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Abstract. Recently, several authors have considered the smallest positive part missing from 
an integer partition, known as the minimal excludant or mex-function. After that, many 
properties and identities about the extended function ��,�(�) and ��,�(�) appeared. In 

this paper, we deduce some new results about ��,�(�)  and ��,�(�) . Moreover, we 
generalize the definition of minimal excludant to overpartitions, and obtain some identities. 
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1. Introduction 
The main purpose of this paper is to present some new identities related to minimal 
excludant functions on partitions. To this end, we first introduce some definitions and 
notations. 

A partition [1] of �  is a finite nonincreasing sequence of positive integers (�	, �
, … , �ℓ) such that � = �	 + �
 + ⋯ + �ℓ. We write � = (�	, �
, … , �ℓ) and call ��’s the parts of �. The size of � is the sum of all parts, which is denoted by |�|,and the 
length of � is the number of parts, which is denoted by ℓ(�). We also write a partition � 
of �  as �1��2�� … ����  if a part �  has multiplicity ��  for 1 ≤ � ≤ � , where the 
superscript �� can be neglected provided �� = 1. The conjugate of � is partition �′ =(�′	, �′
, … , �′��) , where �′� = |{� : � ≥ �, 1 ≤ # ≤ ℓ}|  for 1 ≤ � ≤ �	 , or �′  can be 
equivalently expressed as (1��%��2��%�& … (ℓ − 1)�ℓ(�%�ℓℓ�ℓ) . For example, the 
conjugate of partition (5,4,3,3) is (4,4,4,2,1). 

The Young diagram of � is a graphical interpretation of �, which is defined by a 
left-justified collection of �  boxes in )  rows with ��  boxes in row � . The Young 
diagram of partition (6,6,3,2) is given in Figure 1.  
One can also check that taking the conjugate of partition � is equivalent to transpose the 
Young diagram of �. 

A partition � = (�	, �
, … , �ℓ) is called a distinct partition if �	 > �
 > ⋯ >�ℓ, and an odd (resp. even) partition if ��  is odd (resp. even) for all 1 ≤ � ≤ ℓ. The 
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definition of the overpartition is introduced by Corteel and Lovejoy [9]. An overpartition 
is a partition of in which the final occurrence of a part may be overlined. For example, the         
8 overpartitions of 3 are (3�, �3�, �2,1�, �2, 1�, �2, 1�, �2, 1�, �1,1,1�, �1,1, 1�. 

Figure 1: 
The minimal excludant of a set of integers, abbreviated as mex, is the smallest 

positive integer not in the set. The following lists some examples of the mex applied to 
partitions:  

-./�4,3,2� 
 1,    -./�2,2,1� 
 3. 
The concept of “the smallest part that is not a summand” is first proposed by Andrews [2]. 
He and Newman [5] started using the term mex from combinatorial game theory. Given a 
partition �, Andrews and Newman [6] defined -./�,���� as the smallest positive integer 
congruent to 3 modulo 4 that is not a part of �, and denote by ��,���� the number of 
partitions � of � satisfying  

-./�,���� ≡ 3 �mod  24�, 
and denote by ��,���� the number of partitions � of � satisfying  

-./�,���� ≡ 3 � 4 �mod  24�. 
Example 1.1. Consider � 
 4, 4 
 3, and 3 
 1. There are 5 partitions of 4, and the 
 -./��� and  -./�,���� are  

-./��4�� 
 1, -./��3,1�� 
 2, -./��2,2�� 
 1, -./��2,1,1�� 
 3, 
-./��1,1,1,1�� 
 2, 

-./9,	��4�� 
 1, -./9,	��3,1�� 
 4, -./9,	��2,2�� 
 1, -./9,	��2,1,1�� 
 4,      
-./9,	��1,1,1,1�� 
 4. 

Since two partitions �4� and �2,2� have  -./9,	 congruent to 1 modulo 6, and three 
partitions �3,1�, �2,1,1� and �1,1,1,1� have  -./9,	 congruent to 4 modulo 6, we see 
�9,	�4� 
 2 and �9,	�4� 
 3, respectively. 

