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Abstract. This paper presents the application of non-polynomial Exponential spline method 
for finding the numerical solution of singularly perturbed boundary value problems. Two 
numerical examples are considered to demonstrate the usefulness  of  the  method  and  to  
show that the method converges with sufficient accuracy to the exact solutions.      
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Introduction1.  
Singular perturbation problems containing a small perturbation parameter, arise very 
frequently in many branches of applied mathematics such as,fluid dynamics, quantum 
mechanics, chemical reactor theory, elasticity, aerodynamics, and the other domain of the  
great world of fluid motion [1-3] 
          A well known fact is that the solution of such problems has a multiscale  character 
,i.e. there are thin transition layers where the solution varies very rapidly, while away from 
the layer the solution behaves regularly and varies slowly. Numerically ,the presence of the 
perturbation parameter leads to difficulties when classical numerical techniques are used 
to solve such problems,  this is due to the presence of the boundary layers in these problems. 

We consider a second order singularly perturbed boundary problem [4-5]:                 
 ���� + ������ + 	���� = ���� , � ∈ ��, ��                                                        �1� 

with the boundary 
conditions                                                                                                               ���� = ��  and ���� = ��  
where �  is a small positive parameter 0 < � < 1 ,��and ��  are given constants, ����, 	���  and ����  are assumed to be sufficiently continuously differentiable functions.         
The non-polynomial Exponential spline method [6-16] developed in this paper has lower 
computational cost and its only requires solving � + 1 linear or non-linear equations.        
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2.  Derivation of the method 
We divide the interval ��, �� into � + 1 equal subintervals using the point                   �� = � + �ℎ, � = 0,1,2, … , �, � + 1, 
With � = ��,  � = � !�   and  ℎ = "#$ !� , where  � arbitrary positive integer.                     

Let ���� be the exact solution and ��be  an approximation to ����� obtained by the non 
polynomial Exponential spline '���� passing through the points ���, ��� and ���!�, ��!��, 
we do not only require that '���� satisfies interpolatory conditions at �� and ��!�but also 
the continuity of first derivative at the common nodes��� , ���are fulfilled. We write '����in 
the form  [7-8]:                                                                                                                        '���� = ��()�*#*+� + ��(#)�*#*+� + ,��� − ��� + .�                                  �2�   
where   �� , ��, ,�and .�are constants and / is free parameter to be determined later.             
A non-polynomial Exponential spline function  '��� of class 0���, �� interpolates ����  
at the grid points   �� , � = 0, 1, 2, … , � + 1  depends on a parameter  / , and reduces to 
ordinary spline '��� in ��, �� as / → 0.  
To derive expression for the coefficient of  equation (2) in term �� , ��!�, 3�and 3�!�, we 
first define:                                                                                                                '����� = ��  ,     '����!�� = ��!�   '������� =  3�     , '������!�� =  3�!�.                                                 �3� 
From algebraic manipulation, we get the following expression:                                      

     �� = ℎ�5−3�(#6 + 3�!�78��(6 − (#6�  

     �� = ℎ�53�(6 − 3�!�78��(6 − (#6�  

  ,� = −ℎ�3�!� − /���!� + /��� − 3��8�  

.� = �69:+#;9<+�69                                                                                                                    �4�  

where 8 = /ℎ and � = 0,1,2, … , �.  
We applying the first derivative at ���, ���, that is '�#�� ���� = '������,gives the following 
consistency relation for � = 1, … , �:  ��#� − 2�� + ��!� = >56?@A#�6?A!?9A!?@9A#�7;9695?9A!?@9A#�7 B 3�#� +
2 >56?9A#6?@9A#?9A#?@9A!�7;9695?9A!?@9A#�7 B 3� +
>56?@A#�6?A!?9A!?@9A#�7;9695?9A!?@9A#�7 B 3�!�                                                                                                �5�
   
which can further be written as  
                                                                                                                      ����#� − 2�� + ��!�� = ℎ���D�3�#� + 3�!�� + 2�E3��                               �6� 
where                                                                                                                         

