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Abstract. In this paper, we concern with the blow-up problefrpositive solutions to
parabolic equations with reaction terms of local aonlocal type involving a variable
exponent. It is shown that under certain conditionghe nonlinearities and data, blow-
ups will occur for the limited time.
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1. Introduction
In this paper, we consider with the limited-timeowstup of solutions for the initial
boundary value problem:

t
u —Au= qu. uP®(x,s)ds, xOQ,t>0;
0

u(x,t) =0, x0doQ,t >0; Q)
u(x,0) = uy(x), xdQ,

where Q OR" is a bounded domain with smooth boundaty, q=0, andu, is a
nonnegative continuous function vanishing @am. p(x) is a continuous and bounded
function, we denote:

p~=inf p(x) > p" =supp(x) < +o. )
x0Q x0Q

This equation arises from a variety of mathematitaldels in engineering and
physical sciences. As a physical motivation, tifgedéntial equation in (1) withp=q=1
appears in the theory of nuclear reactor kinese (1]). In this case, the non-linear term
with time integral is called theemory term. Such equation model diffusion phenomena
with memory effects have been widely considerednany authors (see [2]-[12]). For
instance, in [9], Bellout considered the blow-ofuson of the equation

t
U, —Au :.[O(u +A)Pds+g(x), xOQ,t>0,
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where g(x) = 0is a smooth function and >0. In [11] , Yamada investigated the stability
properties of the global solution of the followingnlocal Volterra equation

t
u, —Au = (a-bu)u —Lk(t —9u(x,5)ds, x0Q,t>0.

In [12], Y. Li and C. Xie studied the equation {&ith p(x) is a constant. They gave a
complete answer to the existence and nonexisteglelmal solution to (1) and estimated
the blow-up rate under some conditions.

In recent decades, with the development of hydradyos and elastodynamics, many
authors began to pay attention to the problemsavfHoip solutions of reaction-diffusion
equations with variable exponential growth condisiqsee [15]-[18]). In [18], Pinasco
considered the following problem

u, =Au+ f(u), xOQt>0;
u(x,t) =0, xd0Q,t >0; )
u(x,0) =uy(x), x0OQ,
where f(u)=a()uP® or f(u)= a(x)j ui(y.t)dy and p(x),q(x)>1 . The author
Q
demonstrated that the solution of (1) blow-upiiité time for sufficiently large initial
value.

To our best acknowledges, problem with time-integral variable exponent power

don't seem to be studied. The variabP&’ spaces are of interest for their applications to
modelling in wide variety of physical problem. Cmettheoretical side, there are many

interesting features afP™ spaces which present difficult challenges. Fomela, it is
not clear whether the comparison principle holdemviproving the existence of small
global solutions. We will try to construct a newngumarison principle for solving the
problem presented above. Our main goal is to firdffects of weight function in the
boundary condition and competitive relationshipwestn nonlinear memory term and
inner absorption term on whether determining blgwefisolutions or not for equation (1).
Our conclusions are as follows:

® Assumep” +q>1, then the solution to (1) blows up in finite time for sufficiently
large u, . As a more precise result, wher:1, the solution of (1) blows up in finite
time for any nonnegative, .

® If p +g>1, q=1, the solution of (1) exists globally for sufficidy small initial data
u,. Moreover p* +q<1, the solution of (1) exists globally for all nomaive u, .

The rest of this article is organized as follows: Section 2, we study the local
existence of positive solution, and establish tragarison principle. The proofs of blows
up results are given in Section 3. At last, in Bect, the global existence theorems are
proved. Section 5 contains conclusions.

2. Preliminaries
In this section, we show the existence theorem @mdparison principle. Firstly, for

problem (1), we consider the classical solutiorc{@;)NC*'(Q;). By using the fixed
point theorem, we give the following existence tieeo.

34



Blow-up for Semilinear Parabolic Equations with MamTerms of Variable
Exponents

Theorem 2.1.1f QORN is an open bounded domain with smooth boundary p(x)

satisfies condition (2), then the solution of tigaation (1) exists locally and is unique.
Proof:  With an initial datumu, and homogeneous Dirichlet boundary conditions. (1)

could be written as
_ t af®,p(
u(x,t)—IQG(x, Z’t)UO(Z)dZ+I0.[QG(X’ zt-s)(u .[Ou do)dzds, 4)

where G(x, z,t) is the Green function. Now, the existence and wmiggs of solutions for a
given u,(x) could be obtained by a fixed point argument.

