Journal of Mathematics and Informatics Vol. 17, 2019, 1-8 ISSN: 2349-0632 (P), 2349-0640 (online) Published 20 May 2019 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/jmi.141av17a1

Journal of **Mathematics and** Informatics

A Generalization of Hyperbolic Special Mean and its Schur Power Convexity

Chun-yong Wang¹, Xiaoqiang Zhou² and Yameng Deng²

¹School of Mathematics and Computer Science, Hezhou University Hezhou, Guangxi, 542800, P.R.China ²School of Information Science and Engineering Hunan Institute of Science and Technology Yueyang, Hunan, 414006, P.R. China ²Corresponding author. Email: <u>zxq0923@163.com</u>

Received 22 April 2019; accepted 17 May 2019

Abstract. By combining hyperbolic special mean with power average, a more general mean is studied. The necessary and sufficient conditions for the determination of Schur are also given.

Keywords: Hyperbolic function; Schur convexity; Schur power convexity

AMS Mathematics Subject Classification (2010): 52A55

1. Introduction

Let x, y be two positive numbers, then

$$M_{p}(x, y) = \begin{cases} (\frac{x^{p}}{2} + \frac{y^{p}}{2})^{1/p}, p \neq 0\\ \sqrt{xy}, p = 0 \end{cases}$$

$$G(x, y) = M_{0}(x, y) = \sqrt{xy},$$

$$A(x, y) = M_{1}(x, y) = \frac{x + y}{2}$$

are called Power mean, geometric mean and arithmetic mean of x, y, respectively.

In 2003, American mathematical monthly, problem 11031, proposed a strong mean and Inequality conjecture as below.

Problem 11031: Let x, y > 0, define $M(x, y) = \ln N(x, y)$, where

$$N = N(x, y) = \frac{1 + \ln(\sqrt{1 + f} + \sqrt{f})}{1 - \ln(\sqrt{1 + f} - \sqrt{f})}, f = f(x, y) = \frac{1}{4} \left(e^{\frac{2(e^x - 1)}{e^x + 1}} - 1\right) \left(e^{\frac{2(e^y - 1)}{e^y + 1}} - 1\right) e^{-\left(\frac{e^x - 1}{e^x + 1} + \frac{e^y - 1}{e^y + 1}\right)},$$

to prove or disprove $M(x, y) \leq G(x, y)$.

Zhang [14] studied the Schur- geometric convexity of

 $m(x, y) = \sqrt{1 + f(x, y)} + \sqrt{f(x, y)}$, and give the positive proof of the above problem.

Li and Shi [6] adapted
$$M(x, y)$$
 as $M(x, y) = 2 \operatorname{th}^{-1} \operatorname{sh}^{-1} \sqrt{\operatorname{sh}(\operatorname{th} \frac{x}{2}) \operatorname{sh}(\operatorname{th} \frac{y}{2})}$, then by

geometric convexity of sh(thx), they also solved the above Inequality conjecture.

Shi [7] discussed the Schur- convexity and Schur- geometric convexity of M(x, y)

He [5] further defined $H(x, y) = 2 \tan^{-1} \sin^{-1} \sqrt{\sin(\tan \frac{x}{2}) \sin(\tan \frac{y}{2})}$ ($x, y \in (0, 2 \tan^{-1} \pi/2)$), by polynomial discriminant system [9-10], discussed the Schur power convexity of

M(x, y) and H(x, y) [2,11-13,17].

Similarly, Chen et. al. [1] defined

$$M^{*}(x, y) = 2 \operatorname{sh}^{-1} \operatorname{th}^{-1} \sqrt{\operatorname{th}(\operatorname{sh} \frac{x}{2}) \operatorname{th}(\operatorname{sh} \frac{y}{2})} (x, y \in (0, +\infty)),$$

$$H^{*}(x, y) = 2 \operatorname{sin}^{-1} \operatorname{tan}^{-1} \sqrt{\operatorname{tan}(\operatorname{sin} \frac{x}{2}) \operatorname{tan}(\operatorname{sin} \frac{y}{2})} (x, y \in (0, \pi)),$$

and then discussed their Schur power convexity.

