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1. Introduction 
Let G = (V, E) be a finite, simple connected graph. The degree dG(u) of a vertex u is the 
number of vertices adjacent to u. The degree of an edge e = uv in G is defined by dG(e) = 
dG(u)+dG(v) – 2. We refer to [1] for undefined term and notation. 
           The first and second Banhatti indices of a graph G were introduced by Kulli in [2], 
and they are defined as 

( ) ( ) ( )1 ,G G
ue

B G d u d e=  +     ( ) ( ) ( )2 .G G
ue

B G d u d e=  

where ue means that the vertex u and edge e are incident in G. 
         Recently, some topological indices were studied, for example, in [3, 4, 5].

          The Kulli-Gutman Sombor index was introduced by Kulli et al. in [6], defined it as 

( ) ( ) ( )2 2
.G G

ue

KG G d u d e= +
 

For definition, see also [7, 8].
         We can express the Kulli-Gutman Sombor index as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

2 22 2
2 2G G G G G G

uv E G

KG G d u d u d v d v d u d v
∈

 = + + − + + + −  
 

         Recently, some Sombor indices were studied, for example, in [9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21].

         We introduce the reduced Kulli-Gutman Sombor index of a graph G and it is defined 
as 
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( ) ( )( ) ( )( )2 2
1 2 .red G G

ue

KG G d u d e= − + −  

        We can express the reduced Kulli-Gutman Sombor index as 
         

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )

2 2 2 2
1 4 1 4 .red G G G G G G

uv E G

KG G d u d u d v d v d u d v
∈

 = − + + − + − + + −  

           In this paper, we determine the Kulli-Gutman Sombor index and the reduced Kulli-
Gutman Sombor index for oxide networks and honeycomb networks.   
 
2. Results for some standard graphs 
Proposition 1. If G is r-regular with n vertices and r ≥ 2, then   

( ) 25 18 17.redKG G nr r r= − +  

Proof: Let   G is r-regular with n vertices and r ≥ 2 and  
2

nr
 edges. Every edge of G is 

incident with r edges. Then dG(e) =  2 r  – 2. 

      ( ) ( )( ) ( )( )2 2
1 2red G G

ue

KG G d u d e= − + −  

( ) ( ) ( ) ( )( )2 2 2 2
1 2 2 2 1 2 2 2

2

nr
r r r r= − + − − + − + − −

   

25 18 17.nr r r= − +
 

 

Corollary 1.1.  Let Cn    be a cycle with   n≥ 3 vertices. Then  ( ) 2 .nred CKG n=  

 
Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 vertices. Then      

             ( ) 2( 1) 5 28 40.e nr dKG n n nK n= − − +  

 

3. Results for Oxide networks  
Oxide networks are of vital importance in the study of silicate networks. An oxide network 
of dimension five denotes an oxide network of dimension shown in Figure 1. 

 

Figure 1: Oxide network of dimension 5 
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          Let G be the graph of an oxide network nOX with 29 3n n+  vertices and  218n  

edges. In nOX , there are two types of edges based on the degree of end vertices of each 

edge as follows:  
            E1={uv ∈ E(G) | dG(u)=2, dG(v)=4},   |E1|=12n, 
 E2={uv ∈ E(G) | dG(u)=4, dG(v)=4},   |E2|= 218 12n n-  
 
Theorem 1. If G is the graph of an oxide network nOX , then   

              

( ) ( )272 13 24 5 2 2 2 13 .nKG OX n n= + + −  

Proof: Let G be the graph of an oxide network nOX . Then  

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

2 22 2
( ) 2 2

n

n G G G G G G
uv E OX

KG OX d u d u d v d v d u d v
∈

 = + + − + + + −  

                     

( ) ( )( )2 2 2 2 2 2 2 2 212 2 4 4 4 18 12 4 6 4 6 .n n n= + + + + − + + +
 
 

After simplification, we obtain the desired result. 
 
Theorem 2. If G is the graph of an oxide network nOX , then  

                  ( ) ( )2180 12 5 13 10 .red nKG OX n n= + + −  

Proof: Let G be the graph of an oxide network nOX . Then  

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )

2 2 2 2
1 4 1 4

n

red n G G G G G G
uv E OX

KG OX d u d u d v d v d u d v
∈

 = − + + − + − + + −  
                     

( ) ( )( )2 2 2 2 2 2 2 2 212 1 2 3 2 18 12 3 4 3 4n n n= + + + + − + + +
  gives the desired result after simplification. 

 
4. Results for Honeycomb networks  
Honeycomb networks are very useful in Computer Graphics and in Chemistry. An 
honeycomb network of dimension n is denoted by ,nHC  where n is the number of hexagons 

between central and boundary hexagon. A honeycomb network of dimension four is shown 
in Figure 2. 

 

Figure 2: Honeycomb network of dimension 4 
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               Let G be the graph of a honeycomb network nHC with 26n  vertices and  
29 3n n-  edges. In nHC , there are three types of edges based on the degree of end vertices 

of each edge as follows:  
            E1={uv ∈ E(G) | dG(u)=2, dG(v)=2},   |E1|=6, 
 E2={uv ∈ E(G) | dG(u)=2, dG(v)=3},   |E2|=12n-12 
            E3={uv ∈ E(G) | dG(u)=3, dG(v)=3},   |E2|= 29 15 6.n n- +  
 
Theorem 3. If G is the graph of a honeycomb networknHC , then   

              

( ) ( )290 12 13 36 2 150 12 13 12 2 60.nKG HC n n= + + − − − +  

Proof: Let G be the graph of a honeycomb networknHC . Then 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

2 22 2
( ) 2 2

n

n G G G G G G
uv E HC

KG HC d u d u d v d v d u d v
∈

 = + + − + + + −  
 
 

                   

( ) ( )( )2 2 2 2 2 2 2 26 2 2 2 2 12 12 2 3 3 3n= + + + + − + + +
  

                   

( )( )2 2 2 2 29 15 6 3 4 3 4n n+ − + + + +
 gives the desired result after simplification. 

 
Theorem 4. If G is the graph of a honeycomb networknHC , then   

     ( ) ( ) ( )236 2 5 4 2 12 1 2 5 12.red nKG HC n n= + − + + −  

Proof: Let G be the graph of a honeycomb networknHC . Then  

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )

2 2 2 2
1 4 1 4

n

red n G G G G G G
uv E HC

KG HC d u d u d v d v d u d v
∈

 = − + + − + − + + −  

             

      

( ) ( )( )2 2 2 2 2 2 2 26 1 0 1 0 12 12 1 1 2 1n= + + + + − + + +
  

                 

( )( )2 2 2 2 29 15 6 2 2 2 2 .n n+ − + + + +  

                       After simplification, we obtain the desired result. 
 
6. Conclusion 
In this paper, we have defined the reduced Kulli-Gutman Sombor index of a graph. 
Furthermore, the Kulli-Gutman Sombor index and the reduced Kulli-Gutman  Sombor 
index for oxide and honeycomb networks are computed. 
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