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1. Introduction 
There have been a number of generalizations of metric space. One such generalization is 
Menger space initiated by Menger [10]. It is a probabilistic generalization in which we 
assign to any two points x and y, a distribution function Fx,y. Schweizer and Sklar [12] 
studied this concept and  gave some fundamental results on this space.  
 The notion of compatible mapping in a Menger space has been introduced by 
Mishra [11].  Using the concept of compatible mappings of type (A), Jain et al. [4, 5] 
proved some interesting fixed point theorems in Menger space. Afterwards, Jain et al. [6] 
proved the fixed point theorem using the concept of weak compatible maps in Menger 
space.   

 The notion of non-Archimedean Menger space has been established by 
Istra
⌣

tescu and Crivat [9]. The existence of fixed point of mappings on non-Archimedean 
Menger space has been given by Istra

⌣

tescu [8]. This has been the extension of the results 
of Sehgal and Bharucha-Reid [13] on a Menger space. Cho. et al. [2] proved a common 
fixed point theorem for compatible mappings in non-Archimedean Menger PM-space.  In 
the sequel, Singh et al. [16] established the fixed point theorem for six self maps and an 
example using the concept of semi-compatible self maps in a non-Archimedean Menger 
PM-space. 

In this paper, we generalize and extend the result of Cho et al. [2] and Sharma et. 
al. [14] by introducing the notion of semi-compatible self maps. Also, we cited an 
example in support of this.  



V .K. Gupta, Arihant Jain and Rambabu Dangi 

88 
 

2. Preliminaries 
For terminologies, notations and properties of Menger PM-space, refer to [1,8,15]. 

Definition 2.1. [2]  Let X be a non-empty set and D be the set of all left-continuous 
distribution functions.  An ordered pair (X, FFFF) is called a non-Archimedean probabilistic 
metric space (briefly, a  N.A. PM-space) if FFFF  is a mapping from X×X into D satisfying 
the following conditions (the distribution function FFFF(x,y) is denoted by Fx,y for all x,y 
∈ X) : 
(PM-1) Fu,v(x) = 1,   for all x > 0,   if and only if   u = v; 
(PM-2) Fu,v = Fv,u ; 
(PM-3) Fu,v (0) = 0; 
(PM-4) If  Fu,v (x) = 1 and Fv,w (y) = 1  then Fu,w (max{x, y}) = 1, 

  for all  u, v, w ∈ X  and    x, y > 0.  
 
Definition 2.2. [2]  A t-norm is a function ∆ : [0,1] × [0,1] → [0,1] which is associative, 
commutative, non-decreasing in each coordinate and ∆(a,1) = a  for every  a ∈ [0,1]. 
 
Definition 2.3. [2] A N.A. Menger PM-space is an ordered triple (X, FFFF, ∆), where  
(X, FFFF) is a non-Archimedean PM-space and ∆ is a t-norm  satisfying the following 
condition: 

(PM-5)      Fu,w (max{x,y})  ≥  ∆ (Fu,v (x), Fv,w(y) ), for all u, v, w ∈ X and  x, y ≥ 0. 
 
Definition 2.4. [2]  A PM-space (X, FFFF) is said to be of type (C)g if there exists a  
g ∈ Ω such that  

   g(Fx,y(t)) ≤  g(Fx,z(t)) + g(Fz,y(t)) 

for all x, y, z ∈ X and t ≥ 0, where Ω = {g | g : [0,1] → [0, ∞) is continuous, strictly 
decreasing, g(1) = 0 and g(0) < ∞}. 
 
Definition 2.5. [2]  A N.A. Menger PM-space (X, FFFF, ∆) is said to be of type (D)g if there 
exists a g ∈ Ω such that  

   g(∆(s,t) ≤  g(s) + g(t) 

for all s, t ∈ [0,1]. 
 