We define inductively
U (xt)=0

_ t _ af®, px)
Uns —J.QG(X, z,t)uo(z)dz+jo.[QG(x, z,t-9s)(u, Lun do)dzds,
and the convergence of the sequefuggfollows by showing that
_ —ay? [Tyr»
P(u)—J.OIQG(x, zZt-sju Iou dodzds,

is a contraction in
E={c@)Nc?@):|u], M},
whereQ; =Qx(0,T), M > ma><{||u||oo ]} is a fixed constant.
For anyu,vOE, we get

qusup(x)da—vqjsvp(x)d%‘
0 0

(ud —vq)ru P dg +va rvp(x)da A J.Svp(x)d#
0 0 0 .

J'Sup(X)d J.S(u PO _\/P(9)g
O 00 O 00

For anyx0Q fixed, according to Lagrange mean value theoremhave
ut-vi =g u-v)
uP® _yPX) = p(X){zp(x)_l(u -V),
where & =4gu+ (1-6)v, 8 0 (01) . Although 8 depends orx, we always have
|agr - <a@m)*Hu-v,

[po9er® -y _<p@M)*u-d,.
Now, let us defineQ(t) as

Q)= sup '[T.[ G(x,z,7—s)dzdw,
x0Q 0<7r<t ¥09Q

s v
0

o

(5)

clearly Q(t) - 0ast - 0.
It remains to prove that, for sufficiently smailt), P(u)is a contraction, that is , there
existsh <1such that
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[P =PI, <hlu-v,
for everyu,vOE.
Since

[P@-Pw,

t S S
= - a| yP®gg-va| vP™
H.[o.[QG(X’ zt s)[unj.oun do-v, J.Ovn da}dzds

J'Su ”(X)d#
0 <)

<QMM P sq(@M) T Yu-v|_ +MIsp*(@M)P 2
= Q)sM P (29 + p* 2P Hu-v_.

We choose a sufficiently small initial datg when0<t<e¢, Q(t)is small enough. Such
that

00

J':(u p(x) _ vp(x)d#
-,

<QM) o -

uid
0o

QOSM P (G2 + p 2P Hu -], <1
Base on the Banach's fixed point theorem, thisigsghere exists a unique local solution
uin Q; .
Next, we establish a modified comparison princfpleproblem (1). We begin with a

lemma. Although its proof is standard. For compiess, we give the details:
Let S; =0Qx(0,T), 0<T <.

Lemma 2.1.Assume that, b, andc satisfy
a(x,t),b(x,t),c(x,t)0C(Q;) and b(xt),c(xt) =0,
suppose thati1C(Q;)NC?(Q,) satisfies

u, —Au=au+ bJ:c(s)u(s)ds, inQq,
u(x,t)=0 onS;, (6)
u(x,0) =uy(x) =20 inQ,

thenu(x,t)=0for (x,t)0Q.
Proof: We shall prove the lemma by contradiction. Firstigfine the constants,, N,
and N; by

N, = n%iv{a(x,t)L N, = n%iv{b(x,t)L N = n%iv{c(x,t)L

Set u(x,t) =e™a(x,t) , where A is an arbitrary positive constant to be chosenr.late
Obviously, «' satisfies:
t
Wy ~De+(A - a)w—be‘”tj e’5c(s)c (3)ds > 0. @)
0

Supposer' achieves its negative minimum @,t,) 0 Q;., for someT'< T, then
W (X tg) <0, Ad(Xy.15) 20, o, (X,1,) < 0.
If we choose/ large enough such that
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1 N, + N2 +4N,N;

2

Thus
t
{wt -Aw+(A - a)w-be™ jo ec(s)a (s) ds}(xof[o)

< (A= Np)a (%o, to) —% N,Ne™ (e —1)a (%o, t,) (8)

<~ (X, to) (A —N1)+§N2N3> <0,

since the left-hand side of (7) is strictly nosgative, which contradict that assumption.
From the above Lemma, it follows the comparisomtam.

