
Journal of Mathematics and Informatics 
Vol. 24, 2023, 33-44 
ISSN: 2349-0632 (P), 2349-0640 (online)  
Published 19 February 2023  
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/jmi.v24a04217 
 

 
 

33 
 

Blow-up for Semilinear Parabolic Equations with 
Memory Terms of Variable Exponents  

Xiang Jing*1 and Tian Ya2 
1,2School of Science, Chongqing University of Posts and Telecommunications,  

Chong'qing – 400065, Chong'qing, China.  
 2E-mail: tainya@cqupt.edu.com 

*Corresponding author. 1E-mail:1457993932@qq.com 

Received 5 January 2023; accepted 17 February 2023 
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1. Introduction  
In this paper, we consider with the limited-time blow-up of solutions for the initial 
boundary value problem: 
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where NR⊂Ω is a bounded domain with smooth boundary Ω∂ , 0≥q , and 0u  is a 

nonnegative continuous function vanishing on Ω∂ . )(xp  is a continuous and bounded 
function, we denote: 
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This equation arises from a variety of mathematical models in engineering and 
physical sciences. As a physical motivation, the differential equation in (1) with 1== qp

appears in the theory of nuclear reactor kinetics (see [1]). In this case, the non-linear term 
with time integral is called the memory term. Such equation model diffusion phenomena 
with memory effects have been widely considered by many authors (see [2]-[12]).  For 
instance, in  [9], Bellout considered the blow-up solution of the equation 
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where 0)( ≥xg is a smooth function and 0>λ . In [11] , Yamada investigated the stability 
properties of the global solution of the following nonlocal Volterra equation 
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t
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In [12], Y. Li and C. Xie studied the equation (1) with )(xp  is a constant. They gave a 
complete answer to the existence and nonexistence of global solution to (1) and estimated 
the blow-up rate under some conditions. 

In recent decades, with the development of hydrodynamics and elastodynamics, many 
authors began to pay attention to the problems of blow-up solutions of reaction-diffusion 
equations with variable exponential growth conditions (see [15]-[18]). In [18], Pinasco 
considered the following problem 
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where )()()( xpuxauf =  or Ω= dytyuxauf yq ),()()( )(  and 1)(),( >xqxp . The author 

demonstrated that the solution of  (1) blow-up in finite time for sufficiently large initial 
value. 

To our best acknowledges, problem with time-integral and variable exponent power 
don't seem to be studied. The variable )(xpL  spaces are of interest for their applications to 
modelling in wide variety of physical problem. On the theoretical side, there are many 
interesting features of )(xpL  spaces which present difficult challenges. For example, it is 
not clear whether the comparison principle holds when proving the existence of small 
global solutions. We will try to construct a new comparison principle for solving the 
problem presented above. Our main goal is to find the effects of weight function in the 
boundary condition and competitive relationship between nonlinear memory term and 
inner absorption term on whether determining blow-up of solutions or not for equation (1). 
Our conclusions are as follows: 
 Assume 1>+− qp , then the solution to (1) u  blows up in finite time for sufficiently 

large 0u . As a more precise result, when 1<q , the solution of (1) blows up in finite 
time for any nonnegative 0u . 

 If 1>+− qp , 1≥q , the solution of  (1) exists globally for sufficiently small initial data 

0u . Moreover 1≤++ qp , the solution of (1) exists globally for all nonnegative 0u . 

The rest of this article is organized as follows: In Section 2, we study the local 
existence of positive solution, and establish the comparison principle. The proofs of blows 
up results are given in Section 3. At last, in Section 4, the global existence theorems are 
proved. Section 5 contains conclusions. 

