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Abstract. The Zoom-in and Zoom-out operators play an important role in the
model of Granular Computing based on covering. In this paper, a new Zoom-in
operator is defined, the combination operators formed by the Zoom-in and Zoom-
out operators on the (granulated) universe of discourse are presented, and their
relationships to covering rough set, topological space and Galois connection are
discussed. In particular, it is proved that a pair of approximation operators on
the universe of discourse obtained by the combination of the Zoom-in operator and
Zoom-out operator, are precisely the second type of covering-based lower and upper
approximation operators.
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1. Introduction

In the real world, information is often granular and elements. It is within an informa-
tion granule has to be dealt with as a whole rather than individually. The idea of in-
formation granularity has been explored in many fields such as rough sets, fuzzy sets,
cluster analysis, database, machine learning, and data mining [2, 4, 8, 15, 16, 19]. In
recent years, there is a renewed interest in granular computing [1, 3, 5, 10, 14, 17, 18],
and it has become increasingly important in information processing.

The model of granular computing can be regarded as a conceptual model or a
mathematical model. Granular computing model is constructed by the concept of
granular and the relevant operative symbol, and is used to reflect and describe the
universe of discourse (i.e., real prototype) of various factors, forms and the quantita-
tive relationships. The three major granular computing models are the words com-
puting models[13], rough sets models[18] and the quotient space models[1]. Rough
sets models maybe the popular ones. In these models, many notions of granular
computing can be defined and analyzed appropriately. In [14], Yao introduced a
model of granular computing based on a partition of (or equivalent, a equivalent
relation on) the universe of discourse. In [5], Ma generalized Yao’s model from re-
stricting equivalence relation to reflexive binary relation. On the other hand, She
[12] extended Yao’s model from partition to arbitrary covering on the universal of
discourse.

This paper can be regarded as a further research on the covering model in [12].
We define a new Zoom-in operator and study its properties. As we will see that
different combinations of Zoom-in and Zoom-out operators form different rough

24



On Granular Computing Visa Covering: New Definition and Related Covering
Rough Set

approximations of the universe of discourse and granulated universe of discourse
respectively. Specially, we prove that a pair of approximation operators (on the
universe of discourse) obtained by the combination of the Zoom-in operator and
Zoom-out operator, are precisely the second type of covering-based lower and upper
approximation operators ([7],[17],[18]). We also discuss the relationships between
the operators stated above, topological space and Galois connection. The content are
arranged as follows. In Section 2, we recall some notions used in this paper and define
a new Zoom-in operator. In Section 3, we study the combination operators formed
by the Zoom-in and Zoom-out operators on the universe of discourse, and discuss
relationships between these operators and covering rough set, topological space and
Galois connection. In Section 4, we research the combination operators formed by
the Zoom-in and Zoom-out operators on the granulated universe of discourse, and
discuss relationships between these operators and covering rough set, topological
space and Galois connection.

2. New Zoom-in operator

In this section, we shall recall some notions, notations used in this paper and inves-
tigate a new Zoom-in operator.

Let U be a non-empty universe of discourse, C is a family of non-empty subsets
of U . If ∪C = U , then C is called a covering of U . Let C be a finite covering on U .
For each x ∈ U, the family

Md(x)= {K ∈ C |x ∈ K,∀S ∈ C, x ∈ S, S ⊆ K ⇒ S = K }

is called the minimal description of x. C is called unary if for each x ∈ U , |Md(x)| =
1; C is called representative if for each K ∈ C there exists a x ∈ U such that
∀S ∈ C, x ∈ S ⇒ K ⊆ S. These definitions can be found in the literature [20].

Definition 2.1.[13] Let C be a finite covering on U . The mapping ω : 2C → 2U

∀X ∈ 2C , ω (X) = {x |Md(x) ⊆ X }

is called a Zoom-in operator.
Proposition 2.1. [13] Let C be a finite covering on U . The Zoom-in operator

has the following properties:
(1) ω (∅) =∅, ω

(
2C

)
=U .

(2) ∀X,Y ∈ 2C , ω (X ∪ Y ) = ω (X) ∪ ω (Y ) if and only if C is unary.
(3) ω (X ∩ Y ) = ω (X) ∩ ω (Y ).
(4) ω(X)c = ω (Xc) if and only if C is unary.
(5) X ⊆ Y ⇔ ω (X) ⊆ ω (Y ) if and only if C is representative.

