Journal of Mathematics and | nformatics
Vol. 16, 2019, 53-66

ISSN: 2349-0632 (P), 2349-0640 (online) Journal of .
Published 20 April 2019 Mathematics and
WWW.I esearchmathsci.org Informatics

DOI: http://dx.doi.org/10.22457/jmi.139av16a5

Some Properties of g-Rung Orthopair Fuzzy Derivatives
and Indefinite Integrals
Jun-le Zhuo

College of Communication and Information Enginegrin
Chonggqing University of Posts and Telecommunication
Chongging — 400065, Chongging, China.
E-mail: 892263830@qg.com

Received 15 March 2019; accepted 19 April 2019

Abgtract. In this paper, we first present the chain rule &nel form invariance of
differential for g-rung orthopair fuzzy functions (g-ROFFs). In dudi, we obtain the
general formula of indefinite integrals of q-ROHBg ordinary differential equations.
Next, we give the substitution rule of indefinitgdgrals for g-ROFFs. Meanwhile, we
give some examples to verify above-mentioned foanmslich as the chain rule and the
substitution rule.
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1. Introduction

The concept of fuzzy set (FS) was proposed by Z§leéh 1965, which can describe the
grade of membership effectively. However, there smme shortcomings in FS, such as
the hesitation information cannot be shown. In 198&nassov [2] extended the FS to
the intuitionistic fuzzy set (IFS), which contairs non-membership function, a
membership function and a hesitancy function. Xd éager [3] defined the intuitionistic
fuzzy numbers (IFNs) and discussed some aggregapenators, which has been used
wildly for a long time. Some theories have beeraldshed for fuzzy clustering and
decision making [4,5,6,7,8,9]. On the other handj And Lei [10] defined the
intuitionistic fuzzy function (IFF), and studied detail their continuities, derivatives and
differentials. Subsequently, the definite integaald double integral of IFF have been
studied [11,12] by Xu and Lei.

But constraints do exist in IFS that membershigs plan-membership, positive but
less than 1, would not be satisfied if we make mamsiiip equal to 0.7 and non-
membership equal to 0.6, which means that the yhebtFNs is invalid. To solve this
problem, Yager [13] proposed the concept of Pythemo fuzzy sets (PFSs), which
contains the above-mentioned value. Obviously, R& 8% extension of FSs. Moreover,
Yager [14] proposed thg-rung orthopair fuzzy sets (g-ROFSs), which cargtanore
pairs of value.

Liu and Wang [15] defined some basic operationsqefung orthopair fuzzy
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functions (g-ROFFs) including addition, multiplizat, scalar-multiplication and power
operation. Recently, Xu and Gao [16] defined tHatrmction and division operations, and
they also revealed the partial order relations -®®@fFNs, which are £” and “<”.
Moreover, they studied the derivatives and difféeds of the g-ROFFs, and discussed
some particular properties of derivatives simitathose in mathematical analysis. They
disclosed the chain’s rule on derivatives, buteéhen’t a detailed proof, and they did not
show the form invariance of differential garung orthopair fuzzy calculus.

In this paper, we give a detailed proof for chainite based on the definition of
right and left derivatives. And investigate theémse operation of the derivative which is
indefinite integral.

The paper is organized as the following: in Sectiprsome basic concepts and
operations off-ROFNs are given. Two important theorems are ptesein Section 3,
concluding the chain’s rule and the form invariadedifferential in g-rung orthopair
fuzzy calculus. Moreover, there is an example whdah illustrate the chain’s rule and
show some important results. We also give the geriermula of indefinite integrals of
g-ROFFs in Section 4, besides, some propertiessamvn which are similar to
mathematical analysis. There are also some exanmplesented which make these
theorems well-understand. In Section 5 we give scomelusion remaking.

2. Preliminaries

In this section, we introduce some basic conceptg-ROFNs, and some operations
which are utilized frequently.

Definition 2.1. [14] Let X be a fixed non-empty set, then

Az{(x,,uA(x),vA(x))|xD X} ,
is called ag-ROFS, which satisfies
(1)0< p,(x)<1.
(2)0<v,(x)<1.

