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Abstract. This paper shows that the Diophantine equati6) - p¥ = Z2 wherep is a
prime number withp = 1 (mod 28), has a unique non-negative integertisoluThe
solution is(x, y, 2= (0,0,0).
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1. Introduction

In 2019, Thongnak, Chuayjan and Kaewong [8] protlet the Diophantine equation
2* -3 =7 has three non-negative integer solutigrsy, 2)J{(0,0,0),(1,0,1),(2,1,1).

In the same year, Burshtein [1] studied the Dioginanequation(p+1)* - p¥=Z in
which p is a prime number ang, y, zare positive integers witlt+ y=2,3,4. Burshtein
[2] showed that the Diophantine equati®h-11 =z has exactly one positive integer
solution whenx=2, and no positive integer solution whe@r x<16. Burshtein [3]
found all positive integer solutions of the Dioptiae equationp* - p¥ = Z, when p is

a prime number.

In 2020, Burshtein [4] showed that the Diophantamgiation13 - 5 = z* has
exactly one positive integer solutiqm, y, z)=(2,2,13 and the Diophantine equation
19 - 5 = 7% has no positive integer solution. Elshahed and &athaili [5] studied all
non-negative integer solutions of the Diophantigaagion (4")* - p¥ = 7, where p is
odd prime anch is a positive integer. In 2021, Thongnak, Chuayjad Kaewong [9]
showed that(x,y,2)=(0,0,0 is the unique non-negative integer solution of the

Diophantine equatior” -5’ =z*. In 2022, Tadee and Laomalaw [7] found all non-
negative integer solutions of the Diophantine eigna®* - p¥ = 7, for some prime .

In this paper, we solve the Diophantine equatibthe form (p+6)* - p’ = Z,
where p is a prime number witp =1 (mod 28)and x, y, zare non-negative integers.
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2. Main results
We begin this section by presenting an importa@otém.

Theorem 2.1.(Mihailescu’s theorem) [6] The Diophantine equati’ — b’ =1 has the
unique integer solutiofa,b, x, y)=(3,2,2,3, wherea, b, x and y are integers with

min{a,b, x, y} > 1.

Lemma 2.1.Let p be an odd prime number. Then the Diophantine émuat- p’ = Z
has the unique non-negative integer soluijgnz) = (0,0).

Proof: Let y and z be non-negative integers a(ry;i z) be a solution of the Diophantine
equationl— p¥ = Z. Then(1-z)(1+ z2)= p'. Since p is prime, we hava-z= p' and
1+z= p’", for some non-negative integer Thereforey>2v and2=p*(p’?'+1).
Since p# 2, we havev=0and so2=p’ +1. Theny=0. It implies that z=0. Hence,
(y,2 =(0,0) is the unique non-negative integer solution.

Lemma 2.2.Letp be a prime number with=1(mod4). Then the Diophantine equation
(p+6)* —1= Z has the unique non-negative integer solufigyz) = (0, 0).

Proof: Let x and z be non-negative integers a(nd z) be a solution of the Diophantine
equation(p +6)* —1= 7. We consider three following cases.

Case 1.x=0. Then Z> =0. Hence, (x, 2) = (0,0) is a solution.

Case 2.x=1. Thenz’ = p+5. Since p=1(mod4), we havez’ =2 (mod4), which
contradicts the fact that® =0,1 (mod4.

Case 3.x>1. It is easy to check that>1. Thereforemin{ p+6,z,x,2 > 1. Since
(p+6)* -7 =1 and Theorem 2.1, we hape- 6 = 3, a contradiction.

Theorem 2.2.Let p be a prime number witlp =1 (mod 28). Then(x, Yy, 2 =(0,0,0)is
the unique non-negative integer solution of thegdbantine equatiofp +6)* - p’ = Z.
Proof: Let X, y, zbe non-negative integers a(nd Y, z) be a solution of the Diophantine
equatior(p+6)* - p’ = Z. If x=0o0r y=0, then(x, y, 2 =(0,0,0), by Lemma 2.1 and
2.2, respectively. Now, we consider case 0 and y>0. Sincep=1(mod28), it
implies thatp=1(mod4)andp=1(mod7). Therefore(p+6)" - p’ = (-1)*-1(mod4.
Since p=1(mod4), we obtain thatp and p+6 are odd. Thusz® is even and so
7> =0 (mod4). Since(p+6) - p’=7Z, it follows that(-1)* -1= 0(mod4. We see
that x=2k, for some positive integek . Therefore((p+6)“-2)((p+6)+ 2= (.
Since p is prime, there exists a non-negative integesuch that(p+6)" - z= pg' and
(p+6)+z= p ™. Theny=>2u and2(p+6) = p"(p’2"+1).
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Assume thati >0. Then p|2(p+ 6) and sop=2 or p=3. This is impossible
since p=1(mod28). Thusu =0. Consequently2(p + 6) = p¥ + 1. Sincep=1(mod 7),
we get2(p+ 6) =0(mod7 and p’ +1=2(mod7. Thus0= 2 (mod 7, a contradiction.

Corollary 2.1. The Diophantine equatioB85* — 29’ = 7> has the unique non-negative
integer solution(x, y, 2= (0,0,0).
Proof: This corollary follows directly from Theorem 2.2.

Corollary 2.2. Let n be a positive integer ar be a prime number with=1 (mod 28).
Then the Diophantine equatiqp +6)* — p’ = Z" has the unique non-negative integer
solution (x, y, 2 =(0,0,0).

Proof: Let a,b,cbe non-negative integers such tlat+6)* — p® = ¢". Then(a, b, ¢')

is a non-negative integer soluti@x, y, z) of the Diophantine equatiofp +6)* — p’ = Z.

By Theorem 2.2, we obtain thé, b, ¢')=(0,0,0). Thena=b=c=0. Hence,(0,0,0)

is the unique non-negative integer solution ofghaation(p+6)* - p’ = Z".

3. Conclusion

In this article, the Diophantine equatigm+6)* - p’ = Z, whenp is a prime number
and x, y, z are non-negative integers, is investigated. Weadathat(x, y, z2)=(0,0,0) is
the unique non-negative integer solution of theatign in the following cases: 1)
x=0andp#2, 2) y=0 and p=1(mod4), and 3) p=1(mod28). For example, if
p=29, then the Diophantine equati®5 — 29 =z* has the unique non-negative
integer solution(x, y, 2= (0,0,0).
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