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Abstract. Two feedback control schemes are presented foaatichfinancial system in
this paper. The system is controlled to any equilib points, and N identical chaotic
systems are achieved synchronization. Based orhRdwtwitz stability criteria, the first
method analyzes the characteristic polynomial @f ¢orresponding matrix, and then
designs the linear feedback controller. By using #tability theory of linear time-
invariant system, the linear feedback controller aonlinear feedback controllers of the
second method are designed directly. And they zedlhe chaos control and chaos
synchronization, respectively. For the design @& dontrollers, this technique has no
need to design Lyapunov function. Numerical simatet show the validity and
feasibility of the proposed methods.

Keywords: chaotic finance system; feedback control; lowgsp@r) triangular matrix;
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1. Introduction

Research on the generation and control of chaatienial system has become an
important subject in the application of chaos. Aayic model of financial system which
is composed of four sub-blocks: production, monggck and labor force, and its
nonlinear dynamical characteristics, are receiveghtgattention by scholars in the past
several decades [1-3]. Based on this, a wide yanifedpproaches have been proposed for
the control and synchronization of the system idicig speed feedback control and linear
feedback control [4-6], linear and nonlinear feamkaynchronization [7]hybrid
feedback synchronization control and a method pécisl matrix structure [8], realizing
projective synchronization of two n-dimensional @fi@ fractional-order systems via
lower (upper) triangular matrix [9], and so on. Her, the study above mainly control
the system to one fixed balance point, or synclaetwo identical chaotic systems.

This paper will control the chaotic financial systéo any equilibrium point, and
discuss the synchronization of N identical chasyistems. The rest of paper is organized
as the follows. In Section 2, the mathematical rhadig¢he chaotic financial system is
introduced. Two of feedback control schemes ardiegppo control the system to any
equilibrium point, and the simulation results areeg in Section 3. In Section 4, we
discuss the synchronization of N identical systeBextion 5 contains conclusions.
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2. Mathematical model of a chactic financial system
Since chaos phenomenon in financial field is fowhithe1985, it has huge impacts on the
western mainstream economics. There is chaos inoetic and financial system; this
means that the system itself has intrinsic ingtgb[B]. Some long-term dynamical
behaviors of the model are irregular and extremesigee to initial values and parameter
variation.
The nonlinear chaotic financial system can be desdrby the following differential
equations [10]:
X=z+(y—-a)x
y=1-by-x* . (1)
Z=-X-cz
whereXx , y, Z represent the interest rate, investment demand @i index,
respectively. The parametis the savingpis the per-investment cogt,s the elasticity
of demands of commercials. And they are positivestants.
We can obtain the equilibrium points of systemd4)ollows. For more details, see
[1-3].
(1) Whenc —b - abc > 0, the system(1) has three equilibrium poins(0,1/b,0),

pl,z(i\/g, 1+ ac)/c,ix/c_F /c), in whicho =(c—b—abc)/c. According to different
eigenvalues of Jacobian matrix at the equilibrivoints, then classify them as follows.
(l)Whenc—b—abc >0, equilibrium pointp, is always a saddle point and has
stable structure;
(2)Whenc+a-1/b>0, (¢ +bc-1)(bc®+2c- - 2abc)- 2° €-b-abc)
>0 , then the pointsp, andp, are always locally stable[11].
(3)When c—b—-abc<0, the system (1) has a unique equilibrium point
P, (0,1/b,0).

3. Feedback control
Consider the controlled financial system as follows

X=f (x)+u. 2)(
wherex [JR"is state vector,f (x) R"is nonlinear continuous differentiable function,
uJR"is external input control vector. Suppose Ois an equilibrium point of system

(2).

When the origin is the equilibrium point of nonlaresystem, we study its stability
by studying the stability of the equilibrium poiof the linear system. Otherwise, the
asymptotic stability of equilibrium point of nonéar systems is consistent with the
approximate linear system (It is got by approxiryali@earizing the nonlinear system in
a small field of equilibrium point) [12]. Becauséthe linear system can be stabilized,
the characteristic of ergodicity of chaotic dynaahisystem guarantees its track to enter
into the field of equilibrium point eventually. Véan apply feedback control law to stable

the original system. And the track is oriented itended orbit [13]. Lex O R" be a
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state vector and be anxnmatrix. The system (2) can be linearization apprately
in the vicinity of equilibrium point as follows []12
X=AX+uU.