Definition 2.2. [13] Let C be a finite covering on U . Then the pair (apr, apr),

where apr, apr : 2U → 2C

∀A ∈ 2U , apr (A) = {Xi ∈ C |Xi ∩A 6= ∅} , apr (A) = {Xj ∈ C |Xj ⊆ A}

is called a Zoom-out operator.
In the following, we shall give a new Zoom-in operator based on covering and

study its properties.
Definition 2.3. Let C be a finite covering on U . The mapping µ : 2C → 2U

∀X ∈ 2C , µ (X) = ∪{K |K ∈ C,K ∈ X }

is called a Zoom-in operator.
Proposition 2.2. Let C be a finite covering on U . Then for each X ∈ 2C ,

ω (X) ⊆ µ (X).
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Proof. Let x ∈ ω (X), then there exists a K ∈ C such that x ∈ K ∈Md(x). So
x ∈ µ (X) = ∪{K |K ∈ X }. By the arbitrariness of x, we get ω (X) ⊆ µ (X).

The following example shows that the converse inclusion does not hold generally.
Thus the Zoom-in operator defined above is different from that in [12].

Example 2.1. Let U= {a, b, c, d}, K1 = {a, b},K2 = {a, c}, K3 = {b, d},C =
{K1,K2,K3}. Then µ ({K1}) = {a, b}, µ ({K1,K3}) = {a, b, d}, while ω (K1) = ∅,
ω ({K1,K3}) = {b, d}.

Remark 2.1. Let C is a partition on U . It is easily seen that µ (X) = ω (X)
for each X ⊆ U . Thus by [12] the operator µ can also be regarded as a gen-
eralization of the corresponding operator in [14]. Indeed, for each x ∈ µ (X) =
∪{K ∈ C |K ∈ X }, then there exists K ∈ X such that x ∈ K. Because C is a
partition of U , thus x ∈ Md(x) = K, i.e., x ∈ ω (X). By the arbitrariness of x, we
get µ (X) ⊆ ω (X).

The next proposition lists some properties of the Zoom-in operator.
Proposition 2.3. Let C be a finite covering on U . The Zoom-in operator

µ : 2C → 2U have the following properties:
(1) µ (∅) =∅; µ

(
2C

)
=2U .

(2) X ⊆ Y ⇒ µ (X) ⊆ µ (Y ).
(3) µ (X ∪ Y ) = µ (X) ∪ µ (Y ).
(4) µ(X)c ⊆ µ (Xc).
(5) Let X ∈ C, then µ({X}) = X.

Proof. Property (1) is obvious from the definition.
(2) For each x ∈ µ (X) = ∪{K |K ∈ X }, there exists Kx ∈ X such that x ∈ Kx.
Since X ⊆ Y , then x ∈ Kx ∈ Y , i.e., x ∈ µ (Y ).
(3) By the definition we have

x ∈ µ (X ∪ Y )⇔ x ∈ K ∈ X ∪ Y ⇔ x ∈ K ∈ X or x ∈ K ∈ Y
⇔ x ∈ µ (X) ∪ µ (Y ) .

(4) For all x ∈ µ(X)c, we have x /∈ K for each K ∈ X. Because C is a covering of
U , thus there exists a H ∈ C = X ∪Xc such that x ∈ H ∈ Xc, so x ∈ ω(Xc).

(5) Straightforward.
The following example show the reverse inequality of (4) dose not hold in general.
Example 2.2. Let U= {a, b, c}, K1 = {a, b}, K2 = {a, c}, C = {K1,K2}. Taking

X= {K1}, then Xc = {K2}, therefore µ(X)c = {c} 6= {a, c} = µ (Xc).
The property (3) in Proposition 1 does not hold as we show in the next example.
Example 2.3. Let U= {a, b, c}, K1 = {a, b}, K2 = {a, c}, C = {K1,K2}.

Considering X= {K1}, Y= {K2}. Then a ∈ µ (X) ∩ µ (Y ), but a /∈ µ (X ∩ Y ) =
µ (∅).