In this paper, we generalize the above means and define

$$M_{p}^{*}(x, y) = 2 \operatorname{sh}^{-1} \operatorname{th}^{-1} \left[M_{p} \left(\operatorname{th}(\operatorname{sh} \frac{x}{2}), \operatorname{th}(\operatorname{sh} \frac{y}{2}) \right) \right]$$
$$= \begin{cases} 2 \operatorname{sh}^{-1} \operatorname{th}^{-1} \left\{ \left[\frac{1}{2} \operatorname{th}^{p}(\operatorname{sh} \frac{x}{2}) + \frac{1}{2} \operatorname{th}^{p}(\operatorname{sh} \frac{y}{2}) \right]^{1/p} \right\}, p > 0 \\ 2 \operatorname{sh}^{-1} \operatorname{th}^{-1} \sqrt{\operatorname{th}(\operatorname{sh} \frac{x}{2}) \operatorname{th}(\operatorname{sh} \frac{y}{2})}, p = 0 \end{cases} (x, y \in (0, +\infty)),$$

then discussed its Schur power convexity.

2. Definition and lemma

For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, We rearrange its components in descending order, and denote $x_{[1]} \ge x_{[2]} \ge \dots \ge x_{[n]}$. When $x_i \le y_i$ $(i = 1, \dots, n)$, we write $x \le y$ for short.

Definition 1. [8] Suppose $x, y \in R^n$ satisfy:

(i)
$$\sum_{i=1}^{k} x_{i} \le \sum_{i=1}^{k} y_{i} (k = 1, 2, \dots, n-1)$$

(E) $\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$,

then we say x is controlled by y, denoted by $x \prec y$.

Definition 2. [8] Suppose $\Omega \subset R^n$, $\varphi : \Omega \to R$,

A Generalization of Hyperbolic Special Mean and its Schur Power Convexity

(i) If for any $x, y \in \Omega$, $x \le y \Rightarrow \varphi(x) \le \varphi(y)$, then φ is called increasing function on Ω ; if $-\varphi$ is a increasing function on Ω , then φ is called reduction function on Ω . φ is called Schur convex function on Ω

(ii) If for any $x, y \in \Omega$, $x \prec y \Rightarrow \varphi(x) \le \varphi(y)$, then φ is called Schur-convex function on Ω ; if $-\varphi$ is called Schur-convex function on Ω , then φ is called Schur-concave function on Ω .

Lemma 1. [8] Let $E(\subseteq \mathbb{R}^n)$ be a symmetric convex set with certain interior points, $f: E \to \mathbb{R}$ is continuous and differentiable in int *E*, then *f* is called a Schur- convex (concave) function on *E* if and only iff *f* is symmetrical on *E* and for all $x \in \text{int } E$,

$$\left(x_{1}-x_{2}\right)\left(\frac{\partial f}{\partial x_{1}}-\frac{\partial f}{\partial x_{2}}\right)\geq0\left(\leq0\right).$$
(1)

Definition 3. [14] Let $E \subseteq R_{++}^n$, For any two-vector $x, y \in E$, when $(\ln x_1, \ln x_2, \dots, \ln x_n) \prec (\ln y_1, \ln y_2, \dots, \ln y_n)$, there are $f(x) \le f(y)$. Then f are the Schurgeometric convex function on E; f is the Schurgeometry concave function on E, if and only if f is schurgeometric convex function.

Lemma 2. [16] Let $E(\subseteq R^n)$ is a symmetric set with interior points,

 $\{(\ln x_1, \ln x_2, \dots, \ln x_n) | x \in E\}$ is convex set, $f : E \to R$ continuation, and differentiable in the **int** E. Then the necessary and sufficient condition for f to be a convex (concave) function of Schur- geometry is f is symmetric on E, and for all $x \in \text{int } E$, both of

$$\left(x_1 - x_2\right) \left(x_1 \frac{\partial f}{\partial x_1} - x_2 \frac{\partial f}{\partial x_2}\right) \ge (\le) 0.$$
(2)

Definition 4. [3,4] Let $E \subset \mathbb{R}^n_{++}$, $f: E \to \mathbb{R}$, If you take it at will $x, y \in E$, when

$$\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) \prec \left(\frac{1}{y_1}, \frac{1}{y_2}, \dots, \frac{1}{y_n}\right)$$

there are $f(x) \le f(y)$, Then f are the Schur- harmonic convex function on E; If -f is harmonic convex function on E, then f are the Schur- harmonic concave function on E.