(3)0= (4 (x))" +(va(x))" < 2for anyx O X .
Definition 2.2. [15][21] Leta =(y,.v,) andB8=(u,,v,) be two g-ROFNs, then the
addition, multiplication, subtraction and divisioperations are defined as follows:

1
al /3:<(/12 + U = ) ,vavﬂ> ,

1
aDﬁ:<,ua,uﬁ,(vfj +Vi —vj,vg)Q>.

1
_ ﬂg_ﬂaq 4 Vg
poa= [1_—q vk
Wy

a

which satisfies
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And

which satisfies

Remark 2.1. If A >0, we have

1
Aa:aDaDmDa:<@—@—ﬁyyA¢>

and

1
m:aDaDmDa:<m«L{kﬁyy>.

Definition 2.3. [21] Leta, =(x, v, ) (i =1,2,3) be three-ROFNS, then
o sa,if y, <y, andv, zv, ,
a za,if y, =2y, andv, <v, ,

a =a,ifa,<a,anda,z2a,.

Definition 2.4. [21] If there exists a-ROFNa,, such that, Oa, =a,, then we define
thata, is less than or equal &g, denoted by, < a,. In particular,a, < a,if a, #(0,1).

Definition 25. [21] Leta =(u,.v,) andB=(u,,v,) be two ¢-ROFNs, ands be the
SetS:{(,u,v)|,uz 0v=0,u% +Vvi< } we define

)={BO0a0Ss|pOS
Ja){a@BDQﬁDQ
S.(a)={BOa0s|pOs},
S, (a)={aop0S|pOS}

Definition 2.6. [21] The basic arithmetics are defined as follow:
(1) Leta, OS, (a,)anda,0S, (a,), then
ala,=a,0a,,
(oy0a,)o(a,0a,)=(a,0a,)0(a,0a),),
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(myoa,)o(a,0a,)=(a,0a;)0(a,0a).
(2) Leta, 0S,(a,),a,0S,(a;),a,08, (a,) anda, 0S, (a,), then we have
(a,0a,)0(a,0a,)=a,0a,,
(@oa)olaoa) w00,
(a,0a,)0(a,0a,)=a,0a,
(3) Fora >0(i =1,2),
Aley0a,)=2a,0Ag,,
/11(0'1@0'2) :/110'1@/19'21
(A+A,)a,=2a,0q,,
(A-2,)a,=rag.01¢a,.
Proof: We just prove the third part in (2) and (3). Tlase of (2):

qd _ /4 }{1 —\ya }{] qd _ /4 ){1
wonsotocn)= 8 Jol ) {2 ) rooe

The case of (3) is shown below:
We can calculate:

ra, = <(1— (1— M )A1 )% RV > andl,a, = <(1—(1— e )AZ )%4 R > ,
then we get
ra,0Ma, = <(1—(1— ) )AM2 )% ,vjl*‘2> =(A+4,)a,
which completes this proof.

Definition 2.7. [21] Let¢(a):( fa,ga>be ag-ROFF, then

| ¢(B)og(a)
ﬁ@a <01> poa
is called the derivative @fata . In particular,

%|: 1/’ag£[-|a_aq V[fL
a® \(1-f @™ ou, 9,

Theorem 2.1. [21] Leta O AaO0S? witha OS.

If j_¢|a exists, then the-ROFFy is differentiable. In particular,
a

d¢(a):%|a 0aa.

In order to express conveniently, we ude denote general varialjle,v)in the
following sections.
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3. Some properties of g-rung orthopair fuzzy derivatives
We define the derivatives ofROFFs by the right and left derivatives, whiclsiimilar to
ones in the mathematical analysis.

Definition 3.1. Letg(x)=(f (u),g(v)) be ag-ROFF in the se O0'S,xandybe bothg-

ROFNs inE. If x<y, ¢(x)< ¢(y)holds, then we cafi(x)a monotonically increasing-
ROFF.

Definition 3.2. Letg(x) =(f (x),g(v)) be a monotonically increasingROFF defined in

the sek, xbe an accumulation point Bf{Maybe there isOE). If lim %is

yAXD,yDE

still a -ROFN, then we call it the right derivative ¢fx) atx, denoted by (x) .