Remark 2.1. [2]  

(1)  If a N.A. Menger PM-space (X, FFFF, ∆) is of type (D)g then (X,    FFFF, ∆) is of type (C)g. 

(2) If a N.A. Menger PM-space (X, FFFF, ∆) is of type (D)g, then it is metrizable, where 
the metric d on X is defined by  

 d(x,y) =  ( )
1

x,y

0

g F (t) d(t)∫ for  all x, y ∈ X.                      

(*) 
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 Throughout this paper, suppose (X,    FFFF, ∆) be a complete N.A. Menger PM-space 
of type (D)g with a continuous strictly increasing t-norm ∆. 

 Let  φ : [0,+ ∞) →  [0, ∞) be a function satisfied the condition (Φ) : 

(Φ) φ is upper-semicontinuous from the right and φ(t) < t for all t > 0.   

 
Lemma 2.1. [2] If a function φ : [0,+ ∞) →  [0,+∞) satisfies the condition (Φ), then we 
have 

(1) For all t ≥ 0, limn→∞ φn(t) = 0, where φn(t) is n-th iteration of φ(t). 

(2) If {t n} is a non-decreasing sequence of real numbers and tn+1 ≤ φ(tn), n = 1, 2, 
… then limn→∞ tn = 0.  In particular, if t ≤ φ(t) for all t ≥ 0, then  t = 0. 

 
Definition 2.6. [2]  Let A, S : X → X be mappings. A and S are said to be compatible if 

n
lim

→∞
 g(FASxn,SAxn

(t)) = 0 for all t > 0, whenever {xn} is a sequence in X such that  

n
lim

→∞  
Axn = 

n
lim

→∞  
Sxn  = z for some z in X. 

 
Definition 2.7. [16]  Let A, S : X → X be mappings. A and S are said to be semi-
compatible if 

n
lim

→∞
 g(FASxn,Sz(t)) = 0 for all t > 0, whenever {xn} is a sequence in X such 

that 
n
lim

→∞  
Axn = 

n
lim

→∞  
Sxn  = z for some z in X. 

 
Definition 2.8. Let A, S : X → X be mappings. A and S are said to be weakly semi-
compatible if 

n
lim

→∞
 g(FASxn,Sz(t)) = 0 or 

n
lim

→∞
 g(FSAxn,Az(t)) = 0 for all t > 0, whenever {xn} 

is a sequence in X such that 
n
lim

→∞  
Axn = 

n
lim

→∞  
Sxn  = z for some z in X. 

Clearly, semi-compatible maps are weakly semi-compatible maps but converse is 
not true. 

Definition 2.9. [15] Self maps A and S of a N.A. Menger PM-space  (X, FFFF, ∆) are said to 
be weakly compatible (or coincidentally commuting) if they commute at their 
coincidence points, i.e.  if Ap = Sp for some  p�∈ X then ASp = SAp.  

Remark 2.2. [15] Compatible maps are weakly compatible but converse is not true.  

Definition 2.10. [14] Self maps A and S of a N.A. Menger PM-space  (X, FFFF, ∆)  are said 
to be occasionally weakly compatible (owc) if and only if there is a point x in X which is 
coincidence point of A and S at which A and S commute.  

Remark 2.3. [16] The concept of semi-compatibility is more general than that of 
compatibility. 

Lemma 2.2. [2]  Let A, B, S, T : X → X  be mappings satisfying the condition (1) and 
(2) as follows : 
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(1) A(X) ⊂ T(X) and B(X) ⊂ S(X). 

(2) g(FAx,By(t)) ≤ φ(max{g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(T)),  
½(g(FSx,By(T)) + g(FTy,Ax(t)))}) 

for all t > 0, where a function φ : [0,+ ∞) → [0,+ ∞) satisfies the condition (Φ). Then the 
sequence {yn} in X, defined by  Ax2n = Tx2n+1 = y2n  and  Bx2n+1 = Sx2n+2 = y2n+1    for n = 
0, 1, 2, ...,   such that 

 
n
lim

→∞
g(Fyn,yn+1

(t)) = 0   for all t > 0   is a Cauchy sequence in X.  