Through out this paper, we use ���� to denote the number of partitions of �, and 
set ��,��0� 
 ��0� 
 1 and ���� 
 ��,���� 
 ��,���� 
 0 for negative integer �. It 
is clear that  

���� 
 ��,���� � ��,����. 
In [6, lemma 9] and [6, lemma 8], for ; , 0, Andrews and Newman found that 

the generating functions of �<,<��� and �
<,<��� are   

= �<,<���>? 

@

?AB

1
�>; >�@

=�'1�?
@

?AB
><?�?D	�/
, �1.1� 

and  
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= �
<,<(�)>? =@
?AB

1(>; >)@ =(−1)?@
?AB ><?� , (1.2) 

where the >-series [11] notations are defined by  (3; >)B = 1, (3; >)? = (1 − 3)(1 − 3>) ⋯ (1 − 3>?%	),    for � ≥ 1, (3; >)@ = lim?→@(3; >)?,    for |>| < 1. 
Recently, Dhar, Mukhopadhyay and Sarma [10] obtained a more general result 

that gives the generating functions of ��,�(�) and ��,�(�) for all 4 and 3. 

 
Theorem 1.1. (Dhar, Mukhopadhyay and Sarma [10]) For positive integers 4 and 3, we 
have  

= ��,�(�)>? =@
?AB

1(>; >)@ =(−1)?@
?AB >4�(�−1)2 +3�, (1.3) 

and   

=@
?AB ��,�(�)>? = 1(>; >)@ =?LB (−1)?>�?(?D	)
 D�(?D	), (1.4) 

Furthermore, they [10] obtained the generating function of the difference of �
<,
<%�(�) and �
<,�(�).  

Theorem 1.2. (Dhar, Mukhopadhyay and Sarma [10]) For 2; > � > 0, we have  

=?LB (�
<,
<%�(�) − �
<,�(�))>? = (>�; >
<)@(>
<%�; >
<)@(>
<; >
<)@(>; >)@ . 
Based on the works of Andrews-Newman [6] and Dhar-Mukhopadhyay-Sarma 

[10], we present the following two theorems that gives the identities related to ��,�(�) 
and ��,�(�) for certain values of 3 and 4.  

Theorem 1.3. For � > 0, we have  �9,
(�) = �9,	(�). 
Theorem 1.4. For ; > 0, � > 0 and M ≥ N > 0, we have  

�O<,P<(�) = =@
QAB �(� − ;(MR + N)(2R + 1)) − =@

QA	 �(� − ;R(2MR + 2N − M)). 
We also get some results that gives the identities related to the difference between ��,�(�) and ��,�(�) for certain values of 3 and 4, which we state as the following 

theorems.  
 

Theorem 1.5. We get  

=@
?AB �	B,9(�)>? − =@

?AB �	B,S(�)>? = 1(>; >)@ =@
?AB

(−1)?>?(?%	)/
(>; >
)? . 
 
Theorem 1.6. Let �T(�) denote the number of partitions of � with distinct parts, and 
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�T�0) = 1, then for any nonnegative �, we obtain  �U,V(�) − �U,
(�) = �T(�). 
 
Theorem 1.7. For ; > 0, we have  

=@
?AB (�
<,<(�) − �
<,<(�))>? = W(−><)
�(−>
<)�(−>) . 

 
Theorem 1.8. We have  

=@
?AB (�	
,S(�) − �	
,X(�))>? + =@

?AB (�	
,		(�) − �	
,	(�))>?D	 = (−>; >
)@(>; >
)@ . 
Except for the identities related to ordinary partitions, in this paper, we also 

generalize the definition of mex�,�(�) to overlined parts of overpartitions, and we get 
some interesting results. 

For an overpartition � , let -./[�,�(�)  denote the smallest positive integer 
congruent to 3 modulo 4 that is not an overlined part of �. Let \�,�(�) denote the 
number of overpartitions � of � such that -./[�,�(�) ≡ 3  ( -]^  24) and the non-
overlined parts of � are not congruent to 3 modulo 4, we define \�,�(0) = 1.  
 
