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1. Introduction

There have been a number of generalizations oficrsgace. One such generalization is
Menger space initiated by Menger [10]. It is a @iolbistic generalization in which we
assign to any two points x and y, a distributionction F,. Schweizer and Sklar [12]
studied this concept and gave some fundamentatsaem this space.

The notion of compatible mapping in a Menger splaag been introduced by
Mishra [11]. Using the concept of compatible mayggi of type (A), Jain et al. [4, 5]
proved some interesting fixed point theorems in §grspace. Afterwards, Jain et al. [6]
proved the fixed point theorem using the conceptvedk compatible maps in Menger
space.

The notion of non-Archimedean Menger space hasn bestablished by
Istratescu and Crivat [9]. The existence of fixed pahmappings on non-Archimedean
Menger space has been given byagascu [8]. This has been the extension of the tesul
of Sehgal and Bharucha-Reid [13] on a Menger sp@be. et al. [2] proved a common
fixed point theorem for compatible mappings in chimedean Menger PM-space. In
the sequel, Singh et al. [16] established the fipxeitht theorem for six self maps and an
example using the concept of semi-compatible salbsrin a non-Archimedean Menger
PM-space.

In this paper, we generalize and extend the res@ho et al. [2] and Sharma et.
al. [14] by introducing the notion of semi-compédilself maps. Also, we cited an
example in support of this.
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2. Preliminaries
For terminologies, notations and properties of MariM-space, refer to [1,8,15].

Definition 2.1. [2] Let X be a non-empty set amlbe the set of all left-continuous
distribution functions. An ordered pair (R) is called a non-Archimedean probabilistic
metric space (briefly, a N.A. PM-spacefFifis a mapping from XxX int® satisfying
the following conditions (the distribution functidifx,y) is denoted by J for all x,y
aOXx):
(PM-1) R,(x) =1, forallx>0, ifandonlyif u=v;
(PM'Z) I:u,v = Fv,u ;
(PM'S) I:u,v (O) = O;
(PM-4) If K,y (xX) =1andEy (y) =1 then k, (max{x, y}) =1,

forall u,v,wdX and x,y>0.

Definition 2.2. [2] A t-norm is a functiom\ : [0,1] % [0,1] - [0,1] which is associative,
commutative, non-decreasing in each coordinateMad) = a for every @&l [0,1].

Definition 2.3. [2] A N.A. Menger PM-space is an ordered triple (Xf, A), where

(X, f) is a non-Archimedean PM-space afidis a t-norm satisfying the following
condition:

(PM-5) R, (max{x,y}) = A (Fuy (%), Ru(y)), forallu, v, wd X and x, y= 0.

Definition 2.4. [2] A PM-space (X,f) is said to be of type (§)if there exists a
g O Q such that

9(Fey(D) < 9(Fcx(D) + 9(R(1))
for all x, y, zOX and t=0, whereQ ={g | g : [0,1] - [0, ) is continuous, strictly
decreasing, g(1) = 0 and g(0yo3.

Definition 2.5. [2] A N.A. Menger PM-space (>, A) is said to be of type (B)f there
exists a g1 Q such that

g@(s,t)< g(s) +g(t)
for all s, tCJ [0,1].

Remark 2.1. [2]
(2) If a N.A. Menger PM-space (X, A) is of type (D} then (X,f, A) is of type (C).

(2) If a N.A. Menger PM-space (k, 4) is of type (D), then it is metrizable, where
the metric d on X is defined by

dexy) = [g(F,, (©)d(for allx, yOx.
*)
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Throughout this paper, suppose €<A) be a complete N.A. Menger PM-space
of type (D), with a continuous strictly increasing t-nofm

Let ¢@:[0,+ o) - [0, ) be a function satisfied the conditioh)(:
(D) @is upper-semicontinuous from the right apft) <t for all t > 0.

Lemma 2.1. [2] If a function@: [0,+ ) — [0,+0) satisfies the conditiord), then we
have

() For all t= 0, lim,_. @'(t) = 0, whereg'(t) is n-th iteration ofy(t).
(2) If {t .} is a non-decreasing sequence of real numberg.armdqt,), n =1, 2,
... then lim_.t, = 0. In particular, if € ¢(t) for all t= 0, then t=0.