Theorem 2.2. Let f,g:[0,)  [0,) be non-decreasing nonnegative locally Lipschitz
functions on(0,«). Suppose that,vOC(Q;)NC>*(Q;) andu=4J >0, v=0satisfy

U, —Au = g(u)I; f (u)ds,

t
v, —Av 2 g(v)j0 f(v)ds, inQq,

uzv, inS,

u(x,0) = v(x,0) inQ.
Thenu=vin Q;.
Proof: Let a,b,c be the continuous functions defined by

g(u)-g(v)

a(x,t):rf(u)dsx u—v 7Y
° g'(u) u=v,
b(xt) = g(v),
(W-10) |,y
c(x,t) = u-v
f'(u) u=v.

Sinceu=6>0, a,care bounded, anb,c=0. We have
(u-t); —Au-v) =u, -v;, —Au+Av

t t
> g(u).[o f (u)ds— g(v) L f (v)ds
t t t t
= g(u)jo f (u)ds—g(v) jo f (u)ds+g(v) jo f (u)ds— g(v)jo f (v)ds
= M(u _V)J't f (u)ds+ g(v)rM(u -v)ds
u-—-v 0 0 u-—-v

=za(u-v)+ bI;c(s)(u —-v)ds.

Then the theorem follows from Lemma 2.1.
Based on the above comparison principle, we obteirtheorem.
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Theorem 2.3.If udC(Q;)NC?H(Q;) satisfies

t
u, —Au > uqJ. uP®(x,s)ds, inQy;
0

u(xt)=0, onS;;
u(x,0) 2 uy(x), inQ.

Thenu=0in Qr . Furthermoreu >0 inQr .

3. Blow-up of the solution
In this section, we discuss the finite-time blowafpthe solution by subsolution method
based on the comparison principle.

The main point about the time-integral non-locallppems is that only when the time
is large, the time-integral terms plays a dominafe in the evolution of the solutions.
Based on this idea, we construct a blowing-up dukisa of the form

u:&, 0<r<R, 0<t<T, ©)
z'(r,t)

where a(r) = cos’ (%) , Z(r,t)=4T?-aP(t-T)? = 72,, and

7, = 2T -a’"?(t-T),
z, = 2T +a’'?(t-T).
Obviously, u(r,t) blows up att =0ast approachesT .
By direct calculation, we have
m_a n-1_. 7
-Aw=-2%(—cos—+——-sin—).
ZR(R R r R)

Hence, there exists a uniqugd (0,R) such that

-Aw<0 for ry<r<R, (10)
Os—Aa)sﬁ and w>cof X0 for 0<r<r,. (11)
2R? 2R

Theorem 3.1.If p~ +g>1,then the solution of (1) blows up in finite timar Bufficiently
large u, .
Proof: Without loss of generality, we assume tbatQ, and take a balB; (0) 0D Q.
Consider the problem
t
vy, —Au = vlqjovlp(x)(x, s)ds, xOBg(0),t>0;

V(R =u(R), (12)
v (x,0) = Up(X), x0Bg (0),

where u,(x) is the same as in (1). We assume> 0in By (0) . From the uniqueness of $u$,
it follows thatv=ulg_, -
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We will show thatu defined by (9) is a subsolution of (12), whiclpiias by Theorem
2.2 thatv, blows up in finite time.
Define

t
Lu=u, -Au —uqJ. uP®ds,
0
Chooseog >2,1>1andT s%such thatz<1. By a series of computations yields, we obtain

A/ (t-T) b A0 pef’t-T)? lo(o-1ef |agf (t-T)?

Lu=

ZI+1 ZI Z|+1 Z|+1
2
_loa’Baft-T)? 1(1+Daf07”  oPtI+a J" ds (13)
ZI +1 Z| +2 ZIq o le(x)
J207M-T) _Aw_low’Aet-T)? _ P It ds
- ZI+1 ZI Z|+1 ZIq o le(x)'

In the proof, we divide the intervgb3T)into two intervals as intervdd, T /2] and interval
(T /1231).