Similarly, lim Mis the left derivative if it is @a-ROFF, which can be denoted
y-x~,yOE X y
by¢. (x). In addition, if the left and the right derivats/are both-ROFNs and equal to
each other, then we cal(x)is derivable akand Ilim #(0)o¢(x) is the derivative
y - x,yOE y@x
of ¢(x) atx, denoted bﬂ? :
X
Remark 3.1. Thew‘ implies
yoXx
#(y)og(x)
T — a X
‘¢(y)®¢(x) | oyex Y S (4
yox g(x)os(y)
———== y[S
oy VS

Remark 3.2. The monotonically increasing condition is esséntidnich can make the
left and right derivatives meaningful. d{x)is derivable at,, then there must exist a

neighborhood
U (%, €) :{x||x@ X| < &x0S, (%)US, (xo)} ,
andg(x) is monotonically increasing t(x,, ).

Remark 33. It is unnecessary thai(x) is monotonically increasing all over the
universeS={(uv)|u=0v= 04 +vi <} , if g(x) is monotonically increasing in a

subsek O Sand derivable iK , then we calp(x) is derivable i .

It is worth noting that the Definition 3.2 is reasble. Because if the left and the
right derivatives are botg-ROFNs and equal to each other, we can only cakule
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right derivative, whose process is similar to [2dAd then we will get the same formula
of derivative ing-ROFF.
Based on the Definition 3.2, we can easily prowedhain rule forROFFs.

Theorem 3.1. Letg(x) and®(x) beq-ROFFs and derivable, then
do( (1)) _ d(e(1) | ae(y
t dg(t) dt
which is called the chain’s rule grung orthopair fuzzy calculus.
Proof: We consider the right derivative ®{¢(t)) , which is

i ¢(¢(I+At))®¢(¢(t)): P (p(t+at)) oo (4( )D i p(t+at)od(t)
at-0" At at-0" p(t+at)og(t) at-o" At
e, 900 o (59) 0 0.

where @, (4(t)) represent® (x) at x=¢(t) , then we can get the left derivative
of ®(¢(t))in the same way, which is
@ (¢(1) 045 (1)
According top(x) and®(x) are derivable, we have
L (4(t)) = @5 (#(1)) andg, (1) = 4L, (1),
which means
L (4(1) D¢ (1) =@ (4 (1)) Do (1) = @' (4 (1)) D' (1) =
Thus, ®(¢(t)) is derivable, and

sofoly)_ao(e()  so()
dt dg (1)

The proof is completed.

Example 3.1. Let®(x) = Ax0Candg(t) = At be twoq-ROFFs, assume that=(u,,v,).

(¢ (1)

d .
Then we calculateT in two ways:

(1) Based on the basic arithmetics, we have
ofp0) =0 ={[1=(st) ) o) = 1) ) )

If we denote€1—(1— 1) (- ,uq)Mz )% andv,v** by f andg respectively, then according to
the Definition 2.7, there is
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w\l Y
dcp(¢(t)) _ 1—/,Iq _ D(l_(l_ﬂg)(l_ﬂq) )A/l lﬁ ,(1_ \gA lﬂ]%
dt (1_/13)(1_/111)“ /jq_l(l—(l—/jg)(l—/jq)“) ou AVAE Y
where
1-(1-20) (1= )™

ﬂ:im( ( luc)( /1 ) Z/ml/]z [ql—ﬂg)[ql—/,[q)Al/lz_l,

o a (1—(1—#3)(1—#“)&12) :
and

gg = A Ay

Thus we get

w =((Ah) 5. (1-a0,) ).

(2) We use the chain’s rule to calculate it, theesas above, we can obtain two results
below:

d";)((x):<al%x,(1-al)%>andﬁ (A a-2)4).

