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Abstract. In this paper, an efficient scheme is introduced flbe human action
recognition from depth video sequence. In particee have proposed an effective
feature extraction technique which is based on Dépotion Maps (DMMs) and Log-
Gabor wavelet. Firstly, three Depth Motion Maps (M) are projected from front, side
and top views to accumulate DMMs features. Thea Lihg-Gabor filter is employed on
DMMs to attain complex wavelet features illustratidn Log-Gabor feature, we have
evaluated two parts of a depth sequence callecarehimaginary information for front,
side and top sequence of DMMs projections. Afteat,ttwe have adopted principal
component analysis to reduce the dimension ofdéheufe matrix. Finally, support vector
machine (SVM) is utilized for action classificatiomhe experimental results on the
public Microsoft Research Action3D dataset sugtjest our proposed DMM-Log-Gabor
features based action recognition method is efftbfeachieved the best performance on
human action recognition.

Keywords: Human action recognition, depth motion maps, Lodp@deature, principal
component analysis, support vector machine.
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1. Introduction

Nowadays, computer is a machine which is very reszgsand important in many fields.
People who done a work practically which is now elday computer in minimum time
with high accuracy. Since the improvement in theldfi of human computer
communication is enriched, so it is a big reseama to exhibit more human-computer
processes. Human actions are not only the behaf/tauman body-parts but also it is the
implementation of human objects, motions and thtsigm addition, the term action
recognition means the identification of an activiiy action by using a process that
investigates the video data to learn about th@retcompleted and practices. It attained
knowledge to further identify the similar actiorstablished by Aggarwal et al. [1]. This
research is inspired by progressive use of humaonaecognition which is a significant
zone in computer vision due to its many applicatissuch as intelligent video

73



Biplab Madhu, Md. Zahidul Islam and Lasker Ershdd A

surveillance [3], human computer interaction [2gtett dangerous events, security
surveillance, entry/exit control, video retrievanalysis of sports events, healthcare
system, gestures recognition, monitor people livialpne, robotics, telemedicine,
content-based video search, video game etc. Uaahelisy human action can help to find
illegal events such as cheating, snatching, theftdent actions, etc. It is a significant
challenge to identify human actions from RGB videoa long time. For the reason that
the appearance of depth sensors such as the Micustion, the inconvenience of
human action recognition has been diminished asait track the human motion.
However, due to the several characteristics of mub®&haviors, it is still tough to extract
the feature from the depth of the motion of théomcto identify actual human actions.
Specifically, there are numerous difficulties to dmved in action recognition, such as
sudden pauses, nonlinear stretching, repetitiodd¢@axtract suitable feature.

In this paper, we have described how to identifynan actions from depth image
sequence. However, some of the prevailing methodsediately operate on point of
depth maps where the calculation is very large.ekample of depth map sequence is
shown in Figure 1. In this work we suggest an &ffit method to recognize human
actions by extracting Log-Gabor features from deptbtion maps. Firstly, for every
depth video, all its video frames are projectebdhtee orthogonal Cartesian planes to
make the projected maps equivalent to three piojeatiews (front, side and top). For
each projection view, the collection of absolutdfedences between consecutive

projected maps forms the matching DMMs (i.BMM ,DMM_,DMM ) [4]. The depth

maps sequences are separated into segments antidHerg-Gabor filters are applied to

every segment to extract features. The producedrEsain a DMM are presented as a
feature vector. Since there are numerous DMMs fatepth video, the feature-level

orientation method is examined using Gabor functorearn machines. In order to

analyze our introduced method, we perform it oneachmark depth action dataset
known Microsoft Research Action3D dataset and wapgare our recognition accuracy
with other methods.

The other parts of our paper are arranged as fslldnvsection 2, some related
works have been discussed. In section 3, propostdodiology has been deliberated. In
section 4, Feature extraction and classificatios haen stated. Also, in section 5,
Experimental setup has been deliberated. In seétidgkesults and discussion have been
narrated in brief. Again, in section 8, Conclusitiase been alluded. Finally, equivalent
helping sources have been alluded as references.

