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Abstract. Recently, several authors have considered the sshalbsitive part missing from
an integer partition, known as the minimal excludanmex-function. After that, many
properties and identities about the extended fancpi, ,(n) andp, ,(n) appeared. In

this paper, we deduce some new results aluf(n) and p,  (n). Moreover, we
generalize the definition of minimal excludant teegartitions, and obtain some identities.
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1. Introduction

The main purpose of this paper is to present soeve identities related to minimal
excludant functions on partitions. To this end, fivet introduce some definitions and
notations.

A partition [1] of n is a finite nonincreasing sequence of positiveegets
(A1, A5, ..., Ap) such thatn = A4, + 4, + -+ 1,. We write A = (14,1,, ..., 4,) and call
A;’s thepartsof A. Thesizeof A is the sum of all parts, which is denoted [dy,and the
lengthof 4 is the number of parts, which is denoted4#(yt). We also write a partitiort
of n as (1122 ..n/r) if a part i has multiplicity f; for 1<i<n, where the
superscriptf; can be neglected providefi = 1. The conjugateof A is partition A’ =
A", A5, Ay), where X'y = [{A;:4; 2,1 <j< ¢} for 1<i<Ay, or 2’ can be
equivalently expressed agl#1—422%2=%4s (¢ —1)%-1%pAr) = For example, the
conjugate of partition (5,4,3,3) is (4,4,4,2,1).

TheYoung diagranmof A is a graphical interpretation df, which is defined by a
left-justified collection ofn boxes inl rows with A1; boxes in rowi. The Young
diagram of partition(6,6,3,2) is given in Figure 1.

One can also check that taking the conjugate ditipar A is equivalent to transpose the
Young diagram ofA.

A partition A = (44,4,, ..., 4,) is called adistinct partitionif 1, >4, > - >

A, and anodd (resp.ever) partition if A; is odd (resp. even) for all <i <¥. The
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definition of the overpartition is introduced by i@zl and Lovejoy [9]. Aroverpartition
is a partition of in which the final occurrenceaopart may be overlined. For example, the

8 overpartitions of 3 ar€3), (3),(2,1), (2,1),(2,1),(2,1), (1,1,1), (1,1, 1).

Figure 1:

The minimal excludanbf a set of i?ltegers, abbreviatedrasx is the smallest
positive integer not in the set. The following ditome examples of the mex applied to
partitions:

mex(4,3,2) =1, mex(2,2,1) =3.
The concept of “the smallest part that is not arsamd” is first proposed by Andrews [2].
He and Newman [5] started using the term mex fromhgnatorial game theory. Given a
partition A, Andrews and Newman [6] definedlex, (1) as the smallest positive integer
congruent toa modulo A that is not a part oft, and denote by, ,(n) the number of
partitions 1 of n satisfying
mex,q(A) = a (mod 24),
and denote bﬁA,a(") the number of partitiond of n satisfying
mexy q(A) = a+ A (mod 24).
Example 1.1.Considern = 4, A = 3, and a = 1. There are 5 partitions of 4, and the
mex(4) and mex,,(1) are
mex((4)) = 1,mex((3,1)) = 2,mex((2,2)) =1, mex((Z,l,l)) =3,
mex((1,1,1,1)) = 2,
mexz((4)) = 1, mex31((3,1)) = 4,mex3,((2,2)) = 1,mex3,((2,1,1)) = 4,
mex3,((1,1,1,1)) = 4.
Since two partitions(4) and (2,2) have mex;; congruent tol modulo 6, and three
partitions (3,1), (2,1,1) and (1,1,1,1) have mex;; congruentto4 modulo 6, we see
p31(4) =2 and Py, (4) =3, respectively.

Through out this paper, we ugg€n) to denote the number of partitions of and
setpyqa(0) =p(0) =1 and p(n) = paq(n) = ﬁA,a(n) = 0 for negative integemn. It
is clear that

p(n) = pac(n) +7,, ().

