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1. Introduction 
Let ,x y  be two positive numbers, then 
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are called Power mean, geometric mean and arithmetic mean of ,x y , respectively. 
In 2003, American mathematical monthly, problem 11031, proposed a strong mean 

and Inequality conjecture as below. 
Problem 11031: Let, 0x y > ,define ( , ) ln ( , )M x y N x y= ,where 

1 ln( 1 )
( , )

1 ln( 1 )

f f
N N x y

f f

+ + +
= =

− + −
,

2( 1) 2( 1) 1 1
( )

1 1 1 11
( , ) ( 1)( 1)

4

x y x y

x y x y

e e e e

e e e ef f x y e e e
− − − −− +

+ + + += = − − , 

to prove or disprove ( , ) ( , )M x y G x y≤ . 
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Zhang [14] studied the Schur- geometric convexity of 

( , ) 1 ( , ) ( , )m x y f x y f x y= + + , and give the positive proof of the above problem. 

Li and Shi [6] adapted ( , )M x y as 1 1( , ) 2th sh sh(th )sh(th )
2 2

x y
M x y − −= , then by 

geometric convexity of sh(th )x , they also solved the above Inequality conjecture. 
Shi [7] discussed the Schur- convexity and Schur- geometric convexity of ( , )M x y

He [5] further defined 1 1( , ) 2 tan sin sin(tan )sin(tan )
2 2

x y
H x y − −= ( 1, (0,2 tan 2)x y π−∈ ), 

by polynomial discriminant system [9-10], discussed the Schur power convexity of 
( , )M x y and ( , )H x y [2,11-13,17]. 

Similarly, Chen et. al. [1] defined 

* 1 1( , ) 2sh th th(sh )th(sh )
2 2

x y
M x y − −= ( , (0, )x y ∈ +∞ ), 

* 1 1( , ) 2sin tan tan(sin ) tan(sin )
2 2

x y
H x y − −= ( , (0, )x y π∈ ), 

and then discussed their Schur power convexity. 
In this paper, we generalize the above means and define 
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2 2p p
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( , (0, )x y ∈ +∞ ), 

then discussed its Schur power convexity. 
 

2.  Definition and lemma 
For 1 2( , , , ) n

nx x x x R= ∈⋯ , We rearrange its  components in descending order, and denote 

[1] [2] [ ]nx x x≥ ≥ ≥⋯ . When  ( 1, , )i ix y i n≤ = ⋯ , we write x y≤ for short. 

 
Definition 1. [8]   Suppose, nx y R∈ satisfy: 

(i) ( )[ ] [ ]
1 1

1,2, , 1
k k

i i
i i

x y k n
= =

≤ = −∑ ∑ ⋯ ,      

(ⅱ)
1 1

n n

i i
i i

x y
= =

=∑ ∑ , 

then we say x is controlled by y , denoted by x y≺ . 
 
Definition 2. [8]  Suppose nRΩ ⊂ ,  : Rϕ Ω → , 
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(i) If for any ,  x y∈Ω ,  ( ) ( )x y x yϕ ϕ≤ ⇒ ≤ , then ϕ  is called increasing function on 

Ω ; if ϕ−  is a increasing function on Ω , then ϕ  is called reduction function on Ω . ϕ  is 
called Schur convex function on Ω  

(ii) If for any ,  x y∈ Ω , ( ) ( )x y x yϕ ϕ⇒ ≤≺ , then ϕ  is called Schur-convex function 

on Ω ; if ϕ−  is called Schur-convex function on Ω , then ϕ  is called Schur-concave 
function on Ω . 

Lemma 1. [8] Let ( )nE R⊆  be a symmetric convex set with certain interior points,

:f E R→  is continuous and differentiable in int E ,then f  is called a Schur- convex 
(concave) function on E  if and only iff f  is symmetrical on E  and for all intx E∈ ,  

( ) ( )1 2
1 2

0 0
f f

x x
x x

 ∂ ∂− − ≥ ≤ ∂ ∂ 
.                                                                        (1) 

Definition 3. [14] Let nE R++⊆ ,For any two-vector ,x y E∈ , when

( ) ( )1 2 1 2ln ,ln , , ln ln ,ln , , lnn nx x x y y y⋯ ≺ ⋯ , there are ( ) ( )f x f y≤ . Then f are the Schur- 

geometric convex function on E; f is the Schur- geometry concave function on E, if and 
only if-f is schur-geometric convex function. 
 