 
3. Main result 
Theorem 3.1. Let A, B, S, T, L, M : X → X  be mappings satisfying the condition  

(3.1.1) L(X) ⊂  ST(X),  M(X) ⊂  AB(X); 
(3.1.2) AB = BA, ST = TS, LB = BL, MT = TM; 
(3.1.3)  either AB or L is continuous;  
(3.1.4) (L, AB) is weakly semi-compatible and (M, ST) is occasionally weakly 

compatible; 

(3.1.5) g(FLx,My(t)) ≤ φ(max{g(FABx,STy(t)), g(FABx, Lx(t)), g(FSTy, My(t)),  
½(g(FABx, My(t)) + g(FSTy, Lx(t)))}) 

      for all t > 0, where a function φ : [0,+ ∞) → [0,+ ∞) satisfies the condition (Φ).       
Then A, B, S, T, L and M have a unique common fixed point in X.  

Proof:  Let x0 ∈ X.  From condition (3.1.1)  ∃  x1, x2 ∈ X  such that   
  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   
Inductively, we can construct sequences {xn} and {yn} in X such that 
(3.1.6)    Lx2n = STx2n+1 = y2n  and      Mx2n+1 = ABx2n+2 = y2n+1 for n = 0, 1, 2, ... .  

Step 1. We prove that 
n
lim

→∞  
g(Fyn,yn+1

(t)) = 0 for all t > 0.   

From (3.1.5) and (3.1.6), we have 
g(Fy2n,y2n+1

(t)) =  g(FLx2n,Mx2n+1
(t))  

≤  φ(max{g(FABx2n,STx2n+1
 (t)), g(FABx2n, Lx2n

(t)), g(FSTx2n+1, Mx2n+1
(t)),  

½(g(FABx2n, Mx2n+1
(t)) + g(FSTx2n+1, Lx2n

(t)))}) 

=   φ(max{g(Fy2n-1,y2n
(t)), g(Fy2n-1, y2n

(t)), g(Fy2n, y2n+1
(t)),  

½(g(Fy2n-1, y2n+1
(t)) + g(1))}) 

≤   φ(max{g(Fy2n-1,y2n
(t)), g(Fy2n, y2n+1

(t)), 

  ½(g(Fy2n-1, y2n
(t)) + g(Fy2n, y2n+1

(t))}). 

If  g(Fy2n-1,y2n
(t)) ≤  g(Fy2n,y2n+1

(t))  for all t > 0, then by (3.1.5) 

  g(Fy2n,y2n+1
(t)) ≤   φ (g(Fy2n,y2n+1

(t))), 

on applying Lemma 2.1,  we have  g(Fy2n,y2n+1
(t)) = 0  for all t > 0.      

Similarly, we have  g(Fy2n+1,y2n+2
(t)) = 0 for all t > 0.  
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Thus, we have  
   

n
lim

→∞  
g(Fyn,yn+1

(t)) = 0  for all t > 0.      

On the other hand, if  g(Fy2n-1,y2n
(t)) ≥  g(Fy2n,y2n+1

(t)), then by (3.1.5), we have 

          g(Fy2n,y2n+1
(t))  ≤   φ (g(Fy2n-1,y2n

(t)))  for all t > 0. 

Similarly,     g(Fy2n+1,y2n+2
(t)) ≤   φ (g(Fy2n,y2n+1

(t)))  for all t > 0. 

Thus, we have    g(Fyn,yn+1
(t)) ≤   φ (g(Fyn-1,yn

(t)))  for all t > 0 &  n = 1, 2, 3, … . 

Therefore, by Lemma 2.1,   

n
lim

→∞
 g(Fyn,yn+1

(t)) = 0  for all t > 0, which implies that {yn} is  a Cauchy sequence 

in X by Lemma 2.2. 