Definition 2.6. [2] Let A, S : X - X be mappings. A and S are said to be compatible if
lim g(Fasx sax(t)) = O for all t > 0, whenever {k is a sequence in X such that
n - oo

lim Ax,= lim Sx, =z for some z in X.

n- o n- oo

Definition 2.7. [16] Let A, S : X - X be mappings. A and S are said to be semi-
compatible iflim 9(Fasx,s{t)) = 0 for all t > O, whenever {is a sequence in X such
n - oo

thatlim Ax,= lim Sx, =z for some z in X.

n- o n- o

Definition 2.8. Let A, S : X » X be mappings. A and S are said to be weakly semi-
compatible iflim g(Fasx sAt)) = 0 or im g(Fsax_ (1)) = O for all t > 0, whenever {

n-—oo n-oo
is a sequence in X such tham Ax,= lim Sx, =z for some z in X.

n-oo n-o
Clearly, semi-compatible maps are weakly semi-cdiblgamaps but converse is
not true.

Definition 2.9. [15] Self maps A and S of a N.A. Menger PM-spa&eg f( A) are said to
be weakly compatible (or coincidentally commuting) they commute at their
coincidence points, i.e. if Ap = Sp for somel[p X then ASp = SAp.

Remark 2.2. [15] Compatible maps are weakly compatible but convierset true.

Definition 2.10. [14] Self maps A and S of a N.A. Menger PM-spdeg £, A) are said
to be occasionally weakly compatible (owc) if amdydf there is a point x in X which is
coincidence point of A and S at which A and S corramu

Remark 2.3. [16] The concept of semi-compatibility is more geal than that of
compatibility.

Lemma 2.2. [2] LetA, B, S, T: X- X be mappings satisfying the condition (1) and
(2) as follows :
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(1) A(X) O T(X) and B(X)O S(X).
2 I(Faxey()) < @max{g(Fsx (1), 9(Fscadt)), 9(Fryey(T)),

1/2(g (FSx B)(T)) + g(FTyAx(t)))})

for all t > 0, where a functiop: [0,+ ) - [0,+ ) satisfies the conditiord). Then the
sequence {} in X, defined by A%, = TXoni1= Yon and BX%ni1= S¥nea = Yoner fOrn =
0,1, 2, ..., suchthat

limg(F, y () =0 foralt>0 isa Cauchy sequencXin
n - oo

3. Main result

Theorem 3.1. Let A, B, S, T, L, M : X> X be mappings satisfying the condition
(3.1.1) L(X) O ST(X), M(X) O AB(X);

(3.1.2) AB=BA,ST=TS,LB=BL,MT=TM,;

(3.1.3) either AB or L is continuous;

(3.1.4) (L, AB) is weakly semi-compatible and (M, ST) iscasionally weakly
compatible;

(3.1.5)  g(Fxmy(®)) < @max{g(Fasx sty(1): 9(Faex, x(t)), I(Fsty, my(t)),
YV2(9(Fagx, my(1)) + 9(Fsy, (D))}
for all t > 0, where a functiap: [0,+ ©) - [0,+ ) satisfies the conditiordy).
Then A, B, S, T, L and M have a unique common figetht in X.
Proof: Letx O X. From condition (3.1.1)1 x4, X, O X such that
LXo=STx =y and Mx=ABX;=W.
Inductively, we can construct sequenceg fad {y,} in X such that
(3.1.6) L%,=ST%n1= Yo and MXn+1= ABXono = Yo  forn=0, 1, 2, ...
Step 1. We prove thatim g(F, , (1)) =0 forallt> 0.
n— oo
From (3.1.5) and (3.1.6), we have
g(FVZn'y2n+l(t)) = g(FLXZn*'VlXZnﬂ(t))
< (Kmax{g(FABXZn'STXZnﬂ (®), g(FABXZn' I-XZn(t))’ g(FST)‘Zml' MX2n+1(t))’
l/z(g(FABXZn, Mx2n+1(t)) + g(FSTx2n+]_, Lx2n(t)))})
q(max{g(FVZn_ly)’Zn(t))! g(FVZn_]_v yzn(t))! g(FYva y2n+1(t))a
Y2(9(R 4 vpneaD) T 9}
q(max{g(FVZn_ly)’Zn(t))! g(FVva y2n+1(t))a
Y2(9(R,, 4 von(D) + A(R,,, 5, (D)D)
If 9(Fy,,, 1y, (D) < 9(Fy, y,,.,(1) forallt>0, then by (3.1.5)
g(FVvayZm,l(t)) < (p (g(FyZn:erH,l(t)))!

on applying Lemma 2.1, we have g(F . (t))=0 forallt>0.
Similarly, we have g(f, ,.y,,.(t)) =0 forallt>0.