Lemma 2. [16] Let ( )nE R⊆ is a symmetric set with interior points, 

( ){ }1 2ln , ln , , ln nx x x x E∈⋯

 
is convex set, :f E R→ continuation, and differentiable in 

the int E. Then the necessary and sufficient condition for f to be a convex (concave) 
function of Schur- geometry isf  is symmetric on E, and for all intx E∈ ,both of 

 ( ) ( )1 2 1 2
1 2

0
f f

x x x x
x x

 ∂ ∂− − ≥ ≤ ∂ ∂ 
.                                                         (2) 

Definition 4. [3,4] Let nE R++⊂ , :f E R→ ,If you take it at will ,x y E∈ ,when 

1 2 1 2

1 1 1 1 1 1
, , , , , ,

n nx x x y y y

   
   
   

⋯ ≺ ⋯

,
 

there are ( ) ( )f x f y≤ ,Then f are the Schur- harmonic convex function on E; If -f is 

harmonic convex function on E,then f are the Schur- harmonic concave function on E. 
 
Lemma 3. [4] Let ( )nE R++⊂ is a symmetric set with interior points, 

( ){ }1 21 / ,1 / , ,1 / nx x x x E∈⋯ is convex set, :f E R→ continuation, and differentiable in 

the int E, Then the necessary and sufficient condition for f to be a convex (concave) 
function of Schur- harmonic isf  is symmetric on E, and for all intx E∈ ,both of 

 

( ) ( )2 2
1 2 1 2

1 2

0 0x x x x
x x

ϕ ϕ ∂ ∂− − ≥ ≤ ∂ ∂ 
.                                            (3) 
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Definition 5. [11-13]  (i) Let :f R R++ →  is strictly monotone function, nRΩ ⊂ . If for any

,x y ∈Ω ,always ( )1 ( ) ( )f f x f yα β− + ∈Ω ,call Ω  is f -convex set, among [ ], 0,1α β ∈  

and 1α β+ = . 

(ii) Let nRΩ ⊂ ,Ω internal is not empty. : Rϕ Ω → ,for any ,x y ∈Ω ,when ( ) ( )f x f y≺

there are ( ) ( )x yϕ ϕ≤ ,Then ϕ−  are Ω  the Schur- f convex function on E. If ϕ−  is 
Schur-f convex function on Ω , then ϕ  are the Schur-f  concave function on Ω . 

According to the definition of Schur-f  convex function. If g is  monotonously 

increasing (decrease),( )( )g xϕ make sense, then ϕ  is Schur-f  convex function, if and 

only if g ϕ�  is Schur-f  convex (concave) function. 
 
Definition 6. [11-13] In definition 5, we take  

( )
1

,  0;
: 0,

ln ,      0.

mx
m

f x m
x m

 − ≠∈ +∞ → 
 =

 

then ϕ  are the Schur-m order power convex function on Ω ;If ϕ−  is Schur-m order 

power convex function on Ω ,then ϕ  are the  Schur-m order power concave function on 
Ω . 
 
Lemma 4. [11-13] Let  :f R R→  is strictly monotone differentiable functions,( )nR++Ω ⊂
is symmetry with interior pointsf -convex set, : Rϕ Ω → on Ω  is continuation, Inside of 

Ω , 0Ω is differentiable, then the necessary and sufficient condition for ϕ  to be a Schur-

f bulge (Schur-f concave) isϕ  is symmetric on Ω , and for 0x∀ ∈Ω ,we have 

( ) ( )1 2
1 1 2 2

1 1
: ( ) ( ) 0 0

( ) ( )
f x f x

f x x f x x

ϕ ϕ ∂ ∂∆ = − − ≥ ≤ ′ ′∂ ∂ 
.                                    (4) 

For Schur-m order power convex function, if 0m ≠ , the corresponding Schur condition 
is 

( )1 11 2
1 2

1 2

0 0
m m

m mx x
x x

m x x

ϕ ϕ− − − ∂ ∂− ≥ ≤ ∂ ∂ 
.                                                            (5) 

It's not hard to find, formula (4) Synthetic formulae (1-5). 
 