In [6, lemma 9] and [6, lemma 8], fat > 0, Andrews and Newman found that

the generating functions ¢fy ,(n) and p,; . (n) are

1
E pk,k(n)q"=( D E (—1)n gknntD/2) (1.1)
n=0 a4 ©n

=0

and
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[00] 1 (0]
D e =7 ) (1" (12)
n=0 TP £
where theg-series[11] notations are defined by
(@;q) =1,

(@),=0—-a)1l—aq) (1 —aq™ 1), forn>1,
(@ @)oo = lim (a; q)n, forlq] <1.
Recently, Dhar, Mukhopadhyay and Sarma [10] obthimenore general result
that gives the generating functionspf ,(n) andp, ,(n) forall A and a.

Theorem 1.1.(Dhar, Mukhopadhyay and Sarma [10]) For positiveetpers A and a, we

have
> 1 = An(n—1)
D paalat =) g 2 (13)
n=0 T Deo =4
and
1 An(n+1)
ZpAa ) 2( gz ey, (1.4)

Furthermore they [10] obtarned the generating tioncof the difference of
Pak,2k—i(n) and sz(n)

Theorem 1.2.(Dhar, Mukhopadhyay and Sarma [10]) F@k > i > 0, we have
_ @590 40 (@5 470
n n
; (Paezi-i(n) = By ()" o
Based on the works of Andrews-Newman [6] and Dhakhbpadhyay-Sarma
[10], we present the following two theorems thategi the identities related tp, ,(n)
andp, ,(n) for certain values ot and A.

Theorem 1.3.For n > 0, we have
p32(n) = 53 1(”)-

Theorem 1.4.For k>0n>0 andr >s >0, Wehave

P (M) = 2 p(n — k(rt + 5)(2t + 1)) — 2 p(n — kt(2rt + 25 — 1)).

We also get some results that gives the |denndaMed to the difference between
Paa(m) andp, (n) for certain values or and A, which we state as the following

theorems.

Theorem 1. 5 We get

had ( l)nqn(n—l)/z
Z P1o3(Mq" Z P1o7(M)q" (q q)oo Z @D,

Theorem 1.6.Let p;(n) denote the number of partitions af with distinct parts, and
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pq(0) = 1, then for any nonnegative, we obtain
Po4 (M) — Py, (M) = pa(n).

Theorem 1.7.For k > 0, we have

k
Z(pzm(n) By g =X TETD)

f(=9)

Theorem 1.8.We have
40w

Z (P127(M) =Py, s(M)q" +z (P1211(M) =P, (W)™ = o

Except for the identities related to ordinary gaotis, in this paper, we also
generalize the definition ofnex, ,(1) to overlined parts of overpartitions, and we get
some interesting results.

For an overpartitiond, let mex,,(4) denote the smallest positive integer
congruent toa modulo A that is not an overlined part of. Let 04,(n) denote the
number of overpartitionst of n such thatmex,,(4) = a (mod 24) and the non-
overlined parts ofA are not congruent ta modulo 4, we define0, ,(0) = 1.

Example 1.1.The overlined parts of the overpartition= (6,5,4,3,2,2,1,1) are 6,3,1,
thus mex (1) = S.letn=3, A=2,anda=1 in 0y4,4(n), then we have
mex 5,1 (3) = T' mex 2,1(§) = T' mex ,,1(2,1) = T' MeX 3,1 (E, 1= T,
mex ,1(2,1) =3, mex,,(2,1) =3, mex,,(1,1,1)=1, mex,,(1,1,1) =3
Only mex ,(3) =1 satisfies the condition, hena, ; (3) = 1.

Theorem 1.9.For n = 0, we get
P11 (n) = 014 (n) (mod 2).

Theorem 1.10.Let E, ,(n) denote the number of even partitionsof n such that
mex, ,(m) = a(mod 2A), and defineE, ,(0) = 1. For n = 0, we get
Ez2(n) = 05,(n) (mod 2).

In addition to generalizing the minimal excludamhdtion to the overlined parts
of overpartitions, we also extend this definitiombn-overlined parts. Lefex, ,(1) be
the smallest integer congruent to modulo A that is not a non-overlined part in the
overpartition A, and define

0Paqa(n) =
0D, () = |[{Almexyq (D) = a+A (mod 24)}|.

Therefore, it is easy to get

0paa(n) +op, ,(n) =pn), (1.5)
where p(n) is the number of overpartitions of, and we sefp(0) = 1,0p,,(0) =
1,op,,(0)=0. Let Dy4(n) to be the number of overpartitions of n, where

mex, ,(4) are congruent tat modulo 24 and the overlined parts are not congruent to
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a modulo A, we defineD, ,(0) = 1.