Iy §Y 1% §1 A8

Figure 1. Depth map sequence for thégh throw action

i
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2. Related work

Action means the assortment of well-organizeduatés of human. Besides, for action
recognition two key issues are measured such aglltisération of human behavior
features, and also the model of human movemenhoAgh, based on depth images,
various illustrations have been established foioactecognition, like hyper-surface
normal [5,6], cloud points [7,8,9], skeleton joinf$0,11] and depth motion maps
(DMMs) [12] etc. The remaining depth-based actiecognition ways uses depth maps
or skeletal joint's position for human actions itfecation. Our work relies on DMMs
since they will effectively capture the behaviodarues of human actions. Yang et al.
[12] introduced DMMs in their work, they projectelépth maps onto three orthogonal
planes and accumulated global actions througheewmtiteo sequences to create DMMs,
then histogram of oriented gradient (HOG) featwwese calculated from DMMs as the
illustration of the sequences. Liu et al. [15] $iigs every depth frame using as a bag of
3D points on the human silhouette, and employs Hidvhodel the dynamics of action.
Chen et al. [13] changed the DMMs by neglecting ttmeshold for real-time action
recognition, and they castoff local binary pattefilBP) to illustrate texture information
of DMMs [14]. Wang et al. [16] investigated randatcupancy pattern (ROP) features
were extracted from depth sequence using a weigbdeabling theme. A distributed
writing method was implemented to encipher ROPuiest and the features were shown
as robust to occlusion. More recently, Wang eflal] designed three DMMs and every
DMM served as an input to a Deep Convolutional deudetwork (D-CNN) for
classification. In all of above works, DMMs weresimed from the whole video
sequence and also the temporal information of #ibracSo, it is tough to recognize two
actions with likeactions but opposite temporal osgdike actions “stand up" and “sit
down".

In fact, DMMs cannot accommodate to behavior spegthtions that ends up
intra-class variations. Vemulapalli et al. [18] mi@d a body part-based skeleton
illustration was projected to model the space gdpmeonnection between body
essentials. After that human actions were sculgtai® curves employing a Lie group.
Log-Gabor wavelets model pretty well the recepfigkl profiles of cortical simple cells.
The Log-Gabor wavelet illustration, captures sdlieisual characteristics like spatial
localization, orientation selectivity, spatial fremcy characteristic etc. Lades et al. [19]
founded the utilization of Log-Gabor wavelets facé recognition by means of the
Dynamic Link Architecture (DLA) framework. Furthefhe DLA starts by calculating
the Gabor jets, so it achieves a flexible temptatmparison between the resulting image
decompositions victimization graph-matching. Wisledtal. [22] have enlarged on DLA
when they established a Gabor wavelet based elagtich graph corresponding method
to label and recognize human faces. Based on th&a&sor wavelet representation and
also the labeled elastic graph matching, Lyonsl.el28, 21] planned an algorithm for
two-class classification of gender, race, and fdeature. The algorithm contains two
steps such as registration of a grid with the fdiserimination either elastic labeled
graph matching [19,22] or manual description of@ints on every face image [20].
Donato et al. [23] have recently shown through eram that the Gabor wavelet
illustration provides performance than alternatits@ehniques for classifying facial
actions.
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In this paper, we have a tendency to propose &iesff method to handle the above
problems. At first, a completely unique descriptalled as Depth Motion Maps (DMMSs)
is proposed to capture the sequential materiactbrzss. The DMMs are designed over
multi-size sequential windows, therefore they emcotbre specifics of motion and shape
information. Secondly, Log-Gabor features evaluatibe information of DMMs are
extracted to further improvement of the discrimiveacapacity of our descriptors. So, we
have investigated the DMM-Log Gabor as feature.rdi after diminishing the
dimensions by Principle Component Analysis (PCAg, tinal illustrations are classified
by Support vector machine (SVM). The proposed tighn cannot only represent the
motion and shape information, but also take sedplesrder and action speed differences
into attention. Our method is estimated on Microgaition3D datasets and achieves
better performance over the existing approaches.