Lemma 3. [4] Let $E(\subset \mathbb{R}^n_{++})$ is a symmetric set with interior points,

 $\{(1/x_1, 1/x_2, \dots, 1/x_n) | x \in E\}$ is convex set, $f : E \to R$ continuation, and differentiable in the **int** E. Then the necessary and sufficient condition for f to be a convex (concave) function of Schur- harmonic is f is symmetric on E, and for all $x \in int E$, both of

$$\left(x_{1}-x_{2}\right)\left(x_{1}^{2}\frac{\partial\varphi}{\partial x_{1}}-x_{2}^{2}\frac{\partial\varphi}{\partial x_{2}}\right)\geq0(\leq0).$$
(3)

Definition 5. [11-13] (i) Let $f: R_{++} \to R$ is strictly monotone function, $\Omega \subset R^n$. If for any $x, y \in \Omega$, always $f^{-1}(\alpha f(x) + \beta f(y)) \in \Omega$, call Ω is f-convex set, among $\alpha, \beta \in [0,1]$ and $\alpha + \beta = 1$.

(ii) Let $\Omega \subset \mathbb{R}^n$, Ω internal is not empty. $\varphi : \Omega \to \mathbb{R}$, for any $x, y \in \Omega$, when $f(x) \prec f(y)$ there are $\varphi(x) \le \varphi(y)$, Then $-\varphi$ are Ω the Schur- **f** convex function on E. If $-\varphi$ is Schur- *f* convex function on Ω , then φ are the Schur- *f* concave function on Ω .

According to the definition of Schur- f convex function. If g is monotonously increasing (decrease), $g(\varphi(x))$ make sense, then φ is Schur- f convex function, if and only if $g \circ \varphi$ is Schur- f convex (concave) function.

Definition 6. [11-13] In definition 5, we take

$$f: x \in (0, +\infty) \to \begin{cases} \frac{x^m - 1}{m}, & m \neq 0; \\ \ln x, & m = 0. \end{cases}$$

then φ are the Schur-*m* order power convex function on Ω ; If $-\varphi$ is Schur-*m* order power convex function on Ω , then φ are the Schur-*m* order power concave function on Ω .

Lemma 4. [11-13] Let $f: R \to R$ is strictly monotone differentiable functions, $\Omega(\subset R_{++}^n)$ is symmetry with interior points f -convex set, $\varphi: \Omega \to R$ on Ω is continuation, Inside of Ω , Ω^0 is differentiable, then the necessary and sufficient condition for φ to be a Schur*f* bulge (Schur- *f* concave) is φ is symmetric on Ω , and for $\forall x \in \Omega^0$, we have

$$\Delta := \left(f(x_1) - f(x_2) \right) \left(\frac{1}{f'(x_1)} \frac{\partial \varphi}{\partial x_1} - \frac{1}{f'(x_2)} \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \left(\le 0 \right).$$
(4)

For Schur-*m* order power convex function, if $m \neq 0$, the corresponding Schur condition is

$$\frac{x_1^m - x_2^m}{m} \left(x_1^{1-m} \frac{\partial \varphi}{\partial x_1} - x_2^{1-m} \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \left(\le 0 \right).$$
(5)

It's not hard to find, formula (4) Synthetic formulae (1-5).