Example 1.2.The non-overlined parts of the overpartitidn= (6,5,4,3,2,2,1,1) are
54,2,2,1, thusmex, (1) = 3. Letn =3, A= 2,and a = 1, we have
mex,1((3)) =1, mex;,((3)) =1, mex,;1((21)) =3, mex,1((2,1)) =3,
mex,1((2,1) = 1, Mex,1((2,1)) = 1, mexp;((L,L1) = 3,mex,1((1L,L, 1) = 3.
Henceop,1(3) = 4, op,,(3) = 4, andD,,(3) = 1.
After generalizing the definition minimal excluddatction to overpartitions, we
also get some identities relateddp, , (n).

Theorem 1.11.For n = 0,4 > 0,a > 0, we obtain

1 (mod 2), if n=2E2D

0 (mod 2), otherwise.

+ ak for some k= 0,
oPaa(n) = !

Theorem 1.12.For n = 0, we obtain
op31(n) + ops,(n) = pa(n) +p(n).

Theorem 1.13.Let f,(n) be the number of the partitions af whose parts congruent to
+k, 2k modulo 4k, and we definef, (0) = 1. For n > 0,k > 0, we obtain

0P k() = fe(n) (mod 2).

Theorem 1.14.For n = 0,k > 0, we obtain
Dy (n) = Ok x(n) (mod 2).
This paper is organized as follows. Section 2 #igied to state the theorems that
we frequently use in the proof. In Section 3, wé# give the proof of the main theorems
related top, 4 (n).

2. Preliminary results

In this section, we introduce some theorems thhteiused to prove the main results of
this paper.

Theorem 2.1.(Euler [1, p.5]) We have

1
Z Pa(M)q" = (-4 QDo =
n=0

(@ 4%
Theorem 2.2.(Euler's pentagonal number theorem [1, p.11]) Weéa

(¢ Do =1+ Z (D" V2 (1 +q™)

o n=1
Z (_1)nqn(3n—1)/2_

n=—oo
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Theorem 2.3.(Euler [1, p.19]) We have

tnqn(n—l)/z
= (=t q) oo
Z (@ Dn

nz0

Theorem 2.4.(Gauss[1, p.23]) We have

Z qrntD/2 = (q 14%)oo
(@9

Theorem 2.5.([3, p.158]) We have
had qn(2n+1) o (_1)nqn(n+1)/2

= (0 Doner & (T Dn

Theorem 2.6.(The quintuple product identity, [7, p.18, Theorefd. 17]).

Z q3n +n(Z3nq -3n— 1q3n+1)

n——oo

= (4% 0% 042 0*) 0 (2/2 %) (2% 0" (0 /2% 4 co-

3. Proofs of the main results

In this section, we present the proofs of the nila@orems of this paper. For convenience,
in the rest of this paper, we I& and D denote the set of partitions and the set of dittin
partitions, respectively. Specifically, [6t(n) and D(n) denote the set of partitions of
n and the set of distinct partitions af respectively.

3.1. Proofs of Theorems 1.3-1.10
By settingA —» rk and a — sk in (1.3) and (1.4) respectively, we obtain thddieing
lemmas.

Lemma 3.1.For k >0, r=s>0,the generatlng function @b, s, (n) is

1
Z prksk( )qn — (q q) z ( 1)n k(nr+2s— r)n/2

n=

Lemma 3.2.For k >0, r = s > 0, the generating function c}frk « (M) is

Z Py s (MW"

In the foIIowmg part, we WI|| give several prodfs Theorem 1.3.
First proof of Theorem 1.3. In [10, Theorem3.1], we knows 1 (n) + p3,(n) = p(n) for
n > 0, and by the definition op, ,(n) and P, (M), one hasp; ; (n) + p3, (M) = p(n)
for n > 0, then

p32(n) = 53,1 (n),
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for n > 0.
Second proof of Theorem 1.3. In [3, p.232,Entry 9.4.1], we know
had —1)g2n nn+1)/2 had
z ( )(_a q ) _ Z a3nqn(3n+1)/2(1 _a2q2n+1)_ (3.1)
q4;q)n ~

