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1. Introduction 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The 
degree dG(v) of a vertex v is the number of vertices adjacent to v. The edge connecting the 
vertices u and v will be denoted by uv. We refer to [1] for other graph terminology and 
notation. 
 A molecular graph is a graph such that the vertices correspond to the atoms and 
edges to the bonds. A single number that can be used to characterize some property of the 
graph of molecular is called a topological index or graph index. Chemical Graph Theory 
is a branch of Mathematical Chemistry whose focus of interest is to finding topological 
indices of a molecular graph which correlate well with chemical properties of the 
chemical molecules. Numerous topological indices have been considered in Theoretical 
Chemistry and have found some applications in QSPR/QSAR study see [2, 3]. 
 In [4], Kulli introduced the first Gourava index of a graph G, defined as 
 ( ) ( ) ( ) ( ) ( )

( )
1 G G G G

uv E G

GO G d u d v d u d v
∈

=  + +  ∑  

 The second Gourava index [4] of a graph G is defined as 
 ( ) ( ) ( )( ) ( ) ( )( )

( )
2 G G G G

uv E G

GO G d u d v d u d v
∈

= +∑  
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 Recently, some Gourava indices were introduced and studied such as hyper 
Gourava indices [5], sum connectivity Gourava index [6], product connectivity Gourava 
index [7], general first and second Gourava indices [8]. 
 We introduce the multiplicative first and second Gourava indices of a graph, 
defined as  

 ( ) ( ) ( )( ) ( ) ( )( )
( )

1 ,G G G G
uv E G

GO II G d u d v d u d v
∈

 = + + ∏  

 ( ) ( ) ( )( ) ( ) ( )( )
( )

2 G G G G
uv E G

GO G d u d v d u d v
∈

= +∏ . 

 Also we propose the multiplicative first and second hyper Gourava indices of a 
graph G as  

 ( ) ( ) ( )( ) ( ) ( )( )
( )

2

1 ,G G G G
uv E G

HGO II G d u d v d u d v
∈

 = + + ∏  

 ( ) ( ) ( )( ) ( ) ( )( )
( )

2

2 .G G G G
uv E G

HGO G d u d v d u d v
∈

 = + ∏  

 Furthermore, we introduce the multiplicative sum connectivity Gourava index 
and multiplicative product connectivity Gourava index of  a graph G, defined as 

 ( )
( ) ( )( ) ( ) ( )( )( )

1
,

uv E G
G G G G

SGOII G
d u d v d u d v∈

=
+ +

∏  

 ( )
( ) ( )( ) ( ) ( )( )( )

1
.

uv E G
G G G G

PGOII G
d u d v d u d v∈

=
+

∏   

 Finally, we define the general multiplicative first and second Gourava indices of 
a graph G as  

 ( ) ( ) ( )( ) ( ) ( )( )
( )

1 ,
aa

G G G G
uv E G

GO II G d u d v d u d v
∈

 = + + ∏                   (1) 

 ( ) ( ) ( )( ) ( ) ( )( )
( )

2

aa
G G G G

uv E G

GO G d u d v d u d v
∈

 = + ∏                  (2) 

where a is a real number. 
        Recently, some different multiplicative indices were studied, for example, in [9, 10]. 
       In this paper, we consider armchair polyhex nanotubes and zigzag polyhex 
nanotubes. Some degree based topological indices of these nanotubes were studied in [11, 
12, 13]. Multiplicative indices and multiplicative connectivity indices have significant 
importance to collect information about properties of chemical compounds [3]. 
 In this paper, some multiplicative Gourava indices of armchair polyhex and 
zigzag nanotures are determined. 
 