Remarks: Owing to $sgn(\frac{x_1^m - x_2^m}{m}) = sgn(x_1 - x_2)$, so the above Schur condition is equivalent to

$$(x_1 - x_2) \left(x_1^{1-m} \frac{\partial \varphi}{\partial x_1} - x_2^{1-m} \frac{\partial \varphi}{\partial x_2} \right) \ge 0 (\le 0) (m \in R).$$

Lemma 5. $g_1(x) = x^{-1} \operatorname{th}(\operatorname{sh} \frac{x}{2})$ on $(0, +\infty)$ is monotone decreasing and $0 < g_1(x) < \frac{1}{2}$.

A Generalization of Hyperbolic Special Mean and its Schur Power Convexity

Proof:
$$g'_1(x) = -\frac{1}{x^2} \left\{ \operatorname{th}(\operatorname{sh}\frac{x}{2}) - \frac{1}{2}x[1 - \operatorname{th}^2(\operatorname{sh}\frac{x}{2})]\operatorname{ch}\frac{x}{2} \right\} = -\frac{2\operatorname{sh}(\operatorname{sh}\frac{x}{2})\operatorname{ch}(\operatorname{sh}\frac{x}{2}) - x\operatorname{ch}\frac{x}{2}}{2x^2\operatorname{ch}^2(\operatorname{sh}\frac{x}{2})},$$

owing to $p_1(t) = \operatorname{sh} t$, $p_2(t) = \operatorname{ch} t$ all about t on $(0, +\infty)$ is monotone increment, and $\operatorname{sh} t > t(t > 0) t$, then

$$2\operatorname{sh}(\operatorname{sh}\frac{x}{2})\operatorname{ch}(\operatorname{sh}\frac{x}{2}) - \operatorname{xch}\frac{x}{2} > 2\operatorname{sh}\frac{x}{2}\operatorname{ch}\frac{x}{2} - \operatorname{xch}\frac{x}{2} > 2 \times \frac{x}{2}\operatorname{ch}\frac{x}{2} - \operatorname{xch}\frac{x}{2} = 0.$$

Thus $g'_1(x) < 0$, $g_1(x)$ about x on $(0, +\infty)$ is monotone decrease. Obvious $g_1(x) > 0$, again

$$\lim_{x \to 0^+} g_1(x) = \lim_{x \to 0^+} \frac{\operatorname{th}(\operatorname{sh} \frac{x}{2})}{x} = \lim_{x \to 0^+} \frac{\operatorname{sh} \frac{x}{2}}{x} = \lim_{x \to 0^+} \frac{\frac{x}{2}}{x} = \frac{1}{2}.$$

Then for any $x \in (0, +\infty)$, we have $g_1(x) < g_1(0) = \frac{1}{2}$.

Lemma 6. [1] $g_2(x) = 2x \operatorname{ch} \frac{x}{2} [\operatorname{sh}(2\operatorname{sh} \frac{x}{2})]^{-1}$ on $(0, +\infty)$ is monotone decrease, and $0 < g_2(x) < 2$.

3. Main results and proof

Theorem 1. $M_p^*(x, y)$ about (x, y) on $(0, +\infty)^2$ Schur-m order concave, if and only if $m \ge p$.

Proof: When p = 0, $M_p^*(x, y) = M^*(x, y)$, on document[12] certified $M^*(x, y)$ about (x, y) on $(0, +\infty)^2$ Schur-m order concave, if and only if $m \ge p$.

When p > 0, calculated

$$\frac{\partial M_{p}^{*}(x,y)}{\partial x} = \frac{f_{1}(x,y)}{f_{2}(x,y)} \operatorname{th}^{p-1}(\operatorname{sh}\frac{x}{2})[1-\operatorname{th}^{2}(\operatorname{sh}\frac{x}{2})]\operatorname{ch}\frac{x}{2},$$
$$\frac{\partial M_{p}^{*}(x,y)}{\partial y} = \frac{f_{1}(x,y)}{f_{2}(x,y)} \operatorname{th}^{p-1}(\operatorname{sh}\frac{y}{2})[1-\operatorname{th}^{2}(\operatorname{sh}\frac{y}{2})]\operatorname{ch}\frac{y}{2}.$$