Let k—>1r:>3s—>2 in Lemma 3.1, andk » 1,r > 3,s > 1 in Lemma 3.2,
respectively, ando32(0) =1, p3 ,(0) =0, we obtain

Z p32(n)q" Z p;,(Mq"
(q q) (Z ( l)n n(3n+1)/2 _ 2 ( l)n (3n+2)(n+1)/2>

— . 2 (_l)nqn(3n+1)/2(1 _ q2n+1)
(a@; q)oo P

1 o (_l)nqn(n+1)/2
(@ Do L& (@ Dn
n=0

(let a=-—1in (3.1))

= 1q)e (lett = —qgin Theorem 2.3
@D (@D ( q )

=1. (3.2)
Comparing the coefficients of™ on both sides, we complete the proof.
Third proof of Theorem 1.3. According to (3.2), we get

n(n+1)

W1 N (D
Z P32 (m)q" —Z oy (00" = q)mzo GO 63

Now we will prove that the right-hand side of (Be®juals 1 by a combinatorial
involution.

Denote byS the set of pairg4, u) such thatl € P, u € D, we obtain
1 o (_l)nqn(n+1)/2

" CHOEY = CHOM
JUES n=0

Let 4, (respu,,) be the largest part il (respu). For convenience, we define
Am =0 (resp. u,, = 0) if there is no parts it (respu). We compared,, and p,,.

Case 1If A, <, and p,, > 0, we obtainy™ and A* by removingy,,, from u and
adding it to A. Obviously, the new paifA*, u*) € § with |1] + |u]| = |A*| + |¢*|, and
£(u*) = £(u) — 1, which endows(4*, u*) with the opposite sign compared (&, ).
Case 2:If A,, > u,,, we removei,, from A and add it tou to get new partitionst*
and u* respectively. This new paifl*, u*) also inherits the size of, 1) but have a
different sign to(4, u).

Case 3:f A, = 0,u,, = 0, we do nothing.

Consequently, the partition pairs in Case 1 ane Qasancel each other out, and
there remains only Case 3, which contains partigain (1, 1) = (@,0) € §. Then the
right-hand side of (3.4) is 1. Thus, we kn@y,(n) = 53,1(") for n > 0.

Proof of Theorem 1.4. In Lemma 3.2, we obtain

(_1)f(u)ql/1l+lu| —

(3.4)
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[ee)

Z By e (4"
( ) Z (-D"q k(rn+2s)(n+1)/2 _ Z p(n)gq™ Z (-1)"q k(rn+2s)(n+1)/2
CI q)w

Z p(n)q™ (Z qk(Tf+S)(2f+1) — Z qkt(2rt+25 r))

n=0
= Z Z p(n —k(rt+s)2t + 1)) — Z p(n — kt(2rt + 2s — r)) q",
n=0 \t=0 t=1

Comparing the coefficients o™ on both sides, we complete the proof.
In the next part, we proceed to give the proof$leforems 1.5-1.10.
Proof of Theorem 1.5. In [4, p.90], we know

n(n+1)/2 Z (q q )n(1+aq4n+1)a3n 5n%+n (3 5)
( (-aq% q®n (—aq% q*n ' '
Let a — —q‘1 |n (3.5), we get
had (_1)nqn(n—1)/2 had ~
W — Z 1- q4n)(_1)nq5n2 2n (3.6)
n=0 ! n=0

Next, letk - 1,r > 10,s > 3 and k » i,r - 10,s —» 7 in Lemma 3.1, respectively,

we see
Z P10,3(n)qn - Z P10,7(n)qn
n=0 n=0

— - (_1)nqn(5n—2)(1 _ q4n)
CHON ;

1 had (_1)nqn(n—1)/2
= by (3.6)
(@D 2 (4450 ( )
Proof of Theorem 1.6. Let z = —q in Theorem 2.6 , we have

LHS = Z q3n2+n((_q)3nq—3n _ (_q)—Bn—1q3n+1)

n=-—oo
0o

=2 Z (_l)nq3n2+n

n——oo

‘ZZ( 1yngn +n+22( Lyngantn,

RHS = (¢?; q) (—q% Q) (- 1q2)oo(q ;0" w0 (0% 4 oo
= 2(0% %) e (—9% 4% (0% aH%
= 200 Do (-0 D@ 42
=2( D0 (% Doos (by Theorem 2.1)

thus
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D EDE D (DT = (45 @) (5 D 37
n=0