3. Methodology

An enormous investigation has been showed withinfiglds as well as Human action
recognition employing a variety of methods. Soghge have suggested a new procedure
using DMM-Log Gabor feature extraction for humariat recognition. This procedure
has enriched the accuracy of action recognitionpared to some previous investigators.
In Figure 2 the details of our proposed method Hmen declared. Also, the process has
been discussed step by step in the following Hatgins.

Testing Training
Mhode Mode
Sequential Images of Depth video Sequential Images of Depth video
15 1F
Feature extraction Feature extraction
DM computation DM computation
Log-Gabor feature extraction Log-Gabor feature extraction
i Ly
DNM-Log-Gabor feature DMM-Log-Gabor feature
descriptor descriptor
b ———_— >
Classify with SVM -m Train with SV
Recopnired
actions

Figure 2: Proposed frame works

From depth map sequences, we have discussed aadurtef extraction and classification
technigues. Generally, feature extraction may bdittee variety in appearance,
background, perspective, and activity performingy. fhis reason, the descriptor must be
sufficiently free to take into attention influentidassification of human action. Then we
should examine these features by suitable clas$dieclassification of human action.
The feature extraction and classification approseire discussed below.
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3.1. Depth motion maps as featur e extraction

Depth map can be accustomed to capture the 3Dtateuend shape information. Yang et
al. [24] planned to project depth frames onto thweteogonal Cartesian planes for the
determination of describing the motion of an acti®@ecause of its computational
simplicity, the same method in [24] is adoptedhis twork while the process to obtain
DMMs is modified. More specifically, each 3D defitame is castoff to create three 2D

projected maps corresponding to front, side, apdvitews, denoted hy‘ap{f,s,t} . For a

point (X, Y,Z) in a depth frame denoting the depth value in htfiginded coordinate

system, the pixel value in three projected mamh@ved byz, X andy respectively.

Different from [24], for every projected map, the@tion energy is calculated here as the
absolute difference between two consecutive mapisowi thresholding. For a depth

video sequence with\ frames, DMM,, , is attained by loading the motion energy
across the total depth video sequence as follows:

b

DMM,, _, =Z

j=a

j+1

map;, .4~ mp{jf ,s.t}" (1)

where] represents the frame indeﬂﬁp{jf'& g is the projected map ofth frame

under projection viegf,st¢; a0{2,...N} and0{ 2,..N} denote the starting

frame and the end frame index. It should be ndtatrot all the frames in a depth video
sequence are used to generate DMMs. This poinsdsissed further in the experimental
setup section. A bounding box is then set to ektr@non-zero region as the foreground
in each DMM.

Let the foreground extracted DMM be denoted BMM,, _, hereafter. An

example ofDMM,, _, generated from thidigh through sequences is shown in Figure3.

DMMs from the three projection views effectivelyptare the characteristics of the
motion in a distinguishable system. So, the redsere for using DMMs as feature

descriptors for action recognition. Sin€MM,, _, of different action video sequences

may have different sizes, bi-cubic interpolatiomsed to resize aDMM,, _, under the

same projection view to a fixed size in order tduee the intra-class variability, for
example due to different subject heights.