Among

$$f_{1}(x, y) = \frac{\left[\frac{1}{2} \operatorname{th}^{p}(\operatorname{sh}\frac{x}{2}) + \frac{1}{2} \operatorname{th}^{p}(\operatorname{sh}\frac{y}{2})\right]^{1/p-1}}{2\sqrt{1 + \left\{\operatorname{th}^{-1}\left[\left(\frac{1}{2} \operatorname{th}^{p}(\operatorname{sh}\frac{x}{2}) + \frac{1}{2} \operatorname{th}^{p}(\operatorname{sh}\frac{y}{2})\right)^{1/p}\right]\right\}^{2}}},$$
$$f_{2}(x, y) = 1 - \left[\left(\frac{1}{2} \operatorname{th}^{p}(\operatorname{sh}\frac{x}{2}) + \frac{1}{2} \operatorname{th}^{p}(\operatorname{sh}\frac{y}{2})\right)^{1/p}\right]^{2}.$$

Obvious $f_1(x, y) > 0$, owing to $th(sh\frac{x}{2})$, $th(sh\frac{y}{2}) \in (0,1)$, then

 $th^{p}(\operatorname{sh} \frac{x}{2}), th^{p}(\operatorname{sh} \frac{y}{2}) \in (0,1), \left(\frac{1}{2}th^{p}(\operatorname{sh} \frac{x}{2}) + \frac{1}{2}th^{p}(\operatorname{sh} \frac{y}{2})\right)^{1/p} \in (0,1),$ Thus $f_{2}(x, y) > 0$.

$$\begin{split} &\Delta_{M_{p}^{*}}(x,y) = (x-y) \left(x^{1-m} \frac{\partial M_{p}^{*}(x,y)}{\partial x} - y^{1-m} \frac{\partial M_{p}^{*}(x,y)}{\partial y} \right), \text{ then } \\ &\Delta_{M_{p}^{*}}(x,y) \\ &= \frac{(x-y)f_{1}(x,y)}{f_{2}(x,y)} \left\{ x^{1-m} \text{th}^{p-1}(\text{sh}\frac{x}{2})[1-\text{th}^{2}(\text{sh}\frac{x}{2})] \text{ch}\frac{x}{2} - y^{1-m} \text{th}^{p-1}(\text{sh}\frac{y}{2})[1-\text{th}^{2}(\text{sh}\frac{y}{2})] \text{ch}\frac{y}{2} \right\} \\ &- (x-y)^{2} f_{1}(x,y) - x^{1-m} \text{th}^{p-1}(\text{sh}\frac{x}{2})[1-\text{th}^{2}(\text{sh}\frac{x}{2})] \text{ch}\frac{x}{2} - y^{1-m} \text{th}^{p-1}(\text{sh}\frac{y}{2})[1-\text{th}^{2}(\text{sh}\frac{y}{2})] \text{ch}\frac{y}{2} \end{split}$$

x - y

owing to

 $f_2(x, y)$

$$x^{1-m} \operatorname{th}^{p-1}(\operatorname{sh}\frac{x}{2})[1-\operatorname{th}^{2}(\operatorname{sh}\frac{x}{2})]\operatorname{ch}\frac{x}{2} = x^{p-m}[x^{-1}\operatorname{th}(\operatorname{sh}\frac{x}{2})]^{p} \frac{x[1-\operatorname{th}^{2}(\operatorname{sh}\frac{x}{2})]\operatorname{ch}\frac{x}{2}}{\operatorname{th}(\operatorname{sh}\frac{x}{2})}$$
$$= x^{p-m}[x^{-1}\operatorname{th}(\operatorname{sh}\frac{x}{2})]^{p} \frac{2x\operatorname{ch}\frac{x}{2}}{\operatorname{sh}(2\operatorname{sh}\frac{x}{2})}$$
$$= x^{p-m}[g_{1}(x)]^{p}g_{2}(x).$$