Example 1.1. The overlined parts of the overpartition � = �6, 5,4, 3, 2,2,1, 1� are 6, 3, 1, 

thus  -./ [ 
,	(�) = 5. Let � = 3, 4 = 2, and 3 = 1 in \�,�(�), then we have    -./ [ 
,	(3) = 1,     -./ [ 
,	(3) = 1,     -./ [ 
,	(2,1) = 1,     -./ [ 
,	(2, 1) = 1,  -./ [ 
,	(2, 1) = 3,     -./ [ 
,	(2, 1) = 3,     -./ [ 
,	(1,1,1) = 1,     -./ [ 
,	(1,1, 1) = 3. 
Only  -./ [ 
,	(3) = 1 satisfies the condition, hence \
,	(3) = 1.  
 
Theorem 1.9. For � ≥ 0, we get  �	,	 (�) ≡ \	,	 (�) (-]^  2). 
 
Theorem 1.10. Let �̀,�(�)  denote the number of even partitions a  of �  such that -./�,�(a) ≡   3(-]^  24), and define ̀ �,�(0) = 1. For � ≥ 0, we get  `
,
(�) ≡ \
,
(�) (-]^  2). 

In addition to generalizing the minimal excludant function to the overlined parts 
of overpartitions, we also extend this definition to non-overlined parts. Let -./�,�(�) be 
the smallest integer congruent to 3 modulo 4 that is not a non-overlined part in the 
overpartition �, and define  

 ]��,�(�) = b{�|-./�,�(�) ≡ 3  (mod  24)}b, 
 ]��,�(�) = b{�|-./�,�(�) ≡ 3 + 4  (mod  24)}b. 
Therefore, it is easy to get  ]��,�(�) + ]��,�(�) = �(�), (1.5) 

where �(�)  is the number of overpartitions of � , and we set �(0) = 1, ]��,�(0) =1, ]��,�(0) = 0 . Let c�,�(�)  to be the number of overpartitions �  of � , where -./�,�(�) are congruent to 3 modulo 24 and the overlined parts are not congruent to 
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3 modulo 4, we define c�,�(0) = 1. 
 
Example 1.2. The non-overlined parts of the overpartition � = �6, 5,4, 3, 2,2,1, 1� are 5,4,2,2,1, thus -./
,	(�) = 3. Let � = 3, 4 = 2, and 3 = 1, we have  -./
,	((3)) = 1,    -./
,	((3)) = 1,    -./
,	((2,1)) = 3, -./
,	((2, 1)) = 3, -./
,	((2, 1)) = 1,   -./
,	((2, 1)) = 1,   -./
,	((1,1,1)) = 3, -./
,	((1,1, 1)) = 3. 
Hence ]�
,	(3) = 4, ]�
,	(3) = 4, and c
,	(3) = 1.  

After generalizing the definition minimal excludant function to overpartitions, we 
also get some identities related to ]��,�(�).  
 
Theorem 1.11. For � ≥ 0, 4 > 0, 3 > 0, we obtain  

 ]��,�(�) ≡ d1  (mod   2) ,     ��  � = �<(<%	)
 + 3;  �]M  N]-.  ; ≥  0,0  (mod  2) ,     ]Rℎ.Mf�N. .  

 
Theorem 1.12. For � ≥ 0, we obtain  ]�9,	(�) + ]�9,
(�) = �T(�) + �(�). 
 
Theorem 1.13. Let �<(�) be the number of the partitions of � whose parts congruent to ±;, 2; modulo 4;, and we define �<(0) = 1. For � ≥ 0, ; > 0, we obtain  ]�<,<(�) ≡ �<(�)    (-]^  2). 
 
Theorem 1.14. For � ≥ 0, ; > 0, we obtain  c<,<(�) ≡ \<,<(�)   (-]^  2). 

This paper is organized as follows. Section 2 is dedicated to state the theorems that 
we frequently use in the proof. In Section 3, we will give the proof of the main theorems 
related to ��,�(�). 

 
2. Preliminary results 
In this section, we introduce some theorems that will be used to prove the main results of 
this paper. 
 
Theorem 2.1. (Euler [1, p.5]) We have  

= �T(�)>? =@
?AB (−>; >)@ = 1(>; >
)@. 

 
Theorem 2.2. (Euler’s pentagonal number theorem [1, p.11]) We have  

(>; >)@ = 1 + =@
?A	 (−1)?>?(9?%	)/
(1 + >?) 