Firstly, we consider the cage<t sTE . In this case, the linear term is the main factors

We will show that

A0 (t-T) Aw_low’baxt-T)? <0

ZI+1 ZI Z|+1

for sufficient smallT . In fact, this inequality is equivalent to

1 _
A< 27T -1)

< 14
4% +(o-1)af (t-T)? 14)

Since%<% and0<a <1, we get

27T -t) . la” T _ la ™t . la "t . "t
T2 +(lo-Daf (t-T)? 4T%+(10-Da’T? AT+(0-DafT ,pl, 7 30T
|

Then (14) can be replaced by

+1
30T
From (9), forry <r <R, itis trivial. ForO<r <r,, it is satisfied if
2
T 2R (cos X0)2o+D)

3norr? 2R

Now, we study the cas-é«t < 3T, we will find in this case the time-integral tetakes

-Aw=

into main actions. Choode™ > 2, we have
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uqrup(X)ds: P+ J,t ds N WP+ J.t ds _ WP *a J-t ds
=)= Z9 Jo Z(S)lp(x) Z9 Jo Z(S)Ip_ Z9 Jo zl(S)lp_ ZZ(S)Ip_
p++q t p++q
z 6;; Ip~ .[o dslp‘ - CI(; p~ @ : ( ?;J‘ - 1|p_) (13)
29z, z(s) 2% 2 (Ip™ -1 4 20
p"+q—g l-"J'*'CI_g
2 w 2

= Z|(p_+q—l)22(|p— _l) (Ip— _1)z|q22|p_ 21(0)|p‘ .
Hence, from (13) and (15), we have
AT AT2(-Aw) | (0 -Def (-Aw)(t=T)*

ZI +1 Z| +1 Z| +1

Lus

p++q'% wp++q_% (o)
_ — + - -
Zl(p +q-1) Zz(lp_ _1) (Ip— _1)Z|q22|p Zl (O)lp

Case 1If ry<r <R, since-Aa <0, we have

pr+g-2 pr+q-2
AT 2 . w 2
I+1

Lu< - - - —.
2% 2T =) (pT-02%," z(0)

Chooses > p* +q-1, I 2ma{2(p™ +q-1"12(p") %} and puta‘z%—(p+ +g-1), then

we get
pra-2
2 B} Ip™-1
lus— “i ————— (@(lp -DITef 2,27 R .Y
Z1(p7+a )Zzp (p™ -1 Zl(O)Zip
12
Sincelp™-1>1 ando<_2_ < 2= *(T/12-T) yhap
2(0) U +af 27
12
Ip~-1 2+ a)ﬂ
701 z0) 2+a”?
and we have
12
a)p++q_% 2+C¢)U
lus———————@(lp” -)ITe” )
Z(P7+a )Zzp (Ip” -1 2+a” (17)
. O
L I2
< - = 4lp~ —l)ITa)U—wJ ).
29D P (Ip” ~D(2+ %) 2
Since wn[0]], the last term of (17) is nonpositive, if
Ts—*
481p~ -1l

Case 2:If 0<r <r, . By (11) and (16), we have
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2 p*+a-2 pea-g
I_u<4|T+2n|a772/R _ w 2 + @ ’
u Z| +1 Zl(p_+q—l) Zz(lp_ _1) (Ip— _1)Z|q22|p_ Zl (O)|p_
+y _o ]
_AT+22lo? IR w2 /(p-]) 1- Al )
Z|+1 Zl(p_+q—jl_)22 Zl(o)|p_‘1 .

4

Put C = 5" obviously, then0<C<1, 4T?@1-a”)<z(r,t)<4T?and 2T <z, <4T .

4
Hence, we have
5 pr+a-2 _
A+nlo? 2R?  _ w  212p” -] a-c®
AT (g = P YHL (7 +a) -1 20(p +0)-D) '

Lu< (18)

If we choose =2(p~ +q-1)"%, the right-hand side of (18) is non-positive faffigiently

small T.
In conclusion, if we choose that

| > ma><{12(p')'1,2(p' +q—1)'1}, max{z, p* +q—1}< o<p'+q
We have
u, - Au —yqup(x)dss 0
0
for T is sufficiently small. Thereforey(r,t) is the subsolution of the problem (12) in

Bg(0), if ug(x) =u(x,0). So the solution of (1) blows up in limited timEhe proof of
Theorem 3.1 is completed.