0 o . . .
whereA :6_ f . Our aim is to design a controller, so that theedir system is
X

asymptotically stable at the equilibrium point. Ti®to say, the original nonlinear
system is also asymptotically stable at the equiilib point.

3.1. Design controller based on the characteristic polynomial

According to the theory of feedback control method above, irs thection, we
approximately linearize the nonlinear system (1aismall field of equilibrium point
firstly. And then we design the control law based stability theory of linear time-
invariant system and Routh-Hurwitz stability criger

Lemma 3.1. [14] If X =0is one equilibrium point of the following linearstgm

Xx=C X, Xx(0)=x,,t=0.
thenx =0is asymptotically stable if and only if the mat@must have all eigenvalues
with negative real parts.

Lemma 3.2. [15] (Routh-Hurwitz stability criteria) Assume the-order algebraic
equation with constant coefficients agA"+aA"" +---+a_A+a =0, (@,>0), it
has all roots with negative real parts if and dflgll the sequential principal minors of
matrix D = D(g;) are positive, where

a;=a,_,0,]=L2,..na = Oifk<Oork>n).

a a, 0 o - 0
Dol & & & & 0
Qn1 Qpnp 8poz Qzy G

Especially, for algebraic equation of 2 ordgn’+aA+a,=0, (a,>0), it has all

>0
roots with negative real parts if and only if thmdition{al >0 is satisfied.
a,
According to lemma 3.1, the stability of system ¢ah be transformed into studying
the eigenvalues of corresponding matrix.
Suppose the Jacobian matrix of the system (lpoeéﬂ,llb,o)isﬁb, we can yield

the approximatelylinear system of system (1) in a neighborhood afildgium point as
follows
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X X
y|=AlY )
z z
1/b-a 0 1
whereA)=| O -b O
-1 0 -c
LetdetE — A,) =0, we have
(A+b)[A*+(a+c-1/b)A+ac-c/b+1]=0. 4)

Matrix Ay has a negative eigenvalue, i&£=-b. In order to make matriR, has all

eigenvalues with negative real parts, just needfdllewing formula to have two roots
with negative real parts.
A?+(a+c-1/b)A+ac-c/b+1=0. (5)

, G a+c-1/b>0
Based on Routh-Hurwitz stability criteria, we have .
ac-c/b+1>0

By analyzing the expression of system (3) and theire of matriE — A, we

can control the first equation or the third ondhar first and third ones of system (3).
Firstly, we control the first equation of systen). (Bo change the coefficient of
A, and further satisfy the conditions of stability e system, we take the

controlleru, = (k,x, 0,0), then (3) is described by
X=(1/b-a+ky)x+z

y =-by : (6)
Z=-X-¢Cz
We rewrite system (6) as follows
X X
YI=A|Y|
Z z

1/b-a+k, 0 1
where A= 0 -b 0
-1 0 -c

In order to make matrik, has all eigenvalues with negative real parts, arseth on
Routh-Hurwitz stability criteria, let

a+c-1/b-k,>0 .

{ac—koc—c/b+1>0' @

Then we get
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(1) Wherc <1 , the solution of inequality (7) i&, <a+c-1/b.

(2) Wherc >1 , the solution of inequality (7) i&, <a+1/c-1/b.
So we obtain the theorem 3.1as follows.

Theorem 3.1. Let u, =(k,x,0,0) be the -controller, wherek,<a+c-1/b

(whenc<l), ork,<a+1/c-1/b ( whenc>1),Xis the interest rate of system
(). The controlled system (1) is asymptoticallyabd¢ at the equilibrium
pointp, (0,1/b,0).

Inappropriate combination of the parameters ofesysis the root of the emergence
of chaos of economic system. It is possible to niakesystem tended to chaos and out of

control, or may make the system stalled rigid stft®]. WhenO<a<6.42 ,

6.61<a< 7.0z, b=0.1,c=1, system( 1) occurs chaos [3]. But according to the

relevant economic knowledge, the elasticity of dedha satisfyingc =1is rarely seen in
real life. Therefore, to make the system (1) oathmos and the parameter values had
practical significance, in this paper, all simuati experiments of chaos control

takea=0.9,b=0.2c= 1.2[8] ( whenc=1.2> 1, meaning the demand is flexible,
product with this attribute is mostly durable gogdstake simulation time as[1[0,50],
the initial value is taken %(0),y(0),z(0))= (3,1,5. Whenk, = -4, simulated result
of theorem 3.1 is shown in Figure 1.