When $m \ge p$, apparently $x^{p-m} > 0$, and $y_1 = x^{p-m}$ about x on $(0, +\infty)$ is monotone decrease. By Lemma 5 and p > 0, we have $[g_1(x)]^p > 0$ and $y_2 = [g_1(x)]^p$ about x on $(0, +\infty)$ is monotone decrease. Then according to lemma 6, obvious $g_2(x) > 0$, and $g_2(x)$ about x on $(0, +\infty)$ is monotone decrease. Comprehensive, function $h(x) = x^{p-m}[g_1(x)]^p g_2(x)$ about x on $(0, +\infty)$ is monotone decrease, then

$$\Delta_{M_p^*}(x,y) = \frac{(x-y)^2 f_1(x,y)}{f_2(x,y)} \cdot \frac{h(x) - h(y)}{x-y} \le 0.$$

According to lemma 6, we can get $M_p^*(x, y)$ about (x, y) on $(0, +\infty)^2$ is Schur-m order concave.

When p > 0 and m < p, owing to

$$\lim_{x \to +\infty} [g_1(x)]^p = [\lim_{x \to +\infty} g_1(x)]^p = (\lim_{x \to +\infty} \frac{1}{x})^p = 0,$$

$$0 < \frac{2x^{1+p-m} \operatorname{ch} \frac{x}{2}}{\operatorname{sh}(2\operatorname{sh} \frac{x}{2})} < \frac{2x^{1+p-m} \operatorname{ch} \frac{x}{2}}{\operatorname{sh} x} = \frac{x^{1+p-m}}{\operatorname{sh} \frac{x}{2}} < \frac{2x^{1+p-m}}{e^{\frac{x}{2}} - 1} \to 0 (x \to +\infty).$$

A Generalization of Hyperbolic Special Mean and its Schur Power Convexity

Then $\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} [g_1(x)]^p \cdot \lim_{x \to +\infty} \frac{2x^{1+p-m} \operatorname{ch} \frac{x}{2}}{\operatorname{sh}(2\operatorname{sh} \frac{x}{2})} = 0 \times 0 = 0.$

So
$$\lim_{x \to +\infty} [h(x) - h(1)] = \lim_{x \to +\infty} \left[h(x) - \operatorname{th}^{p}(\operatorname{sh}\frac{1}{2}) \frac{2\operatorname{ch}\frac{1}{2}}{\operatorname{sh}(2\operatorname{sh}\frac{1}{2})} \right] = -\operatorname{th}^{p}(\operatorname{sh}\frac{1}{2}) \frac{2\operatorname{ch}\frac{1}{2}}{\operatorname{sh}(2\operatorname{sh}\frac{1}{2})} < 0.$$

Then $\exists x_0 \in (1, +\infty)$ make $\frac{h(x_0) - h(1)}{x_0 - 1} < 0, \Delta_{M_p^*}(x_0, 1) < 0.$

Associative Lemma 5 and Lemma 6, we can get

$$0 < h(y) = y^{p-m} [g_1(y)]^p g_2(y) < y^{p-m} (\frac{1}{2})^p \times 2 \to 0(y \to 0^+) .$$

Then $\lim_{y\to 0^+} h(y) = 0$, so

$$\lim_{y \to 0^+} [h(1) - h(y)] = \lim_{y \to 0^+} [th^p(sh\frac{1}{2}) \frac{2ch\frac{1}{2}}{sh(2sh\frac{1}{2})} - h(y)] = th^p(sh\frac{1}{2}) \frac{2ch\frac{1}{2}}{sh(2sh\frac{1}{2})} > 0$$

Then $\exists y_0 \in (0,1)$ make $\frac{h(1) - h(y_0)}{1 - y_0} > 0, \Delta_{M_p^*}(1, y_0) > 0.$

Because at this point, $\Delta_{M_p^*}(x, y)$ on $(0, +\infty)^2$ is symbol uncertainty, thus $M_p^*(x, y)$ is

not $(0, +\infty)^2$ Schur-m power concave (convex) function.

In summary, the theorem can be proved.

4. Two unresolved issues

Question 1. To average $M_p^*(x, y)$, Where the range of values of p can be extended to R try to give $M_p^*(x, y)$ ($p \in R$) about (x, y) on $(0, +\infty)^2$ necessary and sufficient conditions for power convexity of Schur-m order.