 Since (X, FFFF, ∆) is complete, the sequence {yn} converges to a point  
z ∈ X. Also its subsequences converges as follows : 

(3.1.7)  {Mx2n+1} →  z  and {STx2n+1}   →  z,                                           

(3.1.8)  {Lx2n}  →  z    and    {ABx2n}  →  z. 
Case I.   AB is continuous. 

 As AB is continuous, (AB)2x2n  →  ABz    and    (AB)Lx2n  → ABz. 

As (L,AB) is weakly semi-compatible, so L(AB)x2n → ABz. 
Step 2.  Putting x = ABx2n and y = x2n+1  for t > 0  in (3.1.5), we get 

g(FLABx
2n

,Mx
2n+1

(t)) ≤ φ(max{g(FABABx
2n

,STx
2n+1

(t)), g(FABABx
2n

, LABx
2n

(t)),   

   g(FSTx
2n+1

, Mx
2n+1

(t)),  

½(g(FABABx
2n

, M x
2n+1

(t)) + g(FSTx
2n+1

, LABx
2n

(t)))}). 

Letting n → ∞, we get  

g(FABz,z(t)) ≤ φ(max{g(FABz,z(t)), g(FABz, ABz(t)), g(Fz, z(t)),  
½(g(FABz, z(t)) + g(Fz, ABz(t)))}) 

         = φ(g(FABz,z(t))) 
which implies that  g(FABz,z(t)) = 0 by Lemma 2.1 and so we have ABz = z. 
Step 3.  Putting  x = z   and   y = x2n+1  for t > 0  in (3.1.5), we get 

   g(FLz,Mx2n+1
 (t)) ≤ φ(max{g(FABz,STx2n+1

(t)), g(FABz, Lz(t)), g(FSTx2n+1, Mx2n+1
(t)),  

½(g(FABz, Mx2n+1
(t)) + g(FSTx2n+1, Lz(t)))}). 

Letting n → ∞, we get  

g(FLz,z(t)) ≤ φ(max{g(Fz,z(t)), g(Fz, Lz(t)), g(Fz, z(t)),  
½(g(Fz, z(t)) + g(Fz, Lz(t)))}) 

    = φ(g(FLz,z(t))) 
which implies that  g(FLz,z(t)) = 0 by Lemma 2.1 and so we have Lz = z. 
Therefore,  ABz = Lz = z. 
Step 4.  Putting  x = Bz   and  y = x2n+1  for t > 0  in (3.1.5), we get 



V .K. Gupta, Arihant Jain and Rambabu Dangi 

92 
 

   g(FLBz,Mx2n+1
(t)) ≤ φ(max{g(FABBz,STx2n+1

(t)),g(FABBz, LBz(t)),g(FSTx2n+1,Mx2n+1
(t)),  

½(g(FABBz, Mx2n+1
(t)) + g(FSTx2n+1, LBz(t)))}) 

As BL = LB,  AB = BA,  so we have   
L(Bz) = B(Lz) = Bz  and  AB(Bz) = B(ABz) = Bz. 

Letting n → ∞, we get  

g(FBz,z(t)) ≤ φ(max{g(FBz,z(t)),g(FBz, Bz(t)),g(Fz,z(t)),  
½(g(FBz, z(t)) + g(Fz, Bz(t)))}) 

   = φ(g(FBz,z(t))) 
which implies that  g(FBz,z(t)) = 0 by Lemma 2.1 and so we have Bz = z. 
Also, ABz = z  and so Az = z. 
(3.1.9) Therefore,    Az = Bz = Lz = z.            

Step 5.   As L(X) ⊂ ST(X), there exists v ∈ X such that z = Lz = STv.     
Putting x = x2n    and  y = v   for t > 0  in (3.1.5),  we get 

g(FLx2n,Mv(t)) ≤ φ(max{g(FABx2n,STv(t)), g(FABx2n, Lx2n
 (t)), g(FSTv, Mv(t)),  

½(g(FABx2n, Mv(t)) + g(FSTv, Lx2n
(t)))}). 