2. Results for Armchair Polyhex Nanotubes 
Carbon polyhex nanotubes are the nanotubes whose cylindrical surface nanotubes are the 
nanotubes whose cylindrical surface is made up of entirely hexagons. These polyhex 
nanotubes exist in nature with remarkable stability and poses very interesting electrical, 
mechanical and thermal properties. Armchair polyhex nanotube is denoted by TUAC6[p, 
q], where p is the number of hexagons in a row and q is the number of hexagons in a 
column. A graph of TUAC6[p, q] is shown in Figure 1. 
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Figure 1: Graph of TUAC6[p, q] 

 
 Let G = TUAC6[p, q] where p, q ≥ 1. By calculation, G has 2p(q+1) vertices and 
3pq +2p edges. There are three types of edges based on degree of end vertices of each 
edge as given Table 1. 
 

Table 1: Edge partition of TUAC6[p, q] 

dG(u), dG(v)\uv ∈ E(G) (2, 2) (2, 3) (3, 3) 

Number of edges P 2p 3pq – p 

 
Theorem 1. The general multiplicative first Gourava index of TUAC6 [p, q] is  

[ ]( ) ( )32
1 6 , 8 11 15 .a pq pa ap apGO II TUAC p q −= × ×                               (3) 

Proof: Let G = TUAC6 [p, q]. By using equation (1) and Table 1, we deduce 

[ ]( ) ( ) ( )( ) ( ) ( )( )
( )

1 6 ,
aa

G G G G
uv E G

GO II TUAC p q d u d v d u d v
∈

 = + + ∏  

 ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )2 3
2 2 2 2 2 3 2 3 3 3 3 3

ap ap a pq p−
= + + × × + + × × + + ×   

 ( )328 11 15 .a pq pap ap −= × ×  
 
 We obtain the following results by using Theorem 1. 
 
Corollary 1.1. The multiplicative first Gourava index of TUAC6 [p, q] is  

[ ]( ) 2 3
1 6 , 8 11 15 .p p pq pGO II TUAC p q −= × ×  

Corollary 1.2. The multiplicative first hyper Gourava index of TUAC6 [p, q] is 

[ ]( ) 2 4 6 2
1 6 , 8 11 15 .p p pq pHGO II TUAC p q −= × ×  

Corollary 1.3. The multiplicative sum connectivity Gourava index of TUAC6 [p, q] is  

 [ ]( )
2 2 3

6

1 1 1
, .

8 11 15

p p pq p

SGOII TUAC p q
−

     = × ×    
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Proof: Put a = 1, 2, –½ in equation (3), we get the desired results respectively. 
 
Theorem 2. The general multiplicative second Gourava index of TUAC6 [p, q] is  

 [ ]( ) ( )32
2 6 , 16 30 54 .a pq pa ap apGO II TUAC p q −= × ×                            (4) 

Proof: Let G = TUAC6 [p, q]. From equation (2) and by using Table 1, we derive  

[ ]( ) ( ) ( )( ) ( ) ( )( )
( )

2 6 ,
aa

G G G G
uv E G

GO II TUAC p q d u d v d u d v
∈

 = + + ∏  

 ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( )2 3
2 2 2 2 2 3 2 3 2 3 2 3

ap ap a pq p−
= + × × × + × × × + × ×   

 ( )3216 30 54 .a pq pap ap −= × ×  
We establish the following results by using Theorem 2. 
 
Corollary 2.1. The multiplicative second Gourava index of TUAC6 [p, q] is 

[ ]( ) 2 3
2 6 , 16 30 54 .p p pq pGO II TUAC p q −= × ×  

 
Corollary 2.2. The multiplicative second hyper Gourava index of TUAC6 [p, q] is  

[ ]( ) 2 4 6 2
2 6 , 16 30 54 .p p pq pHGO II TUAC p q −= × ×  

 
Corollary 2.3. The   multiplicative  product connectivity Gourava index of    TUAC 6[p,q] 
is  

[ ]( )
2 3

6

1 1 1
, .

4 30 54

p p pq p

PGOII TUAC p q
−

     = × ×          
 

Proof: Put a = 1, 2, –½ in equation (4), we obtain the desired results respectively. 
 
3. Results for Zigzag Polyhex Nanotubes 
Zigzag polyhex nanotube is denoted by TUZC6[p, q], where p is the number of hexagons 
in a row and q is the number of hexagons in a column. A graph of TUZC6 [p, q] is 
presented in Figure 2. 