D = 58(#6 − 28(6 + (�6 + (#�6 − 278��(�6 + (#�6 − 2�  
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E = 58(�6 − 8(#�6 − (�6 − (#�6 + 278��(�6 + (#�6 − 2�  

the local truncation errors, G� � = 1,2, … . , n − 1, in equation (6) can beobtained as follows: 
First we re-write the equation.(6) in the form , ����#� − 2�� + ��!�� = ℎ�� ID��#���� + 2�E����� + D��!���� J                                    �7�  

the terms   ��#����   , ����� and   ��!����  in equation (7) are expanded around the point ix using 
Taylor series and the expressions for  G�, � = 1,2, … . , n − 1.can be obtained,                       

                                                                  G� = ℎ��1 − 2D − 2E������ + ;9�� �1 − 12D����L� + ;MNO� �1 − 30D����O� + P�ℎQ�              �8�  

Now the (8) gives rise to the class of methods of different orders as follow:                    
Second order method:                                                                                                  

For any choice of arbitraryD     and E   with = �O  ,  E = �N   and D + E = �� , then local 

truncation error is                                                                                                                    

                                                                            G� = #;S�� ���L� + P�ℎO�, � = 1, 2, …               �9� 

Fourth  order method:                                                                                                   

If  D = ���   and E = U��    ,   V� = P�ℎO�  then the resulting method is fourth order method. 

Then the local truncation error is
                                                                                                                               

       G� = #;M�L� ���O� + P�ℎQ�, � = 1,2, … n                                                                               �10�  
 

3.  Numerical scheme                                                                                                        
At the grid points  �  , Eq. (1) may be discretized by �3� + ������ + 	���� = ����                                                                                               �11�                                             
                                          
Solving Eq (11) for 3�, we get                                         �3� = −������ − 	���� + ����                                                   �10� 
and approximate first derivative by using finite-difference. 
The following approximation for the first-order derivative of y in Eq. (12) can be used ���#� = −��!� + 4�� − 3��#�2ℎ  

��� = ��!� − ��#�2ℎ  

���!� = 3��!� − 4�� + ��#�2ℎ  

So Eq. (12) becomes �3�#� = − ����#���−��!� + 4�� − 3��#��2ℎ − 	���#����#� + ����#�� 

�3� = − ��������!� − ��#��2ℎ − 	������ + ����� 
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�3�!� = − W�*+XY��N:+XY#L:+!:+@Y��; − 	���!����!� + ����!�                                            �13�  

Substituting Eq. (13)in Eq. (5),we get the following equation: I−� + ℎD ZNW�*+@Y�� − W�*+XY�� [ + ℎ\����� − ℎ�D	���#��J ��#� + ]2� +2ℎD5−����#�� + ����!��7 − 2Eℎ�D	����^�� + I−� + ℎD ZW�*+@Y�� − NW�*+XY�� [ −ℎE ����� − ℎ�D	���!��J ��!� = −Dℎ�����#�� − 2Eℎ������ − Dℎ�����!��          �14�                                                                                                            
                                                     
4.  Stability analysis 

The tri-diagonal linear system (14) can be written in the following matrix form, _` + ℎ�0a = b                                                                             �15� 
where _ = c + ℎde − ℎ�d	 and _ is tri-diagonal and diagonally matrix of order � − 1  
Here c = �f�g�is a tri-diagonal matrix defined by are  tri-diagonal matrices defined by 

f�g = h 2�                 � = i = 1,2, … , � − 1         −�       |� − i| = 1                                         0              kGℎ���l(                                    

and   de = m�g ,  dn = Φ�g  are  tri-diagonal matrices defined by 

m�g =
⎩⎪⎪
⎨
⎪⎪⎧

2D5−����� + �����7  ,                      � = i = 1D ZNW�*+@Y�� − W�*+XY�� [ − ℎE�����,                � > i2D�5−����#�� + ����!��7                     � = iD ZW�*+@Y�� − NW�*+XY�� [ − ℎE�����,                � < i   2D5−��� #�� + ��� �7                  � = i = � − 1
 