3.2.Log-Gabor featurerepresentation

Gabor wavelet is a wavelet which is invented by menGabor. Gabor wavelet is
introduced to image analysis due to their biologicslevance and computational
characteristics [27]. The Gabor wavelets, whos@ddsrare almost identical to the 2-D
specific field profiles of the mammalian corticaimple cells, exhibit desirable
characteristics of spatial locality and orientatsatectivity, and are optimally localized in
the space and frequency domain. The Log-Gabor wa¥éistration of an image has
been achieving a great popularity. It is first pyeed by Field D. [26]. It is also defined in
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the frequency domain because of the uniqueneditog function at origin. The Log-
Gabor function is defined as following:

2
2(log(o / f,)y @)

v x-projection {top view)

Zv -projection (side view)

DMM DM I A Y

Xy -projection (front

(@ (b)

Figure 3: (a) Projection views of depth video frame and @M, _, generated from
High throw action video sequence.

wheref, and o are the parameters of the Log-Gabor filter. Theapaterf, will give

the center frequency of the Log-Gabor filter andill affects the bandwidth of the Log-
Gabor filter. To maintain the similar shape whee ftequency is changed. For this, the
ratio g/ f should remain constant. Log-Gabor filter have 4 BC component and

which can be optimized to produce filters with miai spatial extent. Log-Gabor filter
can be divided into two mechanisms: radial and Emdilters. So, Log-Gabor filter is
defined as follows:

—(log(f / f,))’ -6-6)

G(f,0) = exg I IL) 1 4 =O8) (3)
2(log(o, 1f,)y 20,Y

wheref, is the center frequendg,is the orientation angleg, determine the width

parameter for the frequenay, determine the parameter of orientation.

3.3.Support vector machine classification

Support Vector Machine (SVM) is a classificationdaregression forecast tool that
practices to maximize projecting accuracy whileoedtically avoiding over-fit to the
data. It is a supervised learning algorithm whishalso known as Support vector
network. Vladimir N. Vapnik and Alexey Ya. Chervanigs invented the original SVM
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algorithm in 1963. Depending on the nature of theadsuch a separation might be linear
or non-linear.

Let us consider a linear classifier (or, hyperpjahéx) = w' X+b

wherewrepresents weight vectoix is the input feature vector anol represents the

position of the hyperplane. Here,

i) if the input vector is 2-dimensional, the lineauation will represent a straight line.

ii) if the input vector is 3-dimensional, the lineauatijon will represent a plane.

i) if input vector more than 3-dimension, the lineaguaion will represent a
hyperplane.

The SVM algorithm is to find an optimal hyperplafte classification of two classes.

Assume that the equation of hyper planavix+b=0. The distance between

w.X+b =+1and w.X+b =-1is the margin of this hyperplane. By applying thstahce

rule between two straight lines, we get the marginz,i|

[w

w.x+b=-1
w.x+b=0
® w.x+b=1
& @
@ - ® @
@ ® o
P @
® o
- @
2\ <
[l

Figure 4: Maximum margin of hyperplane for SVM trained withmples

For non-linear classifier SVM use kernel functiorseparate the data points. Obtain a
nonlinear SVM regression model by replacing themlot;luctxlT.x2 with a nonlinear

kernel function K(x, x,) =< @(x,),#(x,) > where,#(x) is a transformation that mapsto
a high-dimensional space. Popular kernel functaras
i) Linear kernel functionK(x ,x,) = X;Txk

ii) Gaussian kernel functiork (x,,x,) = exp(|x, - x [ )

iii) Polynomial kernel functionK(xj X ) = @+ ijxk )
. — . I -x Il
iv) Radial basis kernel functioki(x , x ) = exp(—JZT)

wherex and x; are support vector where support vector is thetivectors that just

touch the boundary of the margin. Simply, suppertters are the data points that lie
closest to the decision surface (or hyperplane) Mg Gabor featured based human
action recognition we have applied these kernelbdtter classification.
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4. Experimental setups