= =@
?A%@ (−1)?>?(9?%	)/
. 
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Theorem 2.3. (Euler [1, p.19]) We have  

=
?LB

R?>?�?%	�/
(>; >)? = (−R; >)@. 
 
Theorem 2.4. (Gauss[1, p.23]) We have  

=@
?AB >?(?D	)/
 = (>
; >
)@(>; >
)@ . 

 
Theorem 2.5. ([3, p.158]) We have  

=@
?AB

>?(
?D	)(−>; >)
?D	 = =@
?AB

(−1)?>?(?D	)/
(−>; >)? . 
 
Theorem 2.6. (The quintuple product identity, [7, p.18,Theorem 1.3.17]).  

  

=@
?A%@ >9?�D?(h9?>%9? − h%9?%	>9?D	) 
= (>
; >
)@(>h; >
)@(>/h; >
)@(h
; >V)@(>V/h
; >V)@. 

 
3. Proofs of the main results 
In this section, we present the proofs of the main theorems of this paper. For convenience, 
in the rest of this paper, we let i and j denote the set of partitions and the set of distinct 
partitions, respectively. Specifically, let i(�) and j(�) denote the set of partitions of � and the set of distinct partitions of �, respectively. 
 
3.1. Proofs of Theorems 1.3–1.10 
By setting 4 → M; and 3 → N; in (1.3) and (1.4) respectively, we obtain the following 
lemmas.  
 
Lemma 3.1. For ; > 0, M ≥ N > 0, the generating function of �O<,P<(�) is  

=@
?AB �O<,P<(�)>? = 1(>; >)@ =@

?AB (−1)?><(?OD
P%O)?/
. 
 
Lemma 3.2. For ; > 0, M ≥ N > 0, the generating function of �O<,P<(�) is  

=@
?AB �O<,P<(�)>? = 1(>; >)@ =@

?AB (−1)?><(?OD
P)(?D	)/
. 
In the following part, we will give several proofs to Theorem 1.3. 

First proof of Theorem 1.3. In [10, Theorem3.1], we know �9,	(�) + �9,
(�) = �(�) for � > 0, and by the definition of ��,�(�) and ��,�(�), one has �9,	(�) + �9,	(�) = �(�) 

for � > 0, then  �9,
(�) = �9,	(�), 
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for � , 0.             
Second proof of Theorem 1.3. In [3, p.232,Entry 9.4.1], we know  

=@
?AB

(−1)?3
?>?(?D	)/
(−3>; >)? = =@
?AB 39?>?(9?D	)/
(1 − 3
>
?D	). (3.1) 

Let ; → 1, M → 3, N → 2  in Lemma 3.1, and ; → 1, M → 3, N → 1  in Lemma 3.2, 
respectively, and �9,
(0) = 1, �9,	(0) = 0, we obtain  

=@
?AB �9,
(�)>? − =@

?AB �9,	(�)>? 
= 1(>; >)@ k=@

?AB (−1)?>?(9?D	)/
 − =@
?AB (−1)?>(9?D
)(?D	)/
l 

= 1(>; >)@ =@
?AB (−1)?>?(9?D	)/
(1 − >
?D	) 

= 1(>; >)@ =@
?AB

(−1)?>?(?D	)/
(>; >)?     �let 3 = −1 in (3.1)� 

= 1(>; >)@ (>; >)@    (let R = −> in Theorem 2.3 ) = 1.                                                                                                             (3.2) 
Comparing the coefficients of >? on both sides, we complete the proof.              
Third proof of Theorem 1.3. According to (3.2), we get  

=@
?AB �9,
(�)>? − =@

?AB �9,	(�)>? = 1(>; >)@ =@
?AB

(−1)?>?(?D	)
(>; >)? . (3.3) 

Now, we will prove that the right-hand side of (3.3) equals 1 by a combinatorial 
involution. 