Letting n → ∞ and using equation (3.1.8),  we get  

g(Fz,Mv(t)) ≤ φ(max{g(Fz,z(t)), g(Fz, z(t)), g(Fz, Mv(t)),  
½(g(Fz, Mv(t)) + g(Fz, z(t)))}) 

    = φ(g(Fz,Mv(t))) 
which implies that  g(Fz,Mv(t)) = 0 by Lemma 2.1 and so we have z = Mv. 
Hence,  STv = z = Mv, which shows that v is a coincidence point of ST and M.     
As (M, ST) is occasionally weakly compatible, we have 

STMv = MSTv.         
Thus, STz = Mz. 
Step 6.    Putting p = x2n, q = z   for t > 0  in (3.1.5),  we get 

g(FLx2n,Mz(t)) ≤ φ(max{g(FABx2n,STz(t)), g(FABx2n, Lx2n
 (t)), g(FSTz, Mz(t)),  

½(g(FABx2n, Mz(t)) + g(FSTz, Lx2n
 (t)))}). 

Letting n → ∞ and using equation (3.1.8) and Step 5,  we get  

g(Fz,Mz(t)) ≤ φ(max{g(Fz,Mz(t)), g(Fz, z(t)), g(FMz, Mz(t)),  
½(g(Fz, Mz(t)) + g(FMz, z(t)))}) 

      = φ(g(Fz,Mz(t))) 
which implies that  g(Fz,Mz(t)) = 0 by Lemma 2.1 and so we have z = Mz. 
Step 7.    Putting x = x2n   and  y = Tz    for t > 0  in (3.1.5),  we get 

     g(FLx2n,MTz (t)) ≤ φ(max{g(FABx2n,STTz (t)), g(FABx2n, Lx2n
 (t)), g(FSTTz, MTz (t)),  

½(g(FABx2n, MTz (t)) + g(FSTTz, Lx2n
(t)))}) 

As MT = TM   and ST = TS we have  
          MTz = TMz = Tz   and     ST(Tz) = T(STz) = Tz. 

Letting n → ∞,  we get 
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g(Fz,Tz (t)) ≤ φ(max{g(Fz,Tz (t)), g(Fz, z(t)), g(FTz, Tz (t)),  
½(g(Fz, Tz (t)) + g(FTz, z(t)))}) 

               =  φ(g(Fz,Tz (t))), 
which implies that  g(Fz,Tz(t)) = 0 by Lemma 2.1 and so we have z = Tz. 
Now     STz = Tz = z  implies  Sz = z.   
(3.1.10) Hence   Sz = Tz = Mz = z.                    
Combining (3.1.9)  and (3.1.10), we get  
  Az = Bz = Lz = Mz = Tz = Sz  =  z. 
Hence, the six self maps have a common fixed point in this case.  
Case II. L is continuous. 
    As L is continuous, L2x2n  →  Lz    and    L(AB)x2n  → Lz. 
Step 8.  Putting  x = Lx2n   and   y = x2n+1  for t > 0  in (3.1.5), we get 

g(FLLx2n,M x2n+1
(t)) ≤ φ(max{g(FABLx2n,STx2n+1

(t)), g(FABLx2n, LLx2n
(t)),  

  g(FSTx2n+1, M x2n+1
(t)),  

½(g(FABLx2n, M x2n+1
(t)) + g(FSTx2n+1, LLx2n

(t)))}). 

Letting n → ∞, we get  
g(FLz,z(t)) ≤ φ(max{g(FLz,z(t)), g(FLz, Lz(t)), g(Fz, z(t)),  

½(g(FLz, z(t)) + g(Fz, Lz(t)))}) 

      = φ(g(FLz,z(t))), 
which implies that  g(FLz,z(t)) = 0 by Lemma 2.1 and so we have Lz = z. 
Now, using steps 5-7 gives  us   Mz = STz = Sz = Tz  =  z. 