In this section, it is explained however our metilody was applied to the general public
domain Microsoft Research (MSR) Action3D dataséf fith the depth map sequences
captured by associate an RGBD camera. Our methotheis compared with the
prevailing strategies. The MSR-Action3D datasetudes 20 actions performed by 10
subjects. The sort of 20 human actions argh wave, horizontal wave, hammer, hand
catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap, two hand
wave, side boxing, bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf
swing, and pickup throw. Every subject achieved every action 2 or 3 timeghEsubject
performed the same action differently. As a resh#,dataset incorporated the intra-class
variation. For instance, the speed of performingetion varied with different subjects.
The resolution of every depth map was 320x240. dailifate a fair comparison, the
same experimental settings is done in [15,29-38Bwewnsidered. The actions were
divided into three subsets (AS1, AS2, AS3) whiah lssted in Table 1. For every action
subset, three totally different tests were perfatntie our method for Test One, 1/3 of the
illustrations were used as training examples arthers as test examples. In Test Two,
2/3 of the examples were used as training exangidsthe others as test examples. In
Cross Subject Test (or Test Three), half of thenie were used as training and the
others as test themes. In the investigational systescribed in [15], in Test One (or
Two), for every action and every subject, the f{it first two) action sequences were
castoff for training, while in Cross Subject Testibjects 1, 3, 5, 7, 9 (if existed) were
castoff for training. Noting that the examplesloermes used for training and testing were
static, they are discussed to as Fixed Tests here.

Table 1: Three action subsets and test used for MicrosofisA3D dataset

Action set 1 (AS1) Action set 2 (AS2) Action set 3 (AS3)
Horizontal wave (2 High wave (1) High throw (6
Hammer (3 Hand catch (4 Forward kick (14
Forward punch (5 Draw X (7) Side kick (15)
High throw (6) Draw tick (8) Jogging (1€
Hand clap (10 Draw circle (9) Tennis swing (17
Bend (13) Two hand waves (1! Tennis serve (1
Tennis serve (1¢ Forward kick (14 Golf swing (19
Pickup throw (20 Side boxing (12 Pickup throw (2C

Another research was showed by arbitrarily selgdtiaining examples or training theme
equivalent to the three tests. On the other hdraattion sequences of every theme for
every action were arbitrarily selected to assigraising examples in Test One and Test
Two. For Cross Subject Test, half of the themesveebitrarily selected for training and
the rest castoff for testing. These tests are @einotas Random Tests here.

For every depth video sequence, the principalffi@mes and the last five frames

were detached and also the enduring frames weteffcts createdDMM, .. The goal
of this frame elimination was two-fold. Initiallyt dhe starts and also the finish, the
subjects were generally at a stand-still positidgh wolely slight body actions, which did

not pay to the motion appearances of the videoesems. Second, in our method of
making DMMs, small activities at the beginning ghd end lead to in a stand-still body
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shape with large pixel values along the edges whiil to a large quantity of renewal
error. Therefore, the primary and terminal framieniglation was done to eliminate no
motion condition. Other frame choice systems magdstoff here to attain the same. To

get three fixed sizes f@MM_, ., the sizes of the DMMs of all the examples (tragni

and test samples) were create under every projectew. For the training feature set
and the test feature set, principal component aia(fPCA) was applied to diminish the
dimensionality. The PCA transform matrix was inteddusing the training feature set
and then applied to the test feature set. This ws@ality reduction step provided
computational effectiveness for the classification.

4.1. Evaluation of DM M-L og Gabor

We first analyze the effect of DMM normalizatiozeifor recognizing performances. As
elaborate in Section 4.1, we normalize the thrg#hdmotion maps to a fixed size. Then
we evaluate the effect of Log-Gabor filter to egtraew feature. For applying Log-Gabor
feature every image transform into a real and imayi image label. Since DMM is
measured from the front, side and top. As for actiet AS1 the size of front, side and
top are respectively 100x50, 100x82, 82x47. Whibe &ction set cross subject
AS1CrSub the size of front, side and top are rdspmdyg same action set AS1. For action
set AS2 the size of front, side and top are regpdgt102x51, 103x67, 67x51. While for
action set cross subject AS2CrSub the size of freide and top are respectively same
action set AS2.And for action AS3 the size of fraide and top are respectively 104x53,
104x84, 84x53. While for action set cross subje88&8rSub the size of front, side and
top are respectively same action set AS3.Althowgtel resolutions are able to reduce
computational cost in computing DMM, we extract L@gbor filter for each depth
motion maps from front, side and top. So, for edicleo sequence is converted to real
and imaginary parts. We examine every depth imagerdal, imaginary and real-
imaginary with respectively. The difference of cartgtion time between different and
Log-Gabor is differed. The following experiment@sults are based on this process.
After Log-Gabor filtering the real, imaginary andat-imaginary depth sequence is
shown in Figure5, In Cross Subject Test, differambjects perform actions with great
variations but the number of subjects is limitethick results in considerable intra-class
variations. Furthermore, some actions in AS2 aiteaimilar, e.g. Draw X, Draw Tick,
and Draw Circle, which generates small inter-clas$ations. The performances on cross
subject test might be enhanced by accumulatingoireraubjects.