Then we have

do (4 (1) _ do(4(
4(t

PU0) O 980 (34 1m0 <)o (4 ) = (100 (2007

(t)
)
Remark 3.4. The above process implies an important conclusiigh is

d(A;(XD c)_ d(d/)\(X) :<A%,(1_,1)%>_

Theorem 3.2. Let®(4(t)) andg (t) be twog-ROFFs and both derivable. Then we have
do = Odt =, g Odt =, 0dg,
do(a(t do(g(t
dt dg (t) dt
Proof: Based on the Theorem 2.1, Definition 2.7 andE 0 At, we have

whereo; =

d¢(t):%t(t)|]dt:¢t’Ddt,

then by the Theorem 3.1, we can get
do(g(t d

dg(t) dt
thus thed® = @), 0 dg holds.
In addition, if we consideras the independent variable, we hdwe=®; Odt,
which means that

Odt=dd =0, 0¢ DOdt,
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do =0 0dt=d, 0¢ Odt =, Odg,
holds, and the proof is completed.

Remark 3.5. This theorem is called the form invariance of efiéntial in g-rung
orthopair fuzzy calculus.

4. Indefiniteintegrals of g-ROFFs
In this section, we discuss the indefinite integraf g-ROFFs, which is the inverse
operations of the derivatives for g-ROFFs. We wille the general formula and show

some properties of indefinite integral for g-ROF§&isch as the substitution rule which is
important and practical.

Theorem 4.1. Letg(x)=(f(u),g(v)) be a q-ROFF, and(x)is a primitive function

of ¢(x), which satisfiegyng(x), then the functiow(x) must have the following
X

o0={[1-cosf 107 ]| ol T2 |

Proof: Letd(x)=(f (u),g(v)), we need to solve two ordinary differential eqoiasi

SRR T S PR (S

form:

-[F(u)]" v = q e
1—%\/) ' (v)=[g(v) ] G(v)=c, exp{jﬂ dv}

which can be solved by the following process:

e ) TF (u)] =[f ()]

1-[F(u)]"  #°

ST e ) <[

1-[F(u)] -
el T) S
1 1V
:>F(,u):[l—clexp{—J'[f(y)]qf'_qu,uH :
and
1-$E@3’(V)=[9 W' = cca;((\\//)) :1—[9V(v)] :>G(V)=C2exp{ J1—[<9|V(v)] d\,} _

The proof is completed.
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We must attention thafandc, are two integral constants, which are both real
numbers such that(x) is ag-ROFF. In other words, andc, should make the following
(1)-(3) hold.

(1)05(1—cl exp{—f[f (,u)]q%dy}]% <1
(2)Osgexp{1ﬂdv}g 1.

(3)o<(1—<:l ex;{ ([ (n) qq” d,u}]+c§ exg{qj%dv}s .

In the following, we demonstrate whether the deivea of ®(x) is certainlyg(x) :

LetF denote
Ja
(1 clexp{ ~[[f(x) qq/1 d,uH .
czexp{;l'[gv(vﬂ dv},
then
do(x) _[(1-p0 F oF )5 [1 vaGJ%
dx  \\1-F° z* ou) '\" Gov
Y

_ (o a4
(l—/.lq) : 1 clexp{ J.fql_'uq d,u} df

o C[eq QU a1 Yo ou
e 15 o

andG denote

Ja
| l_%exp{f\i_gq dv}%% |
\'
where
0 QU

—F—i[l Clexp{ aEt dﬂH maexp{‘ffq%_:dﬂ}“qﬂj,

ou q {1 Clexp{ Iquu dﬂH 1-4 1-u
and
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0G _ 1-¢g¢ -g°
E—czexp{j dv}Dl—.

\Y

Then it is obvious that

Remark 4.1. According to the uniqueness of solution of ordyndifferential equations,
all primitive functions of(x) must have the above-mentioned form. The difference

between them is that the integral constants aferdift. Therefore, we have following
theorem.

Theorem 4.2. If ®(x) and¥ (x) are twog-ROFFs, and

®(x) :<[1—cl exp{—J'[f ()] %dyﬂ% c exp{fﬂ dv}>,
W(x) :<(1—/11c1 exp{—J'[f ()] ff;: d,u}]%4 Ac, ex;{]ﬂdvp .

Then they are both the primitive functiongs¢k) , which means that

dd)(x) _ dLP(x) _
o O

holds.
Proof: Based on Theorem 4.1, we can easily obtain thef prbTheorem 4.2, which is
omitted here.

Example 4.1. Calculatqf(l, 0)dx . In fact, based on the Theorem 4.1, we can easibjrob

[({1.0)dx

:<[1_qexp{_jfg‘; o[ o f%dv}> (e )" )

:(y,v>D<(1—cl)%4 ,c2> =xgcC .