= n=1
Let k=2,r=3,s=2in Lemma 3.1 andk=2,r=3,s=1 in Lemma 3.2,
respectively, we get

Z Peat)q" Z Po, (D"

(q q)ooz (-1)"q 3n?+n _ (q, )OOZ (-1~ 1 3n2—n

1 oo
= — (_1)nq3n2+n+ (_1)nq3n2— )
(@ ;z)oo (; ;

T @D @D D (by (3.7))
=T D

= Z pa(M)q™.

n=0
Proof of Theorem 1.7. In [3, p.21], we have
x(—0) = (3:9%) o (38)

and

D = (@ Deo- (3.9

Let i = k in Theorem 1.2, one has

> ek = By ()"

n=0
_ @ 0%)0(0" 47 (0" 47
P
_x(=4")%f(—q ok o
= =) -(letq g in(38)andq —q m(3.9))

Corollary 3.3. We have

N _ $(—q*)
Pe3(M) =P, (M) ) q" = :
;( o3 ~Poa) " = F s
Proof: In [3, p,21], we get

¢(@) = (=4 4% (4% q*) oo (3.10)
let i =k =3 in Theorem 1.2, we have

C _ n (@%5090(@% 0w (@5% 7%
ZO (Pos () By () " = P
3
= d;r((_(;)) (let g » —q3in (3.10))
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Corollary 3.4. We obtain
> os(W) ~ By " =

n=0
Proof: Let i =k =4 in Theorem 1.2, one has

o 8 8
z (Do (1) — B o ()" = (0% 4% (@% 0% (4% 0%

x(a?)
x(=q)

GRS
— (_qZ; q4)oo
(q;zqz)oo
x(q°) .
= . letqg - —qg?in (3.8
=0 (letgq q“in (3.8))
Proof of Theorem 1.8. In [8], we know
Z x6n+Dn _ o Z xOMFSIN — (x: ). (3.11)
n=—oo n=-—oo

By Lemma 3.1and Lemma 3.2, we have

Z P12,7(M)q" — Z P1,s(Ma™ +q Z P12,11(Mq" — q Z Py, (Ma"

n,(6n+1)n _ n—-1,(6n-1)n
T @ q)ooz( U (4; q)mz( D™
q _1\n,(6n+5)n _ n-1 (6n 5)n
@ )WZ( V% (4; q)mz( 2

1
=(q.q) Z (_ )nq(6n+1)n (q, ) Z ( l)nq(6n+1)n

1

q
Z ( )nq(6n+5)n (q q) Z (_1)nq(6n+5)n

(q q)oo

Z ( 1)nq(6n+1)n Z ( 1)nq(6n+5)n

e q)oo (g; q)oo
= % (letx = —q in (3.11))
_(44%w

(@9

Proof of Theorem 1 9. Let k=1 in(1.1), we have

n, nmn+1)
an()q (q)mZu)q o2

. Z qn(n+1)/2 (mod 2)
(g; Q)oo o~
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__ 1 @454

CHAPRCH'DS
_ 4D
CH'™

=(—q;q)% (by Theorem 2.1)

= (q;9)% (mod 2). (3.12)
By the definition of 0 ,(n), we get

Z Ok x(n)q™
n=0
kn(2n+1)

(D@50
- (4 Doo Z( 0% 4 2n41

_ a0 00 G (ZD) g2

(by Theorem 2.4)

(let ¢ — g* in Theorem 2.5)

(@ Deo L (=4%q"n
o qkn(n+1)/2
= (0% 9w @509 (mod 2).
4 (4% 4")n
= (¢%; k)oo( q 7"  (lett - g*and q » g* in Theorem 2.3)
=(q k g% (mod 2). (3.13)
Let k =1 in (3.13), we get
> 00" = @ @)% (mod 2) (3.14)

=0
Combining (3.12n) and (3.14), we get

p11(m) = 01;,(n) (mod 2),
which completes the proof.
Proof of Theorem 1.10. By the definition ofE; ,(n), we have