Denote by q the set of pairs (�, r) such that � ∈ i, r ∈ j, we obtain  

=(�,t)∈q (−1)ℓ(t)>|�|D|t| 
 1(>; >)@ =@
?AB

(−1)?>?(?D	)/
(>; >)? . (3.4) 

Let �u (resp.ru) be the largest part in � (resp.r). For convenience, we define �u = 0 (resp. ru = 0) if there is no parts in � (resp.r). We compare �u and ru. 
Case 1: If �u ≤ ru and ru > 0, we obtain r∗ and �∗ by removing ru from r and 
adding it to �. Obviously, the new pair (�∗, r∗) ∈ q with |�| � |r| 
 |�∗| � |r∗|, and 
ℓ�r∗� 
 ℓ�r� ' 1, which endows (�∗, r∗) with the opposite sign compared to (�, r). 
Case 2: If �u > ru, we remove �u from � and add it to r to get new partitions �∗ 
and r∗ respectively. This new pair (�∗, r∗) also inherits the size of (�, r) but have a 
different sign to (�, r). 
Case 3: If �u = 0, ru = 0, we do nothing. 

Consequently, the partition pairs in Case 1 and Case 2 cancel each other out, and 
there remains only Case 3, which contains partition pair (�, r) = (∅, ∅) ∈ q. Then the 
right-hand side of (3.4) is 1. Thus, we know �9,
(�) = �9,	(�) for � > 0.              
Proof of Theorem 1.4. In Lemma 3.2, we obtain  
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=
@

?AB
�O<,P<(�)>? 

= 1(>; >)@ =@
?AB (−1)?><(O?D
P)(?D	)/
 = =@

?AB �(�)>? =@
?AB (−1)?><(O?D
P)(?D	)/
 

= =@
?AB �(�)>? k=@

QAB ><(OQDP)(
QD	) − =@
QA	 ><Q(
OQD
P%O)l 

= =@
?AB x=@

QAB ��� − ;(MR + N)(2R + 1)� − =@
QA	 ��� − ;R(2MR + 2N − M)�y >?, 

Comparing the coefficients of >? on both sides, we complete the proof.              
In the next part, we proceed to give the proofs of Theorems 1.5–1.10. 

Proof of Theorem 1.5. In [4, p.90], we know  

=@
?AB

3?>?(?D	)/
(−3>
; >
)? = =@
?AB

(>; >
)?(1 + 3>V?D	)39?>X?�D?(−3>
; >
)? . (3.5) 

Let 3 → −>%	 in (3.5), we get  

=@
?AB

(−1)?>?(?%	)/
(>; >
)? = =@
?AB (1 − >V?)(−1)?>X?�%
?. (3.6) 

Next, let ; → 1, M → 10, N → 3 and ; → 1, M → 10, N → 7 in Lemma 3.1, respectively, 
we see  

=@
?AB �	B,9(�)>? − =@

?AB �	B,S(�)>? 
= 1(>; >)@ =@

?AB (−1)?>?(X?%
)(1 − >V?) 
= 1(>; >)@ =@

?AB
(−1)?>?(?%	)/
(>; >
)? .     �by (3.6)� 

Proof of Theorem 1.6. Let h = −> in Theorem 2.6 , we have  

 LHS = =@
?A%@ >9?�D?((−>)9?>%9? − (−>)%9?%	>9?D	) 

= 2 =@
?A%@ (−1)?>9?�D?

 

= 2 =@
?AB (−1)?>9?�D? + 2 =@

?A	 (−1)?>9?�%? ,  
RHS = (>
; >
)@(−>
; >
)@(−1; >
)@(>
; >V)@(>
; >V)@ = 2(>
; >
)@(−>
; >
)@
 (>
; >V)@
  = 2(>; >)@(−>; >)@9 (>; >
)@
  = 2(>; >)@(−>; >)@,        (by  Theorem  2.1 ) 

thus  
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=
@

?AB
�'1)?>9?�D? + =@

?A	 (−1)?>9?�%? = (>; >)@(−>; >)@. (3.7) 

Let ; = 2, M = 3, N = 2 in Lemma 3.1 and ; = 2, M = 3, N = 1  in Lemma 3.2, 
respectively, we get  

=@
?AB �U,V(�)>? − =@

?AB �U,
(�)>?
 

= 1(>; >)@ =@
?AB (−1)?>9?�D? − 1(>; >)@ =@

?A	 (−1)?%	>9?�%?
 