IN
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Thus, we have
Li[]l 9(Fy, y,,,(0) =0 forallt>0.
On the other hand, if g(f ,, (1)) 2 9(F,,y,.,(1), then by (3.1.5), we have
95, vned) = @(9(F,, 1y,,1)) forallt>0.

Similarly,  9(F,, .50 D) S @ (I(Fy,,y,,.,(1)) forallt>0.
Thus, we have g(F, ()< @(9(F, v (1) forallt>0& n=1,2,3, ....
Therefore, by Lemma 2.1,

!]inl 9(Fyy,.,(1) = 0 for all t > 0, which implies that fyis a Cauchy sequence

in X by Lemma 2.2.

Since (X, f, A) is complete, the sequence ,fyconverges to a point
z O X. Also its subsequences converges as follows :

(3.2.7) {Mxon+g} - z and {ST%n} - 2z,
(3.1.8) {Lxn} - z and {ABx%)} - z.
Casel. AB is continuous.

As AB is continuous, (ABX,, -~ ABz and (AB)L¥, — ABz.
As (L,AB) is weakly semi-compatible, so L(AB}x— ABz.
Step 2. Putting x = ABx%,and y = %,.; fort>0 in (3.1.5), we get

9(FLaex, mx,, (1)) < @Amax{g(Fasasx,, sty , (1), 9(Faeaex, , Laex, (1)),

g(FS'TX2n+1' MX2n+1(t))’
Y2(9(Faaex,,, Mx, . (1) + 9(Fste, . Laex, (D))))-

Letting n - o, we get

9(Fagz(1)) < @max{g(FaezAt)), 9(Fagz, aez(1)), 9(F. A1),

Y2(9(Fagz, A1) + 9(R. ae1)))})

=@(9(FazA1)))
which implies that g(ks;.(t)) = 0 by Lemma 2.1 and so we have ABz = z.

Step 3. Putting x=z and y=x; fort>0 in (3.1.5), we get
I(Rzmx,,,, (1) < @max{g(Faezstx,,, (1)), 9(Fagz, 1t)), 9(Fsm,,q, M1 (D)
V2(9(Faez, Mgy, (1) + 9(Fst,y o L2(D))D)-
Letting n - o, we get
9(RA1)) < Amax{g(F.A1)), 9(F. 1)), (. A1),
V2(9(R, A) + 9(R, )
= @9(RA1)))
which implies that g(E(t)) = 0 by Lemma 2.1 and so we have Lz = z.
Therefore, ABz =Lz = z.
Step 4. Putting x =Bz and y =%, fort>0 in (3.1.5), we get
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I(Rezmx,,,,(1) < @mMax{g(Fagez.smy,,,,(1).9(Fasez, 1eA1), 9(Fstxy,, oMo 41 (D)

V2(9(Faez, Mxyp, (1) + 9(Fsmg,, o LB2(D))})
As BL = LB, AB =BA, so we have
L(Bz) = B(Lz) =Bz and AB(Bz) = B(ABz) = Bz.
Letting n - o, we get
9(Fe; A1) < max{g(Fs.A1)),9(Fez, 1)), 9(F A1),
V2(9(Fez, A1) + 9(F 6A1)))})
= @(g(Fez A1)
which implies that g(# At)) = 0 by Lemma 2.1 and so we have Bz = z.
Also, ABz =z and so Az = z.
(3.1.9) Therefore, Az=Bz=Lz=z.
Step 5. As L(X) O ST(X), there exists 11 X such that z =Lz = STv.
Puttingx=x%, and y=v fort>0 in(3.1.5), we get
I(Fiey,mv(1) < Amax{g(Fasx,,stdt)), 9(Faex,, Lx,, (1), 9(Fstv, mdt)),
Y2(9(Fagx,, mu(t) + 9(Fstv, 1y, (D)D)
Letting n » o and using equation (3.1.8), we get
g(Fmdt)) = emax{g(F A1), 9(F, A1), 9(F, m1)),
V2(9(F wd(1)) + 9(R. A))})
= Q9(Fm(1)))
which implies that g(fu.(t)) = 0 by Lemma 2.1 and so we have z = Mv.