-y

X.y,Z

. . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Time(s)

Figure 1. State variables of system (1) vary with time urttiercontrolleu,

Remark 3.1. With similar method, we can control the third etipm or the first and third
ones of system (1). But this method is inconfornfitiyhigh-dimensional systems and is
difficult to control the system to complex equilion point, such as the equilibrium

points p, , of system (1).
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3.2. Design controller vialower (upper) triangular matrix structure

In order to design the controller, we firstly limza the system (1) in the vicinity of the
equilibrium point approximately. Then explore theusture of the coefficient matrix of
the linear system, and design the controller basedlirect-design idea. Change the
coefficient matrix of the system into lower (uppétipngular matrix, and its diagonal
elements are negative. Whereby, the system is altaairto the different equilibrium
points.

3.2.1. Being stabled to the equilibrium point p,

We transform the stability of system (1) into stundythe structure of the coefficient
matrix, which has all eigenvalues with negativd peaits under the controller.

Theorem 3.2. Letu, =(kx—2,0,0)be the controller, whele <a-1/b, x, zare the
interest rate and price index of system (1), repEy. System (1) is settled to the
equilibrium pointp, (0,1/b,0) under the controllet, .

Proof: The approximately linear system of system (1) isnaall field of equilibrium
point p, is system (3), and its coefficient matrix is

1/b-a 0 1
A= 0 -b O
-1 0 -c

In order to make coefficient matriR, to be lower triangular matrix, besides its

diagonal elements are negative. We design the atertt;, = (k;x—2,0,0), and the
controlled system (3) becomes

X X
y|=Ay| ®
z z
1/b-a+k, 0 O
whereA = 0 -b 0
-1 0 -c

So wherk; <a-1/b, Ais lower triangular matrix, besides its diagonanetnts are all
negative. And it has all eigenvalues with negatieal parts. According to lemma 3.1,
system (8) is asymptotically stabilized to the éhrium point pO(O,llb,O). Namely
system (1) is asymptotically stabilized to the &fium pointp, (0,1/b,0) under the
controlleru, .

Remark 3.2. The parametek, of the controlleu, has many choices, otherwise the
smaller value ok is, the shorter the time oftending to O will be.
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3.2.2. Being stabled to the equilibrium point p,

Whena=0.9, b=0.2, c=1.2, equilibrium pointp, andp, are local unstable [11]. To
control the chaotic system (1) to unstable equiliforpointp, , theorem 3.3 designs the
controller u, .

Theorem 3.3. Letu, =(k2x—\/5y—z,0,0) be the controller, in whickk, >1/c,
andx, y, z are the interest rate, investment demand and pndex of system (1),
respectively. System (1) is driven to the equilibmi pointpl(\/g, (1+ac) IENE) /c)
under the controlleu, .

Proof: In a neighborhood of equilibrium poiny , system (1) can be linearized
approximately as follows

X X
YI=AY| €)
z z
/e Jo 1
whereA, =| =23 -b 0
-1 0 -c

So we design the controller, = (kzx—\/z'y—z,0,0), and the controlled system
(9) becomes

X X

y|=AY

z z
l/c+k, 0 O
whereA, =| -2/ -b 0
-1 0 -c

Whenk, <-1/c, A; is lower triangular matrix. Moreover, its diagorelements
are negative. Therefore, system (1) is asymptdyistdble to equilibrium poinp, under
the controllew, .

Remark 3.3. With similar method, we can change the target matto upper triangular
matrix and settle system (1) to the equilibriumnpgi,. The method doesn’'t need to use

Lyapunov function and the Routh-Hurwitz stabilityiteria. And the structure of the
controller is simple.
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Remark 3.4. Change the goal matrix into upper triangular matixlower triangular
matrix, although the principle is same, but the tainfactors are different for the
financial system. When the goal matrix is changed lower triangular matrix, we need
to adjust two factors of interest rates, investntthand and price indices of system (1)
at least. But when we change the target matrix ugper triangular matrix, we can
simply adjust the interest rate of system (1) toieae the purpose. Therefore, based on
the different actual situation, we can choose tange the target matrix into an upper
triangular matrix or lower triangular matrix.

4. Synchronization control of identical chactic financial systems
Chauotic finance system (1) is sensitive dependemcénitial conditions. Even if two
identical systems, while the difference of theajdctories increases gradually with time
when the initial values have minimal change. Aciigvfor the synchronization of
identical systems with different initial values lgeat of significance. In this section, we
still use the guidelines of triangular matrix tosim the control law, and synchronize N
identical chaotic financial systems with differémitial values.