4.2. Parameter selection

In Log-Gabor wavelet feature, an essential paranigtgavelengthd which monitoring

the related effect of the orientation term in th@imization step. Many methods have
been presented in the literature for discoverydaalivalue for this filtered constraint. To
discovery an ideal accuracy, a set of ethics weaenaed. For optimal appreciation rates

with different ethics ofd was examined for action set AS1, AS2, AS3 and Figeoss
Subject Test. For optimal action recognition wengethe parameter value such scale
parametet/ , minimum wavelengttd was also achieved with the different set of morals
For individual value ofv and A the testing was recurrent 5 times.
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Imaginary Real Imaginary Real Imaginary

(2) Front (b) Side (c) Top
Figure5: Real and imaginary sequence of (a) Front views{td§ view and (c) Top view

Real

In our experiment, in test one test one for actsem AS1, we choose the
parameter value number of scale paraméterd, minimum wavelengtd =3,

multiplication time=1.7 and sigma on frequedfy 0.15. For these parameters our
method recognizes the action 93.4%. In test twochaose the parameter value number

of scale parametéet=6, minimum wavelengtd = 0.92, multiplication time=1.7 and
sigma on frequenay = 0.15. For these parameters our method recognizes ti@ac
92%. In test three, we choose the parameter valmeber of scale paramete~ 5,

minimum wavelengtil = 3, multiplication time=1.7 and sigma on frequeoty 0.15.
For these parameters our method recognizes thand$i4%. In test four, we choose the

parameter value number of scale param@ed, minimum wavelengtd =3,
multiplication time=0.2 and sigma on frequedty 0.15. For these parameters our
method recognizes the action 94%. In test fiveciveose the parameter value number
of scale parametet=5, minimum wavelengtd =3, multiplication time=1.2 and
sigma on frequenay =0.15. For these parameters our method recognizes tienac
96.7%.

For action set AS2, in test one, we choose thenpetiex value number of scale
parametet/ = 4, minimum wavelengtd =3, multiplication time=1.7 and sigma on
frequencyog = 0.15. For these parameters our method recognizes tlen&0.1%. In
test two, we choose the parameter value numbecale arametél =6, minimum

wavelengttd =0.92, multiplication time=1.7 and sigma on frequeoty 0.15. For
these parameters our method recognizes the acti@¥9 In test three, we choose the

parameter value number of scale paramé®’, minimum wavelengtd =3,
multiplication time=1.7 and sigma on frequedfy 0.15. For these parameters our
method recognizes the action 93.4%. In test f@archoose the parameter value number
of scale parametet=5, minimum wavelengtd =3, multiplication time=0.2 and
sigma on frequenay = 0.15. For these parameters our method recognizes tieac
87.5%. In test five, we choose the parameter valumber of scale paramete=5,

minimum wavelengtil = 3, multiplication time=1.2 and sigma on frequeoty 0.15.
For these parameters our method recognizes then&fi4%.
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Then for action set AS3, in test one, we chooseptrameter value number of
scale parameter =4, minimum wavelengtid = 3, multiplication time=1.7 and sigma
on frequency’ = 0.15. For these parameters our method recognizes thun &4.3%.