Remarks：：：： Owing to 1 2
1 2sgn( ) sgn( )

m mx x
x x

m

− = − , so the above  Schur condition is 

equivalent to        

( )1 1
1 2 1 2

1 2

( ) 0 0m mx x x x
x x

ϕ ϕ− − ∂ ∂− − ≥ ≤ ∂ ∂ 
( m R∈ ). 

Lemma 5. 1
1( ) th(sh )

2

x
g x x−= on(0, )+∞ is monotone decreasing ,and 1

1
0 ( )

2
g x< < . 
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Proof: 2
1 2

2 2

2sh(sh )ch(sh ) ch1 1 2 2 2( ) th(sh ) [1 th (sh )]ch
2 2 2 2 2 ch (sh )

2

x x x
xx x x

g x x
xx x

−
 ′ = − − − = − 
 

, 

owing to 1( ) shp t t= , 2( ) chp t t=  all about t on (0, )+∞  is monotone increment, and 

sh ( 0)t t t> > t ,then 

2sh(sh )ch(sh ) ch 2sh ch ch 2 ch ch 0
2 2 2 2 2 2 2 2 2

x x x x x x x x x
x x x− > − > × − = . 

Thus 1( ) 0g x′ < , 1( )g x  about x  on (0, )+∞ is monotone decrease. Obvious 1( ) 0g x > ,again 

1
0 0 0 0

th(sh ) sh 12 2 2lim ( ) lim lim lim
2x x x x

x x x

g x
x x x+ + + +→ → → →

= = = = . 

Then for any (0, )x ∈ +∞ ,we have 1 1

1
( ) (0)

2
g x g< = . 

Lemma 6.  [1] 1
2( ) 2 ch [sh(2sh )]

2 2

x x
g x x −=  on (0, )+∞ is monotone decrease, and 

20 ( ) 2g x< < . 
 
3. Main results and proof 
Theorem 1. * ( , )pM x y  about ( , )x y  on 2(0, )+∞  Schur-m order concave, if and only if 

m p≥ . 

Proof: When 0p = , * *( , ) ( , )pM x y M x y= ,on document[12] certified * ( , )M x y  about 

( , )x y on 2(0, )+∞  Schur-m order concave, if and only if m p≥ . 
When 0p > ,calculated 

*
1 21

2

( , ) ( , )
th (sh )[1 th (sh )]ch

( , ) 2 2 2
p pM x y f x y x x x

x f x y
−∂

= −
∂

, 

*
1 21

2

( , ) ( , )
th (sh )[1 th (sh )]ch

( , ) 2 2 2
p pM x y f x y y y y

y f x y
−∂

= −
∂

. 

Among 
1 1

1 2
1

1

1 1
[ th (sh ) th (sh )]
2 2 2 2( , )

1 1
2 1 th th (sh ) th (sh )

2 2 2 2

p p p

p
p p

x y

f x y

x y

−

−

+
=

    + +   
     

, 

21

2

1 1
( , ) 1 th (sh ) th (sh )

2 2 2 2

p
p px y

f x y
  = − +  
   

. 

Obvious 1( , ) 0f x y > ,owing to th(sh ), th(sh ) (0,1)
2 2

x y ∈ ,then 
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th (sh ), th (sh ) (0,1)
2 2

p px y ∈ ,
1

1 1
th (sh ) th (sh ) (0,1)

2 2 2 2

p
p px y + ∈ 

 
, 

Thus 2( , ) 0f x y > . 

*

* *
1 1( , ) ( , )

( , ) ( )
p

p pm m

M

M x y M x y
x y x y x y

x y
− − ∂ ∂

∆ = − −  ∂ ∂ 
, then  

* ( , )
pM

x y∆  

1 1 2 1 1 21

2

( ) ( , )
th (sh )[1 th (sh )]ch th (sh )[1 th (sh )]ch

( , ) 2 2 2 2 2 2
m p m px y f x y x x x y y y

x y
f x y

− − − −−  = − − − 
 

 

1 1 2 1 1 2
2

1

2

th (sh )[1 th (sh )]ch th (sh )[1 th (sh )]ch( ) ( , ) 2 2 2 2 2 2
( , )

m p m px x x y y y
x yx y f x y

f x y x y

− − − −− − −−= ⋅
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owing to 

2

1 1 2 1
[1 th (sh )]ch

2 2th (sh )[1 th (sh )]ch [ th(sh )]
2 2 2 2 th(sh )

2

m p p m p

x x
xx x x x

x x x
x

− − − −
−

− =  

1
2 ch

2[ th(sh )]
2 sh(2sh )

2

p m p

x
xx

x x
x

− −=  

1 2[ ( )] ( )p m px g x g x−= . 