Remark 4.2. We can see thg:ROFN(1,0) is similar to constant “1” in real integral.

Theorem 4.3. If there arel, < ®(x) anddq;—(x) =¢(x), then we have
X

do(x) _d(e(x)04) d(e(x)e4,)

ax - dx - ax
Proof: LetA, =(u,v,), then
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¢(x)DA1:<[1—(1—,ul)qcl exp{—j[f( qsﬂﬂ H% ViC, ex;{[%dv}>.

We denotél- 4 )" byk, andv, byk, , then

o (x)0 A :<[1— klclexp{ J'[f T q,u /J}J% k,c, ex;{]ﬂdv».

Based on Theorem 4.2, we have

d(e(x)04)
B

which completes the proof of this theorem.

Remark 4.3. This theorem shows thpg(x)dx = ®(x) 0 Cis always holds, wher@is any

o-ROFN andp(x) is any primitive function of(x).
Next, we present some properties of indefinitegrats ofq-ROFFs:

Theorem 4.4. If there isd(x f¢ x)dx, then
Jo(x(®)x (t)at=(x(1)),
dx( )
h t)) X' (t ts th t))0—+~.
whereg (x(t))x (t) represents aﬁ(x( )) o
Proof: Based on the chain rule of derivatives of the coumglg-ROFFs, we have

d(x(t)) _do(x(t)) _ax(t) do(x(t)) ,
dt - d(x(t)) H dt = dt _¢(X(t))x(t)'

Hence, ®(x(t)) must be the primitive function of(x(t))x(t) , which means
that[ ¢ (x(t))  (t)dt = ®(x(t)) holds.

Remark 4.4. This theorem can be called substitution rule fioiefinite integrals.

Theorem 4.5. Let

#(x)=(f (1), g(v))andg, (x) =(f (). (v)) (i =12+ n),

ben+1derivableg-ROFFs, then
(1)j</1%*,(1—/1)%> 0¢(x)dx=A[g(x)dx, whered< A <1.

(Z)J'<(iz:l: fqu%1 ,(1—2(1— giq)]/vq>dx = él.“ f,.g;)dx

i=1

@((1- 1) (10~ 0t)) " ox=[ () ko (0 .

Proof: We can utilize the chain rule of derivatives toya (1).
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w:<,‘%,@_/‘)%>m¢(x).

Then we get that
j</1%',(1—/1)%> 0¢(x)dx=A[ ¢ (x)dx,

holds. In another way,

J'</1%,(1—/1)%4>D¢(x)dx:<(1—q eXp{—Iqu%d#H% £, ex;{)fl_vgq dv}>

=A[4(x)dx.
We can also get that

_[</1%‘,(1—/1)%1>D¢(x)dxzﬂf¢(x)dx,
holds. Moreover, we can prove it based on Theordmd.,
_[</1%‘,(1—/1)%1>D¢(x)dx:f<ﬂ%‘,(1—/])%1>d(_[¢(x)dx):Af¢(x)dx.

The proof is completed.
Especially, ifp(x) =(1,0), the result is

j</1%*,(1—/1)%>D(l,c»dx:Aj(l,c)dx:AxDc.

Similarly, (2) and (3) can be proved by the sameameg which are omitted here.

Example 4.2. CaIcuIatq’</1%*,(1—/1 )%1> 0 <k%1 (1~ k)%>dt :

We calculate it in two ways:
(1) By the definition of multiplication we get

j</1%,(1—/1)%>m<k% (- k)%>dt :j<(/1k)% ,(1—/1k)%>dt ,

then, according to Theorem 4.5, we have

J{(AK) 0, (2= AK) 5ot = AK] (1.0t = Akt
(2) We can let

4(1) :</]%*,(1—/l)%>andx(t) =kOC,
then we get
o(t)=[g(t)dt=a0C,.

By the Theorem 4.5, we have

P (x) = j¢(x(t))x’(t)dt =o(x(t)) = Ak O C,,
whereC, (i =1,2,3) are three constants gfROFNs. Actually, both of two results are
correct.