In test two, we choose the parameter value numbscale parametét = 6, minimum
wavelengttd =0.92, multiplication time=1.7 and sigma on frequeoty 0.15. For
these parameters our method recognizes the addi@¥9 In test three, we choose the
parameter value number of scale paraméte>, minimum wavelengtd =3,
multiplication time=1.7 and sigma on frequewfy= 0.15. For these parameters our
method recognizes the action 97.3%. In test f@archoose the parameter value number
of scale parametet=5, minimum wavelengtd =3, multiplication time=0.2 and
sigma on frequenag =0.15. For these parameters our method recognizes thenac
95.3%. In test five, we choose the parameter valumber of scale paramete~5,

minimum wavelengtil = 3, multiplication time=1.2 and sigma on frequenty 0.15.
For these parameters our method recognizes thenafi0%.
In our experiment for cross subject test in test,ome choose the parameter

value number of scale parameteF 4, minimum wavelengtd =3, multiplication

time=1.7 and sigma on frequen@y= 0.15. For these parameters our method recognizes
the action 86.2%. In test two, we choose the patanvalue number of scale parameter

U =6, minimum wavelengtd =0.92, multiplication time=1.7 and sigma on
frequencyog = 0.15. For these parameters our method recognizes tlan89.2%. In
test three, we choose the parameter value numbscabé parametér=5, minimum

wavelengttd = 3, multiplication time=1.7 and sigma on frequedty 0.15. For these
parameters our method recognizes the action 88.8%0.test four, we choose the

parameter value number of scale paraméte’>, minimum wavelengtd = 3,

multiplication time=0.2 and sigma on frequewty= 0.15. For these parameters our
method recognizes the action 87%. In test fivectveose the parameter value number

of scale parametet=5, minimum wavelengtd =3, multiplication time=1.2 and
sigma on frequenay =0.15. For these parameters our method recognizes ti@nac
90.1%.

The optimal recognition rates are found/at 4,4 =3. As a result, in all the
experiments reported here, the valueveafd,0=4,0 =0.15were thus chosen.
Above discussed results are shown in figure 6.

5. Results and discussions

In this section, we have discussed the recognitemult and how we have got these
results by our proposed method. So, the relatikedpgnition result and comparison our
proposed method with existing method are discubsémlv.
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Figure 6: The recognition rates (%) of DMM-Log-Gabor witlfdrent parameter values
under a variety of test sets

5.1. Recognition results

In this approach, we have proposed an easy algotitsing a novel feature descriptor,
because the proposed algorithm would not be usefptactical applications if it needs
tuning lots of parameters. Therefore, we want tw four smart assignments for the
parameters within the algorithm and then fix theseameters for all test cases. For
instance, in the step of Log-Gabor wavelet, howdotrol the DMM size, the number of
action levels and the assortment of the wavelendth?order to improve the
computational efficiency in the classification st&pinciple Component analysis (PCA)
is adopted to reduce the dimension of the Log-Gébature vector. The PCA transform
matrix is calculated using the training featureased then applied to the test feature set.
In our experiments, we resized DMM to three différsizes of front, side, top and then
utilized Log-Gabor filter for action set AS1 arespectively 100x50, 100x82, 82x47,
Then we transformed it into Log-Gabor filter. EvdMMs sequence divided into two
images after Log-Gabor feature apply. The frontgengs featured into real part and
imaginary part. Then along real and imaginary &stde=d into a new featured as total
front feature. We used real, imaginary and totaltiifeed individually for recognition.
After feature extraction of front, side and top weed SVM for training and testing for
classification. Since Log-Gabor is a wavelet featitrhas some parameter. In Log-Gabor
feature we use the number of scales, wavelengthtipffmation and ratio between
window width and wavelength which are discusse@if).