Consider the following N identical chaotic financgstems

X =2 +(y, - 2)X
y,=1-by, =%’ ,i=12,3..N.
2 =-x-cz

wherex, v.,z,i =1,2,3...N are interest rates, investment demand, the pribexi

of the i-th system, respectively.
We define the drive system arld —1the controlled response systems as
follows, respectively [16].

=2z +(y, - @)X

Vi =1—by1—Xf

4 ==X -Cz

X =2, + (Y, — @)X, tUu(X, X))
Y, =1=by, =3 +u(y,,y,)
Z,=—X,—CZ,+U(z, 2,)

Xy = 2y +(Yn — @)Xy TU(Xy, %)
Yn :1_byN _Xﬁ +u(yN ’yl)
Zy =Xy ~Czy tu(zy,7)
Let us define the error systems between respossersyg and drive system as
€1 =X "X, 8,7 Y, " Y,6§,7%-2,i=2,3..N. (10)
Our purpose is to design the appropriate contmue(rxi,xl) for the response
systems such that the error systems (10) are asyioglly stable to origin. Namely the

8
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synchronization of N identical chaotic systemsragdized, that is
im [ | =tim [x - =0.

wherex, = (X, ¥1,2) . & =(§,,§2,63) . X =(X.¥.3) . i=2,3..N
Use the ideas of dimensionality reduction, consiter subsystem of the error
systems as follows firstly

€ = XY, XY, —ae; te;
&, =-be,-x*+x’ ,1=2,3...N. (11)

63 =78, C&;3
It is difficult to approximately linearize the errsystems in the field of equilibrium
points. So we design controller to make the systeh) to be a linear system. And we

take the controllen’ (X, %,) =(xY,~%V;, X’ —xZ, 0), then the subsystem of the error

system (11) under the controllér(x;, X,) becomes

6. =-ag,+§;
&, =-bg, ,i=2,3..N. (12)
§;=—6,C8;
Suppose the coefficient matrix of linear system {$2
-a 0 1
C=0 -b O
-1 0 -c
If we take the controllew” (x;, ;) =(z -z, 0, 0), system (12) becomes
6, = —ag,
&, =-be, ,i=2,3...N. (13)
63 =—6,7C8;

The coefficient matrix of linear system (13) is Emtriangular matrix, and it has all
eigenvalues with negative real parts.

Then the error systemés=C, e, i =2,3...N, namely

& &
. c, - 0 o
e=| 2 |=| 1 . (14)
6 0 . ¢ .
—a 0 0 C, 0
where C=|0 -b 0|,C=|: .
-1 0 -c 0 - c,
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So C is also lower triangular matrix, and its diagomé¢ments are negative.
Therefore, it has all eigenvalues with negativd peaits. According to lemma3. 1, the
error system (14) are asymptotically stable toinnighder the controller

u (X, %) = (U (x,%) +u" (x,%)) ==X Y +2-2, X -7, 0).
Based on the analysis above, paramatér,c may take any values, and N

identical chaotic financial systems are realizedichyonization. Besides, each controller
of response systems has exactly the same struanotegasy to implement. For example,
whenN =3, and let

€ X=X,
€=1€ || Ys7 Y2 |-
€3 L~ 7,

So the another error system is obtained by subicacine controlled response system
form another. So we have

-a 0 0)fe;
e=| 0 -b 0]|e,]| (15)
-1 0 -c)le,

And we takea=0.9,b= 0.2c= 0.![17] ( when the elasticity of demands of
commercialsc satisfiesO0<c=0.5< 1, it belongs to the lack of flexibility, and the
goods with this attribute mostly are necessijiedaket 0[0,50], (% (0), y;(0),z, (0)

=(315), (x(0),y,(0).2,(0) = (6,8,6, and(x;(0), y;(0),2,(0)) = (3,3,4). The
state variableg ;, €,,€,,vary with timet are shown in Figure 2.

5

11

13

€11®12%13

. . . . . .
20 25 30 35 40 45 50
Time(s)

Figure 2: State variables of system (15) vary with titnender the controlleu

5. Conclusion

Matrix theory in mathematics is applied to chaatantrol and synchronization of the
financial system in the paper. We have proposet sesedback control law, and have
realized control and synchronization of a chaofitaricial system. The theoretical

10
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analysis and numerical simulations verify the vigficind feasibility of those methods.
And the synchronization of different chaotic syssemill be further studied.
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