Step 9.   As  M(X) ⊂ AB(X),  there exists w  ∈ X such that  z =  Mz = ABw.     
Putting  x = w   and   y = x2n+1  for t > 0  in (3.1.5), we get 
    g(FLw,Mx2n+1

(t)) ≤ φ(max{g(FABw,STx2n+1
(t)), g(FABw, Lw(t)), g(FSTx2n+1, Mx2n+1

 (t)),  

½(g(FABw, Mx2n+1
(t)) + g(FSTx2n+1, Lw(t)))}). 

Letting n → ∞, we get  
g(FLw,z(t)) ≤ φ(max{g(Fz,z(t)), g(Fz, Lw(t)), g(Fz, z(t)),  

½(g(Fz, z(t)) + g(Fz, Lw(t)))}) 
   = φ(g(FLw,z(t))), 

which implies that  g(FLw,z(t)) = 0 by Lemma 2.1 and so we have Lw = z. 
Thus, we have Lw  =  z = ABw. 
As (L,AB) is semi-compatible, so L(AB)x2n → ABz  and   

as L is continuous, L2x2n  →  Lz    and    L(AB)x2n  → Lz. 
Since limit of a sequence is unique, so ABz = Lz.  
Also,   Bz = z  follows from step 4. 

 Thus, Az = Bz = Lz =  z   and we obtain that z is the common fixed point of the 
six maps in this case also. 
Step 10. (Uniqueness)  Let u be another common fixed point of A, B, S, T, L and M;  
then    Au =  Bu = Su = Tu = Lu = Mu = u. 
 Putting x = z   and    y = u    for t > 0  in   (3.1.5), we get 
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g(FLz,Mu(t)) ≤ φ(max{g(FABz,STu(t)), g(FABz, Lz(t)), g(FSTu, Mu(t)),  
½(g(FABz, Mu(t)) + g(FSTu, Lz(t)))}). 

Letting n → ∞,  we get 

          g(Fz,u(t)) ≤ φ(max{g(Fz,u(t)), g(Fz, z(t)), g(Fu, u(t)), ½(g(Fz, u(t)) + g(Fu, z(t)))}) 

                        =  φ(g(Fz,u(t))), 
which implies that  g(Fz,u(t)) = 0 by Lemma 2.1 and so we have z = u. 
 Therefore, z is a unique common fixed point of A, B, S, T, L and M. 
 This completes the proof. 
 
Remark 3.1. If we take B = T = I, the identity map on X in theorem 3.1, then the 
condition  (3.1.2) is satisfied  trivially and we get 
 
Corollary 3.1.  Let A, S,  L, M : X → X be mappings satisfying the condition :  

(3.1.11)  L(X) ⊆  S(X),    M(X)  ⊆  A(X);   
(3.1.12)  Either A or L is continuous; 
(3.1.13) the pair (L, A) is semi-compatible and (M, S) is occasionally weakly  
                compatible;  

(3.1.14)  g(FLx,My(t)) ≤ φ(max{g(FAx,Sy(t)), g(FAx, Lx(t)), g(FSy, My(t)),  
½(g(FAx, My(t)) + g(FSy, Lx(t)))}) 

for all t > 0, where a function φ : [0,+ ∞) → [0,+ ∞) satisfies the condition (Φ).       
Then A, S, L and M have a unique common fixed point in X.  

 
Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalization of the result of Cho 
et al. [2] and theorem 3.1 is a generalization of the result of Sharma et al. [14] in the 
sense that condition of compatibility of the pairs of self maps has been restricted to 
weakly semi-compatible and occasionally weakly compatible self maps and only one of 
the mappings of the first pair is needed to be continuous.  
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