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Abstract. In view of the problems existing in the traditional literature to improve the 

traditional B-spline method, such as: the parameters are not global, the method is not 

general and can not retain the important properties of the traditional B-spline method. A 

non-uniform B-spline basis with two parameters is proposed to construct curve. Firstly, 

we assume that the non-uniform cubic rational B-spline basis possessing 2C continuity 

and partition of unity at each knot, and then the expression of the basis function can be 

determined; then the important properties of the basis function like totally positive are 

proved; The definition of non-uniform cubic rational B-spline curve is given and its 

important properties such as variation diminishing are proved. The example shows that 

the non-uniform B-spline curve constructed in this paper effectively solves the problems 

existing in the traditional improved method and is suitable for curve design. 

Keywords: B-spline; non-uniform; basis function; totally positive; variation diminishing 

AMS Mathematics Subject Classification (2010): 41A15 

1. Introduction 
The classical B-spline method is proposed under the condition of preserving the 

advantages of Bézier method and overcoming the disadvantage of non local property 

caused by global representation and solving the connection problem in describing 

complex shapes. But the problem of its weight factor has not been solved. For this 

purpose, many scholars have proposed quasi B-spline curves with shape parameters 

[1-14]. 

At present, there are many improvements on the classical B-spline method, and the 

uniform B-spline method is mainly used, but this kind of method has not been widely 

used in geometric modeling design. Next，because the results of cubic B-spline curves are 

simple and not ineffective, they are discussed most in the literature. In reference [15], 
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Chen Fulai et al. Gave a class of cubic polynomial basis functions with two parameters. 

On the basis of this basis function, this paper constructs a class of non-uniform cubic 

rational B-spline basis, and gives the definition of non-uniform cubic rational B-spline 

curve, and proves its important properties such as variation reduction and local control. 

Experiments show that the non-uniform B-spline curve constructed in this paper solves 

the problem of flexibility of traditional B-spline curve. In addition, when the control 

points are determined, the curve can still be modified locally. 
 

2. The definition and properties of base 
2.1. Preliminary knowledge 
The basis function ),,,( 10 nuuu K  is called the total positive basis on the closed interval 

],[ ba . If for any node sequence bttta n ≤<<<≤ L10 , the collocation matrix njiii tu ≤≤ ,0))((  

of the basis function is a totally positive matrix, that is, the determinant of any submatrix 

of the allocation matrix is nonnegative. For a function space with totally positive bases, a 

set of totally positive bases can be multiplied by the total positive transformation matrix 

to generate the remaining totally positive bases [16]. 
 

2.2. Construction of nonuniform cubic triangular B-spline bases 
A class of cubic rational polynomial basis functions with two parameters are constructed 

in reference [15]. 
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Among them, ]1,0[],1,2(, ∈−∈ tβα . Since the basis function }3,2,1,0),({ =itAi  is a 

set of positive bases, the corresponding Bézier curves generated by Bézier functions 

have important properties such as variation reduction, which is suitable for curve design. 

In view of the fact that the quasi Bézier curves defined by (1) do not have local control, 

and the problem of smooth splicing needs to be solved when designing complex curves; 

therefore, on the basis of (1), this paper constructs a class of non-uniform Cubic Rational 

B-spline bases (CR-B-splines) for curve design. 
For a given node sequence 410 +<<< nuuu L , we denote it as node vector 

),,,( 410 += nuuuU L , let jjj uuh −= +1 , 3,,1,0,/)()( +=−= njhuuut jjj L , for any shape 

parameter ]1,2/1(, −∈ii βα , ni ,,1,0 L= , the CR-B spline base to be constructed is 
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where 3,2,1,0),,;( =jtA iiij βα  is the basis function given in formula (1). 

In order to determine the value of coefficient ijijii dcba ,,, ,, , the CR-B spline basis 

constructed is restricted by two conditions: (1) )(uBi  is 2C -Continuous on all nodes; (2) 

)(uBi  is unit on interval ],[ 13 +nuu . After some calculation, the coefficient can be directly 
obtained as follows: 
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Definition 1. Given the node vector U ,for any ]1,2/1(, −∈ii βα  and the coefficient 

ijijii dcba ,,, ,,  given above, (2) is called CR-B spline basis with two parameters. 

For equidistant nodes, CR-B spline base )(uBi  is called uniform CR-B spline base, 
and corresponding node U  vector is called isometric node vector. For non-uniform 
nodes, CR-B spline basis )(uBi  is called non-uniform CR-B spline basis, and 
corresponding node vector U  is called non-uniform node vector. Figure 1 shows the 
images of uniform CR-B spline basis under different shape parameters. 
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Figure 1: Uniform CR-B spline base 

The following lemma can be obtained by direct calculation, which will be very 
useful for the following discussion. 

 
Lemma 1. For any Zi ∈ , the following equation holds 
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Note 1: The CR-B spline basis function is constructed in the function space 

{ }3,,1,0,|],,[ ,],[40
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1
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})1( 2ttββ +− ， ,,1,0,/)()( L=−= jhuuut jjj 3+n .when the uniform node vector U  and 

21 ++ = ii αα 3+= iα 121 ==== ++ iii βββ  are given, the CR-B spline basis is the classical 
non-uniform cubic B-spline basis [17]. In particular, for 4,3,2,1,0, =>+=+ jhjhuu iji , 

direct calculation can be used 
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The CR-B-spline basis is a classical uniform cubic B-spline basis. 
 
2.3. Properties of nonuniform CR-B spline basis 
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Conclusion. 
 
Theorem 2. Nonnegativity: if ]1,2/1(, −∈ii βα , then for any 4+<< ii uuu , there is 

0)( >uBi . 
Proof: It is proved that for ]1,2/1(, −∈ii βα , obviously 0,,, ,, >ijijii dcba , 0)( >uBi  can 

be obtained by the nonnegativity of 3,2,1,0),,;( =jtA iiij βα [16]. 