Firstly, we adopted our method for real part ohfraside and top. In real part of
these images, we recognized the Action 96.0% wbkefea cross subject test the
recognition action is 85%. These action recognitiates are evaluated by the average
recognition rate of AS1, AS2 and AS3. Secondly,aslepted our method for imaginary
part of front, side and top. In imaginary part loése images, we recognized the Action
97.5% whereas for cross subject test the recognitiction is 78%. These action
recognition rates are evaluated by the averagegnitbon rate of AS1, AS2 and AS3.
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Finally, we adopted our method for total part afft, side and top. In total part of these
images, we recognized the Action 96.3% whereaifass subject test the recognition
action is 85.1%. These action recognition rateseaeduated by the average recognition
rate of AS1, AS2 and AS3. The overall recognitiateris 92.8%.

Table 2: Recognition rates (%) of our method compared tamthers method on MSR
Action3D dataset

Liuetal. [15] Xiaetal. 29] Yang et al. 30] Ours
Test on
AS1 89.t 98.5 94.i 96.C
AS?2 89.C 96.7 95.£ 97.2
AS23 96.2 93.t 97.3 96.1
Average 91.€ 96.2 95.¢ 96.4
Test twc
AS1 93.2 98.6 97,% 97.¢
AS2 92.¢ 97.2 98.7 94.¢
AS3Z 96.% 94.¢ 97.% 98.7
Average 94.2 97.2 97.8 97.C
CST
AS1 92.9 88.C 74.% 89.1
AS2 71.¢ 85.5 76.1 76.2
AS3 79.2 63.€ 96.4 90.2
Average 74.1 79.C 82.% 85.1

5.2. Comparison with state-of-the-art methods

In this study we compare our DMM-Log Gabor techeiguith some related existing
technigues on the Microsoft Action3D dataset. Tlenjgarison results are shown in
Table 2. The highest average recognition rate &mhedest case is highlighted in bold.
The average recognition rates of our method outparfall the other methods listed in
Table 2 for each test case except the method pedpmg Yang et al. [30]. We have to
point out that Yang et al. used several paramdtershe proposed learning, and the
values of all parameters were not fixed. So, iésywclear that we should governance the
experiment on each range for many times to finditalsle corresponding value of the
parameter. However, if we don’t use fixed valuesdt parameters our method is also
capable of showing expected higher performance, tle method reported in [15]. To
suggest a suitable and faster algorithm with higleognition accuracies, we fixed the
parameter values.

This paper presents a simple method for highergrtion accuracies and uses
parameter tuning. Three confusion matrices forctioss-subject test are shown in Figure
8. The corresponding number of each action is ueednderstand the classification
accuracy and error. From the confusion matricasritbe easily understood the fitness of
the proposed algorithm with the actions. In evest,tmore than half of the recognition
accuracy has arrived at100 percent. The lowesigretion accuracy rate also arrived at
91 percent. Although the introduced technique isedaon DMM-Log Gabor, our
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recognition rate is better than [15,29] which iswh in Figure 7. It can be seen that the
DMM-LogGabor descriptor shows higher state of beirge acc.
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Figure 7: Recognition rates (%) of comparison with the st#téie-art methods
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Figure 8. Confusion matrix of proposed method: (a)AS1(CSB)AS2(CST), (c)
AS3(CST).
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6. Conclusion

We have investigated an efficient technique for Aoraction recognition and established
a novel feature descriptor known as DMM-Log-Galeatfire extraction technique in this
research. For recognizing human action, suppotioveoachine is adopted as the basic
classifier in this approach. The experimental tsssh MSR Action3D dataset reveal that
our approach considerably outperforms of the ptgs@mgressive techniques. Since, Log-
Gabor descriptor transform an image in two partedateal and imaginary. We have
investigated our method both real and imaginary pfafront, side and top views. After
that we have adopted the real and imaginary fesitwith one descriptor called DMM-
Log Gabor. Then PCA is employed to reduce the dgioenof data set. Our mentioned
algorithm improves the average recognition ratBwhan action than Liu et al. [15] and
Xia et al. [29]. Therefore, it is shown by the enmal results that DMM-Log-Gabor
feature descriptor is better than the above-alliedésting recognition technique.
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