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Abstract. In this short note, we show that the Diophantinaagign 9 — 3’ = z* has alll
non-negative integer solutios, v, z) € {(r,2r,0):r € N U {0}} and the Diophantine
equation13‘ - 77 = z* have the unique non-negative integer soluti®yy, z) = (0,0, 0).
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1. Introduction

In recent articles, Diophantine equations of thenf@* — b’ = Z, wherea, bare positive
integers andx, y, zare non-negative integers, have been studied ¢semstance [1, 2, 3,
4, 5, 7, 9, 10, 11, 12]). In 2022, Tadee [8] prowbdt the Diophantine equation
(p+6) - p’=7Z, wherep is a prime number witlp =1 (mod 28), has the unique non-
negative integer solutiofx, y, 2 =(0, 0,0 . In this paper, we will solve the Diophantine
equation, for some prime with p =1 (mod 28, which arep=3 andp=7.

2. Preliminary
Theorem 2.1.(Mihailescu’s theorem) [6] The Diophantine equata’ — b’ =1 has the
unique integer solutiofa,b, x y)=(3,2,2,3, wherea, b, x and y are integers with

min{a,b,x, y} > 1.

3. Main results

Theorem 3.1. The Diophantine equatio® -3 =7z* has all non-negative integer
solutions(x, y, z) € {(r,2r,0):r € N U {0}}.

Proof: Let x, y and zbe non-negative integers such 84t 3" = z*. Then3* - z> =3

or (3 -2z)(3 + z2)= 3. There exists a non-negative integesuch that3*-z=3 and
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3+z=3"". Then y=>2r and 2[B*=3 (3> +1). This implies thatx=r and so
3"* =1. Thusy =2r . Consequentlyz=0. Hence(x, y, z) € {(r,2r,0):r € N U {0}}
are all non-negative integer solutions of the Datine equatio® - 3’ = 72,

Theorem 3.2.The Diophantine equatiot3 — 7¥ = z> has only one non-negative integer
solution (x, y, 2 =(0,0,0).

Proof: Let x, y and zbe non-negative integers such that — 7¥ = 7*.

Case 1.y =0. Thereforel3* -z = 1. If x=1, thenz®> =12. This is impossible since

is an integer. Ifx>1, thenz>1 and somin{13,z,x,2 > 1. By Theorem 2.1, we have
13= 3, a contradiction. Thug=0 and soz=0. Then(x, Y, 2 =(0,0,0) is a solution.
Case 2.y>0. Then7¥ =0 (mod7). This implies thatz’? =13 - 7 = - 1) (mod 7.. If x

is odd, thenz® = -1 (mod 7), which contradicts the fact that =0,1, 2, 4(mod 7. Thus x

is even. There exists a non-negative integeuch thatx=2k. Then13* -z?=7" or
(1 -2)AF+2)=7. Thus13 -z=7 and 13 +z=7"", for some non-negative
integeru . It follows thaty=>2u and 213 = 7 (?"+ 1. If u>0, then7|201%, a
contradiction. Thusi=0and s®[13 = 7 + 1. This is impossible sinc@’ +1=1(mod 7
and 203 = 2 1f =- 2, 2(mod 7.
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