 
Figure 2: Graph of TUZC6 [p, q] 

 Let G = TUZC6 [p, q], where p, q ≥ 1. By calculation, G has 2p(q+1) vertices and 
3pq + 2p edges. There are two types of edges based on degree of end vertices of each 
edge as given in Table 2. 
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Table 2: Edge partition of TUZC6[p, q] 

dG(u), dG(v) \ uv ∈ E(G) (2, 3) (3, 3) 

Number of edges 4p 3pq – 2p 

 
Theorem 3. The general multiplicative first Gourava index of TUZC6 [p, q] is given by 

 [ ]( ) ( )3 24
1 6 , 11 15 .a pq pa apGO II TUZC p q −= ×                                   (5) 

Proof: Let G = TUZC6 [p, q].  From equation (1) ad by using Table 2, we obtain 

[ ]( ) ( ) ( )( ) ( ) ( )( )
( )

1 6 ,
aa

G G G G
uv E G

GO II TUZC p q d u d v d u d v
∈

 = + + ∏  

  ( ) ( )[ ] ( ) ( )[ ] ( )4 3 2
2 3 2 3 3 3 3 3

ap a pq p−
= + + × × + + ×   

  ( )3 2411 15 .a pq pap −= ×  
 
 We establish the following results by using Theorem 3. 
 
Corollary 3.1. The multiplicative first Gourava index of TUZC6 [p, q] is 

[ ]( ) 4 3 2
1 6 , 11 15 .p pq pGO II TUZC p q −= ×  

 
Corollary 3.2. The multiplicative first hyper Gourava index of TUZC6 [p, q] is 

[ ]( ) 8 6 4
1 6 , 11 15 .p pq pHGO II TUZC p q −= ×  

 
Corollary 3.3. The multiplicative sum connectivity Gourava index of TUZC6 [p, q] is 

[ ]( )
4 3 2

6

1 1
, .

11 15

p pq p

SGOII TUZC p q
−

   = ×   
   

 

Proof: Put a = 1, 2, –½  in equation (5), we obtain the desired results respectively. 
 
Theorem 4. The general multiplicative second Gourava index of TUZC6[p, q] is given by 

 [ ]( ) ( )3 24
2 6 , 30 54 .a pq pa apGO II TUZC p q −= ×                                 (6) 

Proof: Let G = TUZC6 [p, q]. By using equation (2) and Table 2, we have  

[ ]( ) ( ) ( )( ) ( ) ( )( )
( )

2 6 ,
aa

G G G G
uv E G

GO II TUZC p q d u d v d u d v
∈

 = + ∏  

  ( ) ( )[ ] ( ) ( )[ ] ( )4 3 2
2 3 2 3 3 3 3 3

ap a pq p−
= + × × × + × ×   

  ( )3 2430 54 .a pq pap −= ×  
 
Corollary 4.1. The multiplicative second Gourava index of TUZC6 [p, q] is  

[ ]( ) 4 3 2
2 6 , 30 54 .p pq pGO II TUZC p q −= ×  

 
Corollary 4.2. The multiplicative second hyper Gourava index of TUZC6 [p, q] is 
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[ ]( ) 8 6 4
2 6 , 30 54 .p pq pHGO II TUZC p q −= ×  

 
Corollary 4.3. The multiplicative product connectivity Gourava index of TUZC6[p,q] is 

[ ]( )
4 3 2

6

1 1
, .

30 54

p pq p

PGOII TUZC p q
−

   = ×   
   

 

Proof: Put a = 1, 2, –½  in equation (6), we get the desired results respectively. 
 
3. Conclusion  
In this paper, we have studied the multiplicative Gourava indices of chemically 
interesting armchair polyhex and zigzag polyhex nanotubes. However, there are many 
other nanostructures which are not covered here. Thus, for further research, the 
multiplicative Gourava indices of several other nanostructures can be considered. 
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