Hence, STv =2z = Mv, which shows that v is a cmlance point of ST and M.
As (M, ST) is occasionally weakly compatible, warda
STMv = MSTv.
Thus, STz = Mz.
Step 6. Puttingp=%,q=z fort>0 in(3.1.5), we get

9(Fix,,M2(1) < @max{g(Faex,,,stA1), 9(Fagx,, Lxy, (1), 9(Fstz, MAL)),
Y2(9(Fagx,y,, M2(1) + 9(Fsz, L, (D).
Letting n - o and using equation (3.1.8) and Step 5, we get

9(Fm(D) < Amax{g(Fm(1)), 9(F, A1), 9(Ruz, m(1)),
V2(9(F, A1) + 9(Fuz, 1))}
= P9(FmA1)))
which implies that g(fut)) = 0 by Lemma 2.1 and so we have z = Mz.
Step 7. Puttingx=x%, and y=Tz fort>0 in(3.1.5), we get
I(Fix,, Mtz (1) < AmMax{g(Fasx,,st1z (1), 9(Faexy, Ly, (1), 9(Fstrz, M2 (1)),

Y2(9(Fasx,y,, M1z (1) + 9(Fst2, 1, (D))})
As MT=TM and ST =TS we have
MTz=TMz=Tz and ST(Tz) =T(ST=z)z.
Letting n » o, we get
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9(F.m2 (1) = @max{g(Ferz (1), 9(F. A1), 9(Frz, 72 (1),
Y2(9(F. 72 (1)) + 9(Fr2, L))

=@9(Fr (1)),
which implies that g(ft)) = 0 by Lemma 2.1 and so we have z = Tz.

Now STz=Tz =z implies Sz =z.
(3.1.10) Hence Sz=Tz=Mz=1z.
Combining (3.1.9) and (3.1.10), we get
Az=Bz=Lz=Mz=Tz=Sz = z

Hence, the six self maps have a common fixed poititis case.
Casell. L is continuous.

As L is continuous, &,, — Lz and L(AB)x%, — Lz.
Step 8. Putting x=L%, and y=x.; fort>0 in(3.1.5), we get

I(FLix M o)) < AMaX{G(FagLxy, 5T0,4(0)s I(FagLxyy, Lixy (D),
I(Fsmo, 1 My (D)
Yo(9(Fagix,ypy Mo, (D) + 9(Fstxyy,, 1 1ix, (D)D)
Letting n —» o, we get
g(Fz1) < emax{g(R- A1), 9(Rz, (1), 9(F. A1),
V2(9(Fz, A1) + 9(R, A1)}
= ®9(RA1)),

which implies that g(E(t)) = 0 by Lemma 2.1 and so we have Lz = z.
Now, using steps 5-7 gives us Mz = STz = Sz =Tz.
Step 9. As M(X) O AB(X), there exists wil X such that z= Mz = ABw.
Putting x=w and y =, fort>0 in (3.1.5), we get

I(Fw My, ,(1) < AMax{g(Fasw,stx,,, (1) I(Fasw, tw(t), 9(Fsts, g Mo 4q (D),

l/z(g(FABw, Mx2n+1(t)) + g(I:STx2n+]_, Lw(t)))})

Letting n - o, we get

9(Fuwz(t) < max{g(F. 1)), 9(F, L), 9(F. A1),
V2(9(R, A1) + 9(R, D))}
= @9(FLwe()),
which implies that g(f .(t)) = 0 by Lemma 2.1 and so we have Lw = z.
Thus, we have Lw = z = ABw.
As (L,AB) is semi-compatible, so L(AB)x - ABz and
as L is continuous,%,, — Lz and L(AB)%, — Lz.
Since limit of a sequence is unique, so ABz = Lz.

Also, Bz =z follows from step 4.

Thus, Az=Bz =Lz = z and we obtain that this common fixed point of the
six maps in this case also.
Step 10. (Uniqueness) Let u be another common fixed pofmh, B, S, T, L and M;
then Au= Bu=Su=Tu=Lu=Mu=u.

Puttingx=z and y=u fort>0 in.X3®), we get
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g(Fzmu(t)) < @max{g(Fagzstdt)), 9(Fasz, L2(1)), 9(Fstu, mut)),
Y2(9(Fagz, mu(t)) + 9(Fsty, LAD))D)-
Letting n - o, we get
9(Eu(1) = emax{g(F-.(1)), 9(R. A1), 9(R, 1)), Y2(9(R, (1)) + 9(R, AH))})
= @o(F.«(1))),
which implies that g(F(t)) = 0 by Lemma 2.1 and so we have z = u.
Therefore, z is a unigue common fixed point oBAS, T, L and M.
This completes the proof.