3. The approximation operators on 2U

In [7], the second type of covering-based rough sets is introduced. For each X ⊆ U ,
the covering lower and upper approximations are defined as follows:

X∗= ∪ {K |K ∈ C,K ⊆ X } ;X∗= ∪ {K |K ∈ C,K ∩X 6= ∅}
The follow theorem shows that the lower and upper approximations are precisely
the combinations of the Zoom-in and Zoom-out operators.

Proposition 3.1. Let C be a finite covering on U and A ⊆ U . Then
(1) µ ◦ apr (A) = ∪{X ∈ C |X ∩A 6= ∅} = X∗.

(2) µ ◦ apr (A) = ∪{X ∈ C |X ⊆ A} = X∗.
Proof. (1) µ ◦ apr (A) = ∪{X ∈ C |X ∈ apr (A)} = ∪{X ∈ C |X ∩A 6= ∅}.

(2) µ ◦ apr (A) = ∪
{
X ∈ C

∣∣X ∈ apr (A)
}

= ∪{X ∈ C |X ⊆ A}.
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Besides, we can easily obtain the following corollary.
Corollary 3.1 Let C be a finite covering on U and A ⊆ U . Then
(1) µ◦apr (A) = {x ∈ U |x ∈ K ∈ apr (A)}= {x ∈ U |∃X ∈ C,X ∩A 6= ∅, x ∈ X };
(2) µ ◦ apr (A) =

{
x ∈ U

∣∣x ∈ K ∈ apr (A)
}

= {x ∈ U |∃X ∈ C, x ∈ X ⊆ A};
(3) If A ∈ C then µ ◦ apr (A) = A.
Corresponding to the properties of the second type of covering lower and upper

approximations listed in the literature [21], we have the following results:
Proposition 3.2. Let C be a finite covering on U . Then
(1) µ ◦ apr (U) = U, µ ◦ apr (U) = U, µ ◦ apr (∅) = ∅, µ ◦ apr (∅) = ∅.

(2) µ ◦ apr (A) ⊆ A ⊆ µ ◦ apr (A).
(3) A ⊆ B ⇒ µ ◦ apr (A) ⊆ µ ◦ apr (B) ;A ⊆ B ⇒ µ ◦ apr (A) ⊆ µ ◦ apr (B).
(4) µ ◦ apr (A ∪B) = µ ◦ apr (A) ∪ µ ◦ apr (B).
(5) µ ◦ apr (A ∩B) = µ ◦ apr (A) ∩ µ ◦ apr (B) if and only if C is unary.

(6)
(
µ ◦ apr

) (
µ ◦ apr (A)

)
= µ ◦ apr (A).

It is well known that there exists closed interrelationship between the theory of
topologies and that of covering-based rough sets (resp., granular computing). Just
before exhibiting this relation, we first give an interesting topological approached
description for unary covering.

Recall that a non-empty set B ⊆ P (X) is a base for a topology J on X if and
only if ∪B = X, and for each B1, B2 ∈ B and each x ∈ B1 ∩ B2, there exists a
B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Proposition 3.3. Let C be a covering on U , C is unary if and only if C is a
base for some topology on U .

Proof. Let C be a unary covering. For all K1,K2 ∈ C, if x ∈ K1 ∩ K2, then
x ∈ K1 ∩ K2 = ∪y∈K1∩K2Md(y). Thus, there exists a y ∈ K1 ∩ K2 such that
x ∈Md(y) ⊆ K1 ∩K2. That means, C is a base for some topology on U .

On the other hand, let C be a base for some topology on U . For each x ∈ U ,
taking K1,K2 ∈Md(x). To prove that C is unary, it suffices to check that K1 = K2.
Indeed, by x ∈ K1 ∩ K2 we have a K ∈ C such that x ∈ K ⊆ K1 ∩ K2. By the
definition of Md(x), we obtain that K = K1 = K2 as desired.

Definition 3.1. Let U be a non-empty universal of discourse. Then the mapping
i : 2U → 2U satisfying the following conditions: ∀A,B ⊆ U ,

(1) i (U) = U .
(2) i (A ∩B) = i (A) ∩ i (B).
(3) i (A) ⊆ A.

is called a interior operator on U . In addition, i is called a topological interior
operator on U if it further satisfies:

(4) i (i (A)) = i (A).
Dually, one can define the so called (topological) closure operator.
Remark 3.1. By Proposition 3.3, we observe easily that the operator u ◦ apr is

a closure operator on U . If C is unary, then the operator µ ◦ apr is a topological
interior operator on U .