Question 2. Similarly the form of $H^*(x, y)$. More general averages involving trigonometric functions can be defined as follows

$$H_{p}^{*}(x, y) = 2\sin^{-1}\tan^{-1}\left[M_{p}\left(\tan(\sin\frac{x}{2}), \tan(\sin\frac{y}{2})\right)\right]$$
$$= \begin{cases} 2\sin^{-1}\tan^{-1}\left\{\left[\frac{1}{2}\tan^{p}(\sin\frac{x}{2}) + \frac{1}{2}\tan^{p}(\sin\frac{y}{2})\right]^{1/p}\right\}, p \neq 0\\ 2\sin^{-1}\tan^{-1}\sqrt{\tan(\sin\frac{x}{2})}\tan(\sin\frac{y}{2}), p = 0 \end{cases} (x, y \in (0, \pi)),$$

try to give $H_p^*(x, y)$ about (x, y) on $(0, \pi)^2$ necessary and sufficient conditions for power convexity of Schur-m order.

Acknowledgments. This work was supported by the Doctor's Scientific Research Foundation of Hezhou University (No.HZUBS201505) and Natural Science Foundation of Hunan Province (No: 2019JJ40100). Also, we are grateful to the reviewers for their valuable comments.

REFERENCES

- 1. D.S.Chen, C.Y.Wang and S.D.Tao, Two new "strange" averages and their Schur power convexity, Mathematical Practice and Cognition (In press).
- 2. Y.P.Deng, S.H.Wu and D.He, On the Schur power convexity of generalized muirhead mean, Practice and Cognition of Mathematics (Chinese), 44(5) (2014) 255-268.
- 3. K.Z.Guan, Schur-convexity of the complete symmetric function, *Math. Inequal. Appl.*, 9 (2006) 567-576.
- 4. K.Z.Guan, Some properties of a class of symmetric functions, *J. Math. Anal. Appl.*, 336 (2007) 70-80.
- 5. D.He, On the Schur power convexity of two "peculiar" averages, *Journal of Guangdong second normal University* (Chinese), 36(3) (2016) 30-38.
- 6. D.M.Li and H.N.Shi. A New proof of the conjecture of a binary mean value inequality, *Mathematical Practice and Cognition* (Chinese), 36(4) (2006) 278-283.
- 7. H.N.Shi, Controlled theory and analytic inequalities, *Harbin: Harbin University of Technology Press* (Chinese) (2012) 283-287.
- 8. B.Y.Wang, Basis of control inequality, *Beijing: Beijing normal University Press* (Chinese), 1990.
- 9. L.Yang, J.Z.Zhang and X.R.Hou, Nonlinear algebraic equations and machine proof of theorems, *Shanghai: Shanghai Science and Technology Education Press* (Chinese), (1996) 137-166.
- 10. L.Yang and B.C.Xia, Inequality machine proof and automatic discovery, *Beijing: Science Publishing House* (Chinese), (2008) 33-46.
- 11. Z.H.Yang, Schur power convexity of Stolarsky means, *Publ. Math. Debrecen*, 80 (2012) 43-66.
- 12. Z.H.Yang, Schur power convexity of Gini means, Bull. Korean Math. Soc., 50(2) (2013) 485–498.
- 13. Z.H.Yang, Schur power convexity of Daróczy means, *Math. Inequal. Appl.*, 16(3) (2013) 751-762.
- 14. X.M.Zhang, Geometric convex function, *Hefei: Anhui University Press* (Chinese), (2004) 107-121.
- 15. X.M.Zhang and T.Q.Xu, Definition and Application of Generalized SCHURgeometric Convex function, *Journal of Qingdao Vocational and Technical College* (Chinese), 18(4) (2005) 60-63.
- 16. X.M.Zhang and Y.M Chu, New theory of analytic inequalities, *Harbin: Harbin Gonglai Publishing House* (Chinese), (2009) 93-94.
- 17. X.M.Zhang. The Schur-product of several n- p element averages order power convexity, *Journal of Hunan Institute of Technology* (Chinese), 24 (2011) 1-7.