And 

Φ�g = u 2E	����           � = i = 1,2, … , � − 1         D	���#��            � > i                                   D	���!��              � < i                                    
And a = 5�����, �����, … , ��� #��, ��� #��7v
  ̀ = ���, ��, … , � #�, � #��v 
The tri-diagonal matrix 0 is defined by 

0 =
⎣⎢
⎢⎢⎢
⎢⎡ 2 ED0

D 0 …2 E D 0D 2 E D ⋯ 000⋱ ⋱ ⋱ ⋱ ⋮0 0 ⋱00 00 ……
⋱ ⋱D… 2 ED 0D2 E⎦⎥

⎥⎥⎥
⎥⎤
 

where b = ���, 0,0,0 … ,0, � #��v 
We assume  that  ` = ���, ��, … , � #�, � #��v  � =for  ,ix Be the exact solution of the given boundary value problem (1) at nodal  point0,1,2, … , � − 1 and then we have 
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_ �̀ + ℎ��a = V�ℎ� + b                                                                                                        �16� 
If we subtract equation (12) from equation (13) we get the following _� �̀ − `� = _' = V�ℎ�                                                                                                           �17�  
  

 
5.  Convergence analysis    
Our main purpose now is to derive a bound ||E||. We now turn back to the error equation 
in (13) and rewrite it in the form   ' = _#�V = �c + ℎde − ℎ�d	�#�V = �� + c#��ℎde − ℎ�d	��#�c#�V  ‖'‖� ≤ ‖�� + c#��ℎde − ℎ�d	��#�‖� ‖c#�‖�  ‖V‖�                                               �18� 
In order to derive the bound on  ‖'‖�  the following two lemmas are needed. 

 
Lemma 1. [17] If b is a square matrix of ordern  and  ‖b‖ < 1, then the �� + b�#� 
exists and  ‖�� + b�#�‖ ≤ �1 − ‖b‖�#� 

Lemma 2: The matrix    �c + ℎde − ℎ�d	� is nonsingular ‖�‖� < Q;��$#"�9�Q�!���    and ‖	‖� < Q��#���$#"�9       where.   0 < � < 1 

Proof: 
Since, _ = �c + ℎde − ℎ�d	� = 5� + c#��ℎde − ℎ�d	�7c  and the matrix c  is 
nonsingular, so to prove _ nonsingular it is sufficient to show  5� + c#��ℎde −  ℎ�d	�7 
nonsingular.                                                                                                                             
Since  ‖c#��ℎde − ℎ�d	�‖� ≤ ‖c#�‖��‖�ℎde − ℎ�d	�‖�� ≤ ‖c#�‖��‖ℎde‖� +‖ℎ�d	‖��                                                                                                                                      �19�
                                                                                                                       
Moreover,  ‖c#�‖� <   �$#"�9Q;9   [17]  ‖ℎde‖� ≤ ℎ�8D + 2E� ‖�‖�  and  ‖ℎ�d	‖� ≤ ℎ�‖	‖�  and ‖�‖� = ���$�*�"|�����| and ‖	‖� = ���$�*�"|	����|  
There for, substituting ‖c#�‖�  , ‖ℎde‖� , ‖ℎ�d	‖� , in equation (17) we get, ‖c#��ℎde − ℎ�d	�‖� ≤    �"#$�9Q;9 �8D + 2E�‖�‖� +   �"#$�9Q  ‖	‖�                         �20�  

Since , 

u‖�‖� < Q;��$#"�9�Q�!���‖	‖� < Q��#���$#"�9
                                                                                                   �21�          

                                                                                        
There for equations (20) and (21) leads to‖‖	‖��ℎde − ℎ�d	�‖� ≤ 1. From Lemma (1)  
it show that the matrix A is  nonsingular. Since‖c#��ℎde − ℎ�d	�‖� ≤ 1    so using 
Lemma (1) and equation (16) follow that                                                                               

                                                                                                                                 ‖'‖� ≤ ‖c#�‖�‖V‖�1 −  ‖c#�‖�‖�ℎde − ℎ�d	�‖� 
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6.  Numerical results 
We solve two singular perturbed problems using different values of  ℎ and �. The numerical 
solutions are computed and compared with the exact solutions at grade points. All 
calculations are implemented by Maple 13.                                                                            
   
Example 1. Consider the following equation with variable coefficients ���� + ��� − � = −�1 + ���� cos���� − ���� sin �� 
           ��−1� = −1, ��1� = 1 

 
The exact solution is given by: 

���� = cos���� + � + �(�� Z *√��[ + ���� (#>�99�B
�(�� Z �√��[ + ���� (#Z Y9�[ 

The numerical result of the example1 are presented in table 1 and figure 1 for different 
values subinterval c and � = 1/64.   