Z E;,(m)q" ( Z,qZ)mZ qErATetan (] _ g4nt2)

n nn+1) — n(n+1)
R qz) Z( D% (% qz) Zq (mod 2)

_ 1 (q q4)oo
(qz:qz)m(q 4%
(4% 9w
=——=— (mod 2)
(@ 99%
= (q;9)% (mod 2). (by Theorem 2.1) (3.15)
Let k =2 in (3.13), we obtain

D 025w = (445 (mod 2)
n=0

= (¢ )% (mod 2). (3.16)
Combining (3.15) and (3.16), we get

(let ¢ = g? in Theorem 2.4 )

85



Jane Y.X. Yang and Li Zhou

E;,(n) = 0,,(n) (mod 2).
which completes the proof.

3.2. Proofs of Theorems 1.11- 1.14
In this subsection, we shall prove some identitidated to overpartitions.
Comparing the definitions obp, 4(n) and op, ,(n) with the definitions of

Paa(n) and P, q (M), We can directly deduce the following lemma.

Lemma 3.5.We have

> PaaT = (-G D0 ) Paa" (3.17)
n=0 n=0
and
> ("= (0@ ) By (D" (3.18)
n=0 n=0
By (1.5), we have
_ 3D
0 n + Z o n —_—
T; Paa(m)q" op,,(mq" @D
where ((qqqq))” is the generating functlon of overpatrtition [9].

Proof of Theorem 1.1By (3.17), we get

Z 0Paa(Mq" = (-4 Poo Z Paa(Mq"

n=0

((qqq‘i)”Z( g G by (13))
An(n

Zq 7 van (mod 2),

n=0

which completes the proof.
Proof of Theorem1.12. Let A=3, a=1 and A = 3,a = 2 in (3.17), respectively, and
let k—l r=3s=1 andk—l r =3,s =2 in Lemma 3.1, respectively, we get

Z op31(M)q™ + Z op3,(n)q"
n=0
= (¢ Dw (Z P31 (M)q" + Z p32(M)q" )

((qqch)mz ( 1)n n(3n- 1)/2 ((qqqc;)ooz ( 1)n n(3n+1)/2

= %( Z (_1)nqn(3n—1)/2 + 1)

n=-—oo
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_ Do

= D ((q(, q)oo-)l—l) (by Theorem 2.2)
o —4q)

- CaDd-*g; Deo

Z pa(m)q™ + Z p(m)q™.

Comparing the coefficients 01” on both S|des We complete the proof.
Proof of Theorem 1.13. Let A =k, a = k in (3.17), we get

Z Pk k(Mq" = (-4 Doo Z Prx(M)q"
n=0
_ (04D
(q Qoo

= z qkn(n+1)/2 (mod 2)
n=0
(qZk. Zk)
= W(let q — q" in Theorem 2.4)
= (qik; 611(2’;)00(—61"; 4o  (letq - g* in Theorem 2.1
= (¢%¢93% (mod 2). (3.19)
By the definition of f;,(n), we get

Z ( 1)n kn(n+1)/2 (by (1 1))

1
n
Z fea = R ) (@ ) @5 7).
_ @4
kel
(q%q%)
=—>— (mod 2
@4 o ( )
= (¢%; 43 (3.20)
Combining (3.19) and (3.20), we arrive at
0pk(n) = fir(n) (mod 2),
which completes the proof.
Proof of Theorem 1.14. For k > 0, by the definition ofDy, . (n), we get

[ee)

© k+2k+-+2nk (1 _ ,@n+DEY (_,.

q 1—¢q (=4 Do
Z Dy (n)q™ = Z ( )
n=0 n=0

(a; q)oo (4% 4" o
GUHS _ Z (—1)ngknm+1)/2
(q Do (—q%; q )oo
kn(n+1)/2 mod 2
( q%; q")ooz 1 ( )
1 (qZk Zk)oo

= Cam (@540 (letq — g* in Theorem 2.4)
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= (q%%;¢**),, (let ¢ » q* in Theorem 2.1)

= (q%; ¢")% (mod 2). (3.21)

Combining (3.21) and (3.13), we get

Dy r(n) = O (n) (mod 2),

which completes the proof.
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