Definition 3.2.[13] Let U be a non-empty universal of discourse. Then the pair
(f, g), where f, g : 2U → 2U , is said to be a Galois connection on U , if it satisfies
the following rules:

(1) A1 ⊆ A2 ⇒ f (A1) ⊆ f (A2) , g (A1) ⊆ g (A2),
(2) f (g (A)) ⊆ A, g (f (A)) ⊇ A.
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Theorem 3.1. Let U be a non-empty universe of discourse, C be a unary covering
on U . Then the pair

(
µ ◦ apr, µ ◦ apr

)
is a Galois connection on U if and only if C

is a partition on U .
Proof. Necessity: To prove C is a partition on U , we need check

∀Xi, Xj ∈ C,Xi ∩Xj 6= ∅⇒ Xi = Xj .

In fact, taking x ∈ Xi ∩Xj and assuming Md (x) = {Xk}. Then by the definition
of Md(x) we have Xk ⊆ Xi and Xk ⊆ Xj . Because

(
µ ◦ apr, µ ◦ apr

)
is a Galois

connection, thus µ ◦ apr
(
µ ◦ apr (Xk)

)
⊆ Xk. From Proposition 4 and Corollary 1

(3) we have,

µ ◦ apr
(
µ ◦ apr (Xk)

)
= ∪{X ∈ C |X ∩Xk 6= ∅} .

By x ∈ Xk ∩Xi ∩Xj , we have

Xi, Xj ⊆ µ ◦ apr
(
µ ◦ apr (Xk)

)
⊆ Xk.

Thus Xi = Xj = Xk.
Sufficiency: Let C is a partition on U . Then µ = ω by Remark 1. Thus the

sufficiency has been proved by Proposition 7 in [14].

4. The approximation operators on 2U

In this section, we examine the relationships of a topological spaces and different
combination operators formed by the Zoom-in and Zoom-out operators. Further-
more, we study the dual Galois connections formed by these combination operators.

Proposition 4.1. Let C be a finite covering on U and X ⊆ 2C . Then
(1) apr ◦ µ (X) = {S ∈ C |∃Ki ∈ X,S ∩Ki 6= ∅}.

(2) apr ◦ µ (X) = {S ∈ C |S ⊆ ∪Ki,Ki ∈ X }.
Proof. By the Definition we have

apr ◦ µ (X) = {S ∈ C |S ∩ µ (X) 6= ∅} = {S ∈ C |∃Ki ∈ X,S ∩Ki 6= ∅} .
apr ◦ µ (X) = {S ∈ C |S ⊆ µ (X)} = {S ∈ C |S ⊆ ∪Ki,Ki ∈ X } .

The following proposition lists the properties of the operators µ ◦ apr, µ ◦ apr.
Proposition 4.2. Let C be a finite covering on U . For any X,Y ∈ 2C ,
(1) apr ◦ µ

(
2C

)
= 2C , apr ◦ µ

(
2C

)
= 2C , apr ◦ µ (∅) = ∅, apr ◦ µ (∅) = ∅.

(2) X ⊆ apr ◦ µ (X) , apr ◦ µ (X).
(3) X ⊆ Y ⇒ apr ◦ µ (X) ⊆ apr ◦ µ (Y ) , apr ◦ µ (X) ⊆ apr ◦ µ (Y ).
(4) apr ◦ µ (X ∪ Y ) = apr ◦ µ (X) ∪ apr ◦ µ (Y ).
(5)

(
apr ◦ µ

) (
apr ◦ µ (X)

)
= apr ◦ µ (X).

Proof. (1)-(3) are straightforward.
(4) By the definition we haveú1

4

S ∈ apr ◦ µ (X ∪ Y )⇔ ∃Ki ∈ X ∪ Y, S ∩Ki 6= ∅
⇔ ∃Ki ∈ X,S ∩Ki 6= ∅ or ∃Ki ∈ Y, S ∩Ki 6= ∅
⇔ S ∈ apr ◦ µ (X) or S ∈ apr ◦ µ (Y )

⇔ S ∈ apr ◦ µ (X) ∪ apr ◦ µ (Y )

(5) ∀X ∈ 2C ,(
apr ◦ µ

) (
apr ◦ µ (X)

)
=

{
S ∈ C

∣∣S ⊆ ∪K,K ∈ apr ◦ µ (X)
}

= {S ∈ C |S ⊆ ∪K,K ⊆ ∪M,M ∈ X }
= {S ∈ C |S ⊆ ∪M,M ∈ X }
= apr ◦ µ (X)
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Remark 4.1. It is proved in [14] that the Zoom-in operator ω possess the
property (4) only when C being a unary covering. In addition, it is easily seen that
the operator apr ◦ µ indeed preserve the arbitrary unions.