 
2. Preliminaries 
In this section, we show the existence theorem and comparison principle. Firstly, for 
problem (1), we consider the classical solution in )()( 1,2

TT CC ΩΩ I . By using the fixed 
point theorem, we give the following existence theorem. 
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Theorem 2.1. If NR∈Ω is an open bounded domain with smooth boundary Ω∂ , )(xp  
satisfies condition (2), then the solution of the equation (1) exists locally and is unique.  
Proof:   With an initial datum 0u  and homogeneous Dirichlet boundary conditions. (1) 
could be written as 
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where ),,( tzxG is the Green function. Now, the existence and uniqueness of solutions for a 
given )(0 xu could be obtained by a fixed point argument. 

We define inductively 
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and the convergence of the sequence { }nu follows by showing that 
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is a contraction in 
{ },:)()( 1,2 MuCCE TT ≤ΩΩ= ∞I  

where ),0( TT ×Ω=Ω , { }1,max ∞≥ uM  is a fixed constant.  

For any Evu ∈, , we get 
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For any Ω∈x fixed, according to Lagrange mean value theorem, we have 
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where vu iii )1( θθξ −+= , )1,0(∈iθ . Although iθ  depends on x , we always have 
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Now, let us define )(tQ  as 
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τ
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clearly 0)( →tQ as 0→t . 
It remains to prove that, for sufficiently small )(tQ , )(uP is a contraction, that is , there 

exists 1<h such that 



Jing Xiang and Ya Tian 

36 
 

 

,)()( ∞∞ −≤− vuhvPuP  

for every Evu ∈, . 
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We choose a sufficiently small initial data ε , when ε≤≤ t0 , )(tQ is small enough. Such 
that 
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Base on the Banach's fixed point theorem, this implies there exists a unique local solution 
u in TΩ . 

Next, we establish a modified comparison principle for problem (1). We begin with a 
lemma. Although its proof is standard. For completeness, we give the details: 

Let ),0( TST ×Ω∂= , ∞<< T0 . 
 

Lemma 2.1. Assume that a , b , and c  satisfy  
,0),(),,()(),(),,(),,( ≥Ω∈ txctxbandCtxctxbtxa T  

suppose that )()( 1,2
TT CCu ΩΩ∈ I  satisfies 
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then 0),( ≥txu for Ttx Ω∈),( . 
Proof:  We shall prove the lemma by contradiction. Firstly, define the constants 1N , 2N  
and 3N  by  

.),(max,),(max,),(max 321 txcNtxbNtxaN
TTT ΩΩΩ

===  

Set ),('),( txetxu tωλ= , where λ is an arbitrary positive constant to be chosen later. 
Obviously,  'ω  satisfies: 
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Suppose 'ω  achieves its negative minimum at '00 ),( Ttx Ω∈ , for some TT <' , then 
.0),(',0),(',0),(' 000000 ≤≥∆< txtxtx tωωω  

If we choose λ large enough such that 
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since the left-hand side of  (7)  is strictly non-negative, which contradict that assumption. 
From the above Lemma, it follows the comparison theorem. 
 

Theorem 2.2. Let [ ) [ )∞→∞ ,0,0:, gf be non-decreasing nonnegative locally Lipschitz 

functions on ( )∞,0 . Suppose that )()(, 1,2
TT CCvu ΩΩ∈ I  and 0>≥ δu , 0≥v satisfy 
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Then vu ≥ in TΩ . 
Proof: Let cba ,, be the continuous functions defined by  
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Since 0>≥ δu , ca, are bounded, and 0, ≥cb . We have 
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Then the theorem follows from Lemma 2.1. 
Based on the above comparison principle, we obtain the theorem. 
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Theorem 2.3. If )()( 1,2
TT CCu ΩΩ∈ I satisfies 
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Then 0≥u in TΩ . Furthermore, 0>u  in TΩ . 
 
3. Blow-up of the solution 
In this section, we discuss the finite-time blow-up of the solution by subsolution method 
based on the comparison principle. 

The main point about the time-integral non-local problems is that only when the time 
is large, the time-integral terms plays a dominant role in the evolution of the solutions. 
Based on this idea, we construct a blowing-up subsolution of the form 
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Obviously, ),( tru blows up at 0=t as t approaches T3 . 
By direct calculation, we have 
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Theorem 3.1. If 1>+− qp ,then the solution of (1) blows up in finite time for sufficiently 
large 0u . 