Theorem 3.2.If p”+g>1, gq<1, then the solution of (1) blows up in limited tifoz any
nonnegative nontriviali, .
Proof: Sinceu>0in Q; by Lemma 2.1, we denote =u*9. Noting 0< q <1, then hold
% >1. Hence, we obtain

-q

0= UYED) _AUYED)_yVED J’ ! PO/E-0) g4
(0]
=1~ q)‘lu Cl/(l‘q)ut _[(1_q)‘1u deEDAY + q(l—q)'ZU (2q—1)/(1‘Q)| DU|2]—U a/(1-0) J;U PO)/(-0) 4g
t t
< (1—q)_1U q/(l—Q)(Ut AU - (1_®LU D(X)/(l—Q)ds) < (1_q)—1U a/(l-q) U, -AU _(1_q),[0(u p /() -1)dy

= (-9 U, -aU-(-9) j;w P 0ds+ (1-q)).

Let A be the first eigenvalue of Laplaciani Q with homogeneous Dirichlet boundary
conditions
-AY =AY inQ
{zp(x) =0 onoQ’,
and lety be the corresponding positive eigenfunction. Weataosey satisfies
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[y
We will show that
U, -AU = (1-q) I;u P9 gs— 1-qg)t, (19)
for any nonnegative nontrivial .
Multiplying equation (19) byy(x), integrating this by parts over', and using
Jensen's inequality, we get
ij Ugex- [ aUgex> (1-a) wfu P19~ (1- )t e
dt Jor Q' o Jo Q' 20)
. ) (
2 -0 (] Upeb)” P ds- -t

Putz = IQ'UWX’ (20) can be written as

t _
Z4AZ > (- q)jO 7P (@Ogs— (1-g)t.

According to the Comparison principle of ordindifferential equations (Theorem 5.1 in
[13]), we conclude that =UY®"% blows up in finite time for any nonnegative noritiv
Ug .

4. Global existence of the solution
In this section, we shall prove the global existeatthe solutions of (1).

Theorem 4.1.I1f p~+q>1, q=1, then the solution of (1) exists globally for feziently
small initial datau, .
Proof: Let ¢(x) be the first eigenfunction of the following eigeluaproblem:
-Ap=Ag inQ
{qzﬁ(x) =0 onoQ,
where A, is the first eigenvalue. Then it is known thgix) is a non-negative smooth

function onQ and ¢(x)is positive inQ . In particular, we shall normalizgx) in sup-
norm, that is,

maxg(x) =1,

x0Q
For g=1, put

1
V(xt) —WWX),

where 4 >0and D >1is a sufficiently large constant to be chosen laée obtain

LV 2 -25(D +1) ¢+ A (D +1) ¢ - ¢P*9(D +1) 24 I;(D +1) 2% ds
>-20(D+t) 2 g+ A (D+t) g -¢P *9D +t)‘2‘ﬁ£(D +1) 2% ds (21)

> ¢(D +t)'25[— 20(D+t)T+ A - (D +t)'25<Q‘1>j;(D +1) 2% ds}.
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Sinceq=>1, we choosed = (2(p~ +q-1))>0in (21). If 2p d<1 we have
- _ 1 —25(D+q—
LV 2 ¢(D +t) 2| =25(D +t) t + )} ————— (D +1t)720(P *a-D+1
#(D +t) { (D +t) 175 _+1( )

20,
If 2p~0=1,we have
LV 2 ¢(D +t)_25[— 20(D +1t) "t + A - (D +1) 7224 In(1+%)}

>0.
Combining the two cases, and the Theorem 2.1. ddrigpletes the proof.

Theorem 4.2.If p* +q<1, the solution of (1) exists globally for all negativeu, .
Proof: Let V'= g™, wherea, 8 >0 are to be chosen lateral. By direct calculatiom get

LV'= afe™ - BI+PX)gmt J‘t PS4
0
2 o - g || g
0

q+p(x)
> gpe™ BT e
+

> apert - Bt eatyan
ap
Since p*+q<1, if we choose B=maxu, and a=(p*)™V3(B" *"1+31)Y2 | then
xQ

V'= Be™is a supersolution of (1). According to Theorei®, Zhe theorem is proved.

5. Conclusion

Semilinear parabolic equation with memory is widstlydied, but parabolic equation with
a variable exponent is difficult to study. In thisper, we use the comparison principle and
some inequalities to discuss the blow-up of sohgior not for equation (1) in Dirichlet
boundary. Next, we will continue to study the blap-rate and blow-up time of the
solution of the equation.
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