The next example shows that the multiplication and idempotency of the operator
apr ◦ µ are no longer valid.

Example 4.1. Let U= {a, b, c, d}, K1 = {a, b}, K2 = {a, c}, K3 = {b, d}, C =
{K1,K2,K3}.

Letting X= {K1},Y= {K2,K3}, then K1 ∈ apr ◦ µ (X) ∩ apr ◦ µ (Y ). But apr ◦
µ (X ∩ Y ) = ∅. Thus apr ◦ µ (X) ∩ apr ◦ µ (Y ) 6= apr ◦ µ (X ∩ Y ).

Taking X= {K3}. It is easy to check that K2 ∈ apr ◦ µ (apr ◦ µ (X)) but K2 /∈
apr ◦ µ (X) = ∅.

Definition 4.1. Let U be a non-empty domain of discourse.
(1) A function i : 2C → 2C it is called a pretopological interior operator on 2C if

for each X,Y ∈ 2C :
(I) i

(
2C

)
= 2C .

(II) X ⊆ Y ⇒ i (X) ⊆ i (Y ).
(III) i (i (X)) = i (X).

(2) A function cl : 2C → 2C it is called a pretopological closure operator on 2C if
for each X,Y ∈ 2C :

(I) cl (∅) = ∅.
(II) cl (X ∪ Y ) = cl (X) ∪ cl (Y ).
(III) X ⊆ cl (X).

Remark 4.2. By Proposition 4.2, we observe easily that the operator apr ◦ µ
(resp., apr ◦ µ) is a pretopological interior (resp., closure) operator on 2C .

The following proposition exhibits us the relationship between the operators apr◦
µ, apr ◦ µ and Galois connection.

Theorem 4.1. Let U be a non-empty universe of discourse, C be a unary covering
on U . Then the pair

(
apr ◦ µ, apr ◦ µ

)
is a Galois connection if and only if C is a

partition on U .
Proof. Necessity: To prove C is a partition on U , we need check

∀Xi, Xj ∈ C,Xi ∩Xj 6= ∅⇒ Xi = Xj .

In fact, taking x ∈ Xi ∩Xj and assuming Md (x) = {Xk}. Then by the definition
of Md(x) we have Xk ⊆ Xi and Xk ⊆ Xj . Because

(
apr ◦ µ, apr ◦ µ

)
is a Galois

connection, thus

apr ◦ µ
(
apr ◦ µ ({Xk})

)
⊆ {Xk}.

By Proposition 3 (5) and Proposition 4.2 we have apr ◦ µ ({Xk}) = apr(Xk). So,

apr ◦ µ
(
apr ◦ µ ({Xk})

)
=

{
S ∈ C

∣∣∃Ki ∈ apr (Xk) , S ∩Ki 6= ∅
}

= {S ∈ C |∃Ki ∈ C and Ki ⊆ Xk, S ∩Ki 6= ∅}
= {S ∈ C |S ∩Xk 6= ∅} ⊆ {Xk}.

Because x ∈ Xk ∩Xi ∩Xj , thus

Xi, Xj ∈ apr ◦ µ
(
apr ◦ µ ({Xk})

)
⊆ {Xk}.

So, Xi = Xj = Xk as desired.
Similar to Theorem 3.1, the sufficiency has been proved by Proposition 12 in [14].
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5. Conclusion

We define a new zoom-in operator and consider the combinations of Zoom-in and
Zoom-out operators [12]. It is proved that the combination of Zoom-in operator
with Zoom-out operator (resp., Zoom-out operator with Zoom-in operator) form a
pair of approximation operators on the (resp., granulated) universe of discourse. In
particular, it is shown that the approximation operators on the universe of discourse
are precisely the second type of Covering-Based approximation operators. In ad-
dition, we establishes the interrelationship between these approximation operators,
topological spaces and Galois connections.
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