When m p≥ , apparently 0p mx − > ,and 1
p my x −= about x  on (0, )+∞ is monotone 

decrease. By Lemma 5 and 0p > , we have 1[ ( )] 0pg x >  and 2 1[ ( )] py g x= about x  on 
(0, )+∞ is monotone decrease. Then according to lemma 6, obvious 2( ) 0g x > , and 2( )g x  
about x  on (0, )+∞ is monotone decrease. Comprehensive, function 

1 2( ) [ ( )] ( )p m ph x x g x g x−= about x  on (0, )+∞ is monotone decrease, then 

*

2
1

2

( ) ( , ) ( ) ( )
( , ) 0

( , )pM

x y f x y h x h y
x y

f x y x y

− −∆ = ⋅ ≤
−

. 

According to lemma 6，we can get * ( , )pM x y  about ( , )x y  on 2(0, )+∞  is Schur-m order 

concave. 
When 0p >  and m p< ,owing to 

1 1

1
lim [ ( )] [ lim ( )] ( lim ) 0p p p

x x x
g x g x

x→+∞ →+∞ →+∞
= = = , 

1 1
1 1

2

2 ch 2 ch 22 20 0( )
shsh(2sh ) sh 1

2 2

p m p m
p m p m

x

x x
x x x x

x
x xx

e

+ − + −
+ − + −

< < = < → → +∞
−

. 
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Then    

1

1

2 ch
2lim ( ) lim [ ( )] lim 0 0 0

sh(2sh )
2

p m

p

x x x

x
x

h x g x
x

+ −

→+∞ →+∞ →+∞
= ⋅ = × = . 

So    

1
2ch1 2lim [ ( ) (1)] lim ( ) th (sh )

12 sh(2sh )
2

p

x x
h x h h x

→+∞ →+∞

 
 

=  
 
 

− −

1
2ch1 2th (sh )

12 sh(2sh )
2

0p−= < . 

Then 0 (1, )x∃ ∈ +∞  make 0

0

( ) (1)
0

1

h x h

x

− <
−

, * 0( ,1) 0
pM

x∆ < . 

Associative Lemma 5 and  Lemma 6, we can get 

1 2

1
0 ( ) [ ( )] ( ) ( ( 0)

2
)2 0p m p p m ph y y g y g y y y− − +→< × →< = . 

Then 
0

lim ( ) 0
y

h y
+→

= , so 

0 0

1
2ch1 2lim[ (1) ( )] lim[th (sh ) ( )]

12 sh(2sh )
2

p

y y
h h y h y

+ +→ →
− −=

1
2ch1 2th (sh )

12 sh(2s
0

h )
2

p= >  

Then 0 (0,1)y∃ ∈  make 0

0

(1) ( )
0

1

h h y

y
>

−
−

, * 0(1, ) 0
pM

y∆ > . 

Because at this point, * ( , )
pM

x y∆  on 2(0, )+∞ is symbol uncertainty, thus * ( , )pM x y  is 

not 2(0, )+∞  Schur-m power concave (convex) function. 
In summary, the theorem can be proved. 
 

4. Two unresolved issues     
Question 1.  To average * ( , )pM x y ,Where the range of values of p  can be extended to R

try to give * ( , )pM x y ( p R∈ ) about ( , )x y  on 2(0, )+∞ necessary and sufficient conditions 

for power convexity of Schur-m order. 
 
Question 2. Similarly the form of * ( , ).H x y More general averages involving 
trigonometric functions can be defined as follows 

* 1 1( , ) 2sin tan tan(sin ), tan(sin )
2 2p p

x y
H x y M− −   =   

  
 

1 1 1

1 1

1 1
2sin tan [ tan (sin ) tan (sin )] , 0

2 2 2 2

2sin tan tan(sin ) tan(sin ), 0
2 2

p p px y
p

x y
p

− −

− −

  + ≠ 
 = 

 =


( , (0, )x y π∈ ), 

try to give * ( , )pH x y  about ( , )x y  on 2(0, )π necessary and sufficient conditions for power 

convexity of Schur-m order. 
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