Remark 3.1. If we take B = T = |, the identity map on X in tvem 3.1, then the
condition (3.1.2) is satisfied trivially and wetg

Corollary 3.1. LetA, S, L, M: X- X be mappings satisfying the condition :
(3.1.11) LX)O S(X), M(X) O A(X);
(3.1.12) Either A or L is continuous;

(3.1.13) the pair (L, A) is semi-compatible and (M) is occasionally weakly
compatible;

(3.1.14) g(Bmy(t)) < @max{g(Faxsy(t), 9(Fax, x(1), 9(Fsy, m(1)),

YV2(9(Fax, my(1) + 9(Fsy, L41)))})
for all t > 0, where a functio@: [0,+ ) - [0,+ ) satisfies the conditiorly).
Then A, S, L and M have a unique common fixed pimirX.

Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalion of the result of Cho
et al. [2] and theorem 3.1 is a generalizationhaf tesult of Sharma et al. [14] in the
sense that condition of compatibility of the paifsself maps has been restricted to
weakly semi-compatible and occasionally weakly catilpe self maps and only one of
the mappings of the first pair is needed to beinanus.

REFERENCES

1. S.S.Chang, Fixed point theorems for single-valued multi-valued mappings in
non-Archimedean Menger probabilistic metric spad&ath. Japonica, 35(5) (1990)
875-885.

2. Y.J.Cho, K.S.Ha and S.S.Chang, Common fixed ptiebrems for compatible
mappings of type (A) in non-Archimedean Menger Rdces, Math. Japonica,
48(1) (1997) 169-179.

3. Y.J.Cho, K.S.Park and S.S.Chang, Fixed point thmsrén metric spaces and
probabilistic metric spaceBjternat. J. Math. & Math. Sci., 19(2) (1996) 243-252.

4. AlJain and B.Singh, Common fixed point theorem irerider space through
compatible maps of type (Ahh. J. Sci. Tech,, 2 (2005) 1-12.

5. A.Jain and B.Singh, A fixed point theorem in Menggrace through compatible
maps of type (A)V.J.M.S, 5(2) (2005) 555-568.

6. A.Jain and B.Singh, Common fixed point theorem ienger Spaceshe Aligarh
Bull. of Math., 25(1) (2006) 23-31.

94



7.

8.

10.
11.

12.

13.

14.

15.

16.

Weakly Semi-Compatible Maps and Fixed Points in Moohimedean Menger
PM-Space

0O.Hadzic, A note on Isatrescu’s fixed point theorems in non-Archimedeamiykr
spacesBull. Math. Soc. <ci. Math. Rep. Soc. Roum. T., 24(72) (1980) 277-280.
V.lIstratescu, Fixed point theorems for some classes dfraction mappings on
nonarchimedean probabilistic metric spaeabl. Math. (Debrecen), 25 (1978) 29-
34.

V.lIstratescu and N.Crivat, On some classes of nonarchiamediéenger spaces,
Seminar de spatii Metrice probabiliste, Univ. Timisoara Nr. 12 (1974).

K.Menger, Statistical metricBroc. Nat. Acad. ci., 28 (1942) 535-537.

S.N.Mishra, Common fixed points of compatible magsi in PM-spacesMath.
Japon., 36(2) (1991) 283-289.

B.Schweizer and A.Sklar, Statistical metric spa@esijfic J. Math., 10 (1960) 313-
334.

V.M.Sehgal and A.T.Bharucha-Reid, Fixed points ofntcaction maps on
probabilistic metric spacebjath. System Theory, 6 (1972) 97- 102.

A.Sharma, A.Jain and S.Choudhari, Occasionally Weedmpatible maps and fixed
points in Non-Archimedean Menger PM-spaté\at. Acad. Math., 25 (2011) 25-36.
B.Singh, A.Jain and P.Agarwal, Weak-compatibility mon-archimedean Menger
PM-SpaceJournal of Indian Acad. Math., 31(2) (2009) 335-350.

B.Singh, A.Jain and P.Agarwal, Semi-compatibility Non-Archimedean Menger
PM-SpaceCommentationes Mathematicae, 49(1) (2009) 15-25.

95