Proof: Without loss of generality, we assume that Ω∈0 , and take a ball Ω⊂⊂)0(RB . 
Consider the problem 
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where )(0 xu is the same as in (1). We assume 00 >u in )0(RB . From the uniqueness of $u$, 

it follows that )0(|
RBuv = . 
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We will show that u  defined by (9) is a subsolution of  (12), which implies by Theorem 
2.2 that 1v  blows up in finite time.  
Define 
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In the proof, we divide the interval ( )T3,0 into two intervals as interval ( ]2/,0 T and interval 
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Hence, from (13) and (15), we have 
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Case 1: If Rrr <≤0 , since 0≤∆− ω , we have 
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Since [ ]1,0∈ω , the last term of  (17) is nonpositive, if 
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Case 2: If 00 rr <≤  . By (11) and (16), we have 
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If we choose 1)1(2 −− −+≥ qpl , the right-hand side of (18) is non-positive for sufficiently 
small T . 

In conclusion, if we choose that 
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for T is sufficiently small. Therefore, ),( tru  is the subsolution of the problem (12) in 

)0(RB , if )0,()(0 xuxu ≥ . So the solution of (1) blows up in limited time. The proof of 
Theorem 3.1 is completed. 
 
Theorem 3.2. If 1>+− qp , 1<q , then the solution of (1) blows up in limited time for any 
nonnegative nontrivial 0u . 
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Let λ be the first eigenvalue of Laplacian in Ω⊂Ω' with homogeneous Dirichlet boundary 
conditions 
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and let ψ be the corresponding positive eigenfunction. We can choose ψ satisfies 
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We will show that 
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for any nonnegative nontrivial U . 
Multiplying equation (19) by )(xψ , integrating this by parts over 'Ω , and using 

Jensen's inequality, we get 
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Put Ω=
'

dxUZ ψ , (20) can be written as 
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According to the Comparison principle  of ordinary differential equations (Theorem 5.1 in 
[13]), we conclude that )1/(1 qUu −= blows up in finite time for any nonnegative nontrivial 

0u . 
 
4. Global existence of the solution 
In this section, we shall prove the global existence of the solutions of  (1). 
 
Theorem 4.1. If 1>+− qp , 1≥q , then the solution of  (1) exists globally for sufficiently 

small initial data 0u . 
Proof: Let )(xϕ be the first eigenfunction of the following eigenvalue problem: 
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where 1λ is the first eigenvalue. Then it is known that )(xϕ is a non-negative smooth 

function on Ω and )(xϕ is positive in Ω . In particular, we shall normalize )(xϕ  in sup-
norm, that is, 
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For 1≥q , put 
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where 0>δ and 1>D is a sufficiently large constant to be chosen later. We obtain 
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Since 1≥q , we choose  0))1(2( 1 >−+= −− qpδ in (21). If  12 <−δp  we have 
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If  12 =−δp ,we have 
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Combining the two cases, and the Theorem 2.1. This completes the proof. 
 
Theorem 4.2. If 1≤++ qp , the solution of  (1) exists globally for all nonnegative 0u . 

Proof:  Let teV αβ=' , where 0, >βα  are to be chosen lateral. By direct calculation, we get  
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Since 1≤++ qp , if we choose  0maxu
x Ω∈

=β and 2/1112/1 )()( −−+−+ +=
+

ββα qpp , then 

teV αβ=' is a supersolution of  (1). According to Theorem 2.2, the theorem is proved. 
 
5. Conclusion  
Semilinear parabolic equation with memory is widely studied, but parabolic equation with 
a variable exponent is difficult to study. In this paper, we use the comparison principle and 
some inequalities to discuss the blow-up of solutions or not for equation (1) in Dirichlet 
boundary. Next, we will continue to study the blow-up rate and blow-up time of the 
solution of the equation. 
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