI2_g 1 & 972 24 1 2 2t
X X|—— X|——= X|—F—=
[\/6>< 9} J6x 12 [\/ % 1J [\/ 12 11

G o T

1 2M2_g 1 xP2_g 1% 2224 1)2 225
X|—= X|—= X\~ X175
[3&3} [&Fz] [ 6/ 3] [12
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Theorem 7. The multiplicative atom bond connectiviv index of TD,[n] is

oM2_» 2 216
7 ] 3 [ 5}
_ X — J—
8 18

2n+2

1

ABCKVII (TD, [n]) = [ﬁ X

18

[1 11T 24 [ 13}2””4 [\/—2}& 2_g [ 194& 2+2_ 24 [ lﬂ 2 22_ 5
X|— XA Xal— X{s|— X{s|l— .
2 54 9 V10 \f 7

Proof: Let G = TD,[n]. By using equation (3) and Table 2, we deduce
\/Me(u)+ M (v)—2

ABCKVII (TD,[n])= ]

weE(G)

Mg (WM (v)

M2 M2_g 2 & 32 1€
_[(2+32] X[ 3+ 62 X[ &&i X[ 6 6 T
N 2x 3 3x 6 3 8 6 6
11x 2224 M2 g AL
X[ [6+8-2 [ 6+ 9 2 X[ 6r 12 i
6x8 6x 9 6x 12

8x 22 _24 %P2 5
X[ [o+12— 2] X[ [12+ 12- i
9x12 12x 12

(1 on+2 ) lsz_zx ) \/E’]Z‘“ X[ _5J7x2‘+2— 16>< [_:311X21+224
W2 18 8 18
M2_g K28 & 2+2_ 24 2 225
[ 13] \/E] 19} [ 1]j
Xl Al— X il X —_— XA .
54 9 \ 108 \/ 7

Theorem 8. The multiplicative geometric-arithmeti€V index of TD[n] is

2\/6 2x2"+24x[ 2\/—2 4<2“+212X[ 4\/—6} o+2 X[ 4/—j 19 22— 48

GAKVII (TD, [n]) = [ — —
5 3 11 7
Proof: Let G = TD;[n]. By using equation (4) and Table 2, we obtain

2JM; (WM (v)

weE(G) MG (u) + MG (V)

GAKVII (TD, [n]) =

[Zm 2 X[ 2\/3(_6]21+ 74X Z/?ﬁzw X[ ﬁka lﬁx[ ﬁfli 22 2
| 243 3+6 3+ 8 6+ 6 6- 8
X[zm “X[ Mz]” SX[ m{” 2“X[ Wl]f =
649 6+ 12 9 12 12 12
[2\/5]&2"*24 [2\/—6]&2‘“12 [ 4/—6] a+2 [ 4/—j 19 %2 48
=|— X|— X|—— X|—— .
5 3 11 7
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