5. Conclusion and future researches
In this paper, we have provided some propertieslafvatives for g-ROFFs, which
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contain the chain’s rule and the form invariancaifferential ing-rung orthopair fuzzy
calculus. We also showed the validity of chainle oy an example. In addition, we have
studied the indefinite integrals of g-ROFFs whicke ahe inverse operations of
derivatives. We got the general formula of indééinntegral and investigated some basic
properties of indefinite integrals. Besides, sommangples were presented to show the
process of calculating indefinite integral and thébstitution rule’s effectiveness and
practicability. Moreover, several typical indefimitintegrals were included in these
examples, which are nonnegligible. The future nedess can be focused on two
directions: (1) There are more properties in g-ronpopair fuzzy calculus which are
worth exploring, such as the derivative formulattee product of two g-ROFFs and the
integral formula for the sum of two g-ROFFs. (2)eTtefinite integrals and double
integrals in g-ROFFs can be investigated. Moredbherrelation between definite integral
in g-ROFF and g-ROFWA can also be studied.

Acknowledgements. This work is supported by the National Natural Scee Foundation
of China (No. 61876201). The author is also gratefithe reviewers for their valuable
comments for the improvement of the paper.

REFERENCES

L.A.Zadeh, Fuzzy set$pformation and Control, 8 (1965) 338—-353.

K.T.Atanassov, Intuitionistic fuzzy setfSuzzy Sets and Systems, 20(1) (1986) 87-96.

Z.Xu and R.R.Yager, Some geometric aggregationatpes based on intuitionistic

fuzzy sets|nternational Journal of General Systems, 35(4) (2006) 417-433.

4. Z.Xu, Intuitionistic fuzzy aggregation operatorlEEE Transactions on Fuzzy
Systems, 15(6) (2007) 1179-1187.

5. H.zZhao, Z.Xu, M.Ni, and S.Liu, Generalized aggrégabperators for intuitionistic
fuzzy sets|nt. J. Intell. Syst., 25 (2010) 1-30.

6. D.F.Li, Multiattribute decision making models an@ttmods using intuitionistic fuzzy
sets,Journal of Computer and System Sciences, 70(1) (2005) 73-85.

7. HW.Liu and G.J.Wang, Multi-criteria decision-maffin methods based on
intuitionistic fuzzy setsEuropean Journal of Operational Research, 179(1) (2007)
220-233.

8. F.E.Boran, S.Geng, M.Kurt and D.Akay, A multi-crite intuitionistic fuzzy group
decision making for supplier selection with TOPS3iethod, Expert Systems with
Applications, 36(8) (2009) 11363-11368.

9. J.Ye, Fuzzy decision-making method based on thghted correlation coefficient
under intuitionistic fuzzy environmenEuropean Journal of Operational Research,
205(1) (2010) 202-204.

10. Q.Lei and Z.Xu, derivative and differential opeoais of intuitionistic fuzzy numbers,
Int. J. Intell. Syst., 30 (2015) 468-498.

11. Q.Lei and Z.Xu, Fundamental properties of intuitbic fuzzy calculusKnowl edge-
Based Systems, 76 (2015) 1-16.

12. Q.Lei, Z.Xu, H.Bustince and A.Burusco, Definite dgtals of atanassov's
intuitionistic fuzzy information] EEE Transactions on Fuzzy Systems, 23(5) (2015)
1519-1533.

13. R.R.Yager, Pythagorean membership grades in mitdtier decision makinglEEE

wnN e

65



Jun-le Zhuo

Transactions on Fuzzy Systems, 22(4) (2014) 958-965.

14. R.R.Yager, Generalized Orthopair Fuzzy SHEEE Transactions on Fuzzy Systems,
25(5) (2017)1222-1230.

15. P.Liu and P.Wang, Some ¢-rung orthopair fuzzy agmfien operators and their
applications to multipleattribute decision makingnt. J. Intell. Syst., 33 (2018)
259-280.

16. J.Gao, Z.Liang, J.Shang and Z.Xu, Continuities,i2¢ives and Differentials of g-
Rung Orthopair Fuzzy Functions|EEE Transactions on Fuzzy Systems.
DOI: 10.1109/TFUZZ.2018.2887187.

66