 
Example 2. Consider the following equation with variable coefficients                    ���� − 1� �� − �1 + ���� = � 

The exact solution is ���� = (5*97.  The maximum absolute errors are tabulated in Table 
2 for different values ε and h.                                                                                                 

 
Table 1: Numerical solution of  Example 1 at different value of subintervals 

 
 � 

c	�(��,�� �k�.  
Exact Sol. 

N=16 N=32 N=64 N=128 
-
7/8 

-0.9190258015 -0.9219199438 -0.9237709378 -0.9240415171 -.9243033330 

-
6/8 

-0.6984560039 -0.7035617854 -0.7068294729 -0.7073106180 -.7077785740 

-
5/8 

-0.3722043319 -0.3783607642 -0.3822747958 -0.3828522232 -.3834150957 

-
4/8 

-0.009537748283 -0.0038551921 -0.0003641383 -0.0001416495 -0.000141523 

-
3/8 

0.3881155740 0.3845924696 0.3827696718 0.3825442896 0.3823396261 

-
2/8 

0.7079360848 0.7077704103 0.7085372990 0.7087543527 .7090026623 

-
1/8 

0.9384379783 0.9408096810 0.9435055183 0.9440534564 0.9446355666 

0 1.092840722 1.095498023 1.098469883 1.099075370 1.099715459 

1/8 1.188481264 1.190838603 1.193508694 1.194053107 1.194635567 

2/8 1.204935832 1.206883138 1.208472633 1.208735746 1.209002662 
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3/8 1.131158356 1.132521790 1.132618238 1.132502994 1.132339626 

4/8 0.9998408258 1.000964472 1.000152356 0.9998016554 .9993681064 

5/8 0.8674062236 0.8685359797 0.8674978662 0.8670873438 0.8665849039 

6/8 0.7927591290 0.7938125624 0.7929781403 0.7926384601 .7922214264 

7/8 0.8258581569 0.8265503836 0.8261169714 0.8259288994 0.8256966672 

 

 
Table 2: Numerical solution of  Example 2 at different value of subintervals 

 � 
c	�(��,�� �k�.  

Exact Sol. 
N=16 N=32 N=64 N=128 

1 1.009050167 1.010040167 1.010050067 1.010050166 1.010050167 
2 1.039810774 1.040800774 1.040810674 1.040810773 1.040810774 
3 1.093174284 1.094164284 1.0941741839 1.094174283 1.094174284 
4 1.172510871 1.173500871 1.173510771 1.173510869 1.173510871 
5 1.283025417 1.284015417 1.284025317 1.284025416 1.284025417 
6 1.432329415 1.433319415 1.4333293149 1.433329414 1.433329415 
7 1.631316220 1.632306220 1.632316120 1.632316219 1.632316220 
8 1.895480879 1.896470879 1.896480779 1.896480878 1.896480879 
9 2.246907987 2.247897987 2.247907887 2.247907986 2.247907987 
10 2.7172818289 2.718271827 2.718281728 2.718281827 2.718281828 

 
  

 
Figure 1: Comparison of exact and numerical solutions of example 1 for N = ε = 64. 
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Figure 2: Comparison of exact and numerical solutions of example 2 for N = ε = 10. 

 
7.  conclusion 
in this paper, a numerical technique for singularly perturbed boundary value problems 
using non-polynomial exponential spline functions is derived. Simplicity of the adaptation 
of  non-polynomial exponential spline and obtaining acceptable solutions can be noted as 
advantages of given numerical methods. The method is tested on two problems and the 
results obtained are very encouraging. The method is simple and easy to 
apply.                                                                                                                                       
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