 
Theorem 3. Linear independence: linear independence on interval ],[ 13 +nuu  for any 

],1,2/1(, −∈ii βα { })(,),(),( 10 uBuBuB nL . 
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where 1,,4,3 += ni L , the following linear equations can be obtained 
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Theorem 4. Totally positive: for ],1,2/1(,],,[ 1 −∈∈ + iiii uuu βα ni ,,4,3 K= , 

))(),(),(),(( 123 uBuBuBuB iiii −−−  constitutes a set of normal totally positive bases in space 
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T βα , . 

Proof: For niuuu ii ,,4,3],,[ 1 K=∈ + ,that is 

iiiiiiiiiiiii HtAtAtAtAuBuBuBuB ));(),;(),;(),;(())(),(),(),(( 3210123 ββαα=−−− ,where   





















=

iii

ii

ii

iii

i

dcb

cb

cb

cba

H

3,3,

2,2,

1,1,

0,0,

0

00

00

0

, iiiii huuut /)()(],1,2/1(, −=−∈βα , 

Since ));(),;(),;(),;(( 3210 iiiiiiii tAtAtAtA ββαα  is a total positive basis in function 
space 

ii
T βα , , it is only necessary to prove that ),(),(( 23 uBuB ii −− ),(1 uBi− ))(uBi  constitutes 

a set of normal totally positive bases in function space iiT βα ,  by proving that the 
transformation matrix iH  is a nonsingular random totally positive matrix. For any 

]1,2/1(, −∈ii βα , there is obviously 0,,, ,, >ijijii dcba . From lemma 1, we can see that the 
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sum of each row of iH  is 1, that is, iH  is a random matrix. In addition, direct 
calculation includes
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 It is easy to prove that iH  is a nonsingular totally positive matrix. Therefore, the 
conclusion can be proved. 
 
Theorem 5. Continuity: given a non-uniform node vector, when the shape parameter 
satisfies ]1,2/1(, −∈ii βα , the basis function )(uBi  has continuity at each node 2C . 

Proof: Consider the continuity at node 1+iu , so for any ]1,2/1(, −∈ii βα , we have 
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3. Non uniform cubic triangular B-spline curve 
3.1. Definition and properties of nonuniform cubic trigonometric B-spline curves 
Definition 2. Given a non-uniform node vector U  and control point 
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is called non-uniform cubic rational B-spline curve with two parameters ii βα ,  
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(non-uniform CR-B-spline curve). 
Obviously, for ,,...,4,3],,[ 1 niuuu ii =∈ + , the non-uniform CT-B spline segment )(uBi  

can be expressed as follows 

);()();()(

);()();()()()(

3132321222

11121010203
3

iiiiiiiiiiiiii

iiiiiiiiiiiiii

i

ij
jji

tAPdPcPbtAPcPb

tAPcPbtAPcPbPaPuBuQ

ββ

αα

+++++

++++==

−−−−

−−−−−
−=
∑

(14)
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non-uniform CR-B spline curve )(uQ  has important variation reduction property. 
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design. The following theorem can be obtained from Theorem 5. 
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，

，
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(16) 
So 

;)( 13231 iiiiiiii PdPcPbuQ ++= −−
+
+ ;)( 0,11012111 iiiiiiii PcPbPauQ +−+−+

−
++ ++= ，  

);2)(()2)(()( 132312221 ++++++−=′ −−−−
+
+ iiiiiiiiiiiiii PdPcPbPcPbuQ ββ  

);2)(()2)(()( 11,111,110,11012111 ++−+++−+−+
−
++ ++++++−=′

iiiiiiiiiiiiii PcPbPcPbPauQ αα，  

);24)(()]24(6)[()(2)( 1323122211211 +++++−−+++=′′ −−−−−−
+
+ iiiiiiiiiiiiiiiiii PdPcPbPcPbPcPbuQ ββ  

).(2)]24(6)[()24)(()( 2,112,111,111,110,11012111 iiiiiiiiiiiiiiiiii PcPbPcPbPcPbPauQ +−+++−+++−+−+
−
++ +++−−+++++=′′ αα，

According to the coefficient ijijii dcba ,,, ,, of expression (2) and lemma 1, we can get 

);()( 111
−
++

+
+ = iiii uQuQ );()( 111

−
++

+
+ ′=′ iiii uQuQ ).()( 111

−
++

+
+ ′′=′′ iiii uQuQ  

The theorem can be proved. 

3.2. Uniform CR-B spline image 
Figure 2 shows the uniform CR-B spline curve. (a) All graphs of ),....,4,3( nii =α  and 

),,4,3( nii K=β  are equal. (b) The black solid line in the figure shows the case that all 
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parameters are 0== ii βα , the green dotted line shows that one of the parameters is 
adjusted to 1=iα , and the blue dotted line shows that one of the parameters is adjusted 
to 1=iβ . 

 
(a)                                    (b) 

Figure 2: CR-B spline curve 

4. Conclusion 
In view of the problems existing in the improvement of the B-spline method in the 
traditional literature, such as the parameter does not have the global nature, the method 
does not have the generality, and can not retain the important properties of the traditional 
B-spline method, this paper proposes a non-uniform rational B-spline base with two 
parameters to construct the curve. The example shows that the B-spline curve constructed 
in this paper solves the problems left over by the traditional improved literature, and is 
suitable In line with the curve design. In order to design a more practical shape, it is 
necessary to discuss the shape of the curve in detail, such as cusp, inflection point, heavy 
node, convexity, etc. 
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