= 1(>; >)@ k=@
?AB (−1)?>9?�D? + =@

?A	 (−1)?>9?�%?l 
= 1(>; >)@ (>; >)@(−>; >)@        (by  (3.7) ) = (−>; >)@ 

= =@
?AB �T(�)>?. 

Proof of Theorem 1.7. In [3, p.21], we have  W(−>) = (>; >
)@ (3.8) 
and  �(−>) = (>; >)@. (3.9) 
Let � = ; in Theorem 1.2, one has  

=@
?AB (�
<,<(�) − �
<,<(�))>?

 

= (>
<; >
<)@(><; >
<)@(><; >
<)@(>; >)@  

= W(−><)
�(−>
<)�(−>) . �let > → ><  in (3.8) and > → >
< in (3.9)� 

 
Corollary 3.3. We have  

=@
?AB ��U,9(�) − �U,9(�)� >? = �(−>9)�(−>) . 

Proof: In [3, p,21], we get  �(>) = (−>; >
)@
 (>
; >
)@, (3.10) 
let � = ; = 3 in Theorem 1.2, we have  

=@
?AB ��U,9(�) − �U,9(�)� >? = (>9; >U)@(>9; >U)@(>U; >U)@(>; >)@  

                                                                    = �(−>9)�(−>) .        (let > → −>9 in (3.10) ) 
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Corollary 3.4. We obtain  

=
@

?AB
���,V(�) − ��,V(�))>? = W(>
)W(−>). 

Proof:  Let � = ; = 4 in Theorem 1.2, one has  

=@
?AB (��,V(�) − ��,V(�))>? = (>V; >�)@(>V; >�)@(>�; >�)@(>; >)@  

= (−>
; >V)@(>; >
)@  

= W(>
)W(−>).        (let > → −>
 in (3.8)) 

Proof of Theorem 1.8. In [8], we know  

=@
?A%@ /(U?D	)? − / =@

?A%@ /(U?DX)? = (/; /)@. (3.11) 

By Lemma 3.1 and Lemma 3.2, we have  

=@
?AB �	
,S(�)>? − =@

?AB �	
,X(�)>? + > =@
?AB �	
,		(�)>? − > =@

?AB �	
,	(�)>? 
= 1(>; >)@ =@

?AB (−1)?>(U?D	)? − 1(>; >)@ =@
?A	 (−1)?%	>(U?%	)? 

    + >(>; >)@ =@
?AB (−1)?>(U?DX)? − >(>; >)@ =@

?A	 (−1)?%	>(U?%X)? 

= 1(>; >)@ =@
?AB (−1)?>(U?D	)? + 1(>; >)@ =%	

?A%@ (−1)?>(U?D	)?  
    + >(>; >)@ =@

?AB (−1)?>(U?DX)? + >(>; >)@ =%	
?A%@ (−1)?>(U?DX)? 

= 1(>; >)@ =@
?A%@ (−1)?>(U?D	)? + >(>; >)@ =@

?A%@ (−1)?>(U?DX)? 
= (−>; −>)@(>; >)@       �let / = −> in (3.11)� 

= (−>; >
)@(>; >
)@ . 
 

Proof of Theorem 1.9. Let ; = 1 in (1.1), we have  

  =@
?AB �	,	(�)>? = 1(>; >)@ =@

?AB (−1)?>?(?D	)/
            
≡ 1(>; >)@ =@

?AB >?(?D	)/
    (mod  2) 
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                             = 1(>; >)@
(>
; >
)@(>; >
)@     (by Theorem 2.4)                                     

= (−>; >)@(>; >
)@                             = (−>; >)@
     ( by Theorem 2.1)                                  ≡ (>; >)@
     (mod  2).                                                                                (3.12) 
By the definition of \<,<(�), we get 

=@
?AB \<,<(�)>?

= (−>; >)@(><; ><)@(>; >)@ =@
?AB

><?(
?D	)(−><; ><)
?D	                                                               
= (−>; >)@(><; ><)@(>; >)@ =@

?AB
(−1)?><?(?D	)/
(−><; ><)?       (let > → >< in Theorem 2.5)

≡ (><; ><)@  =@
?AB

><?(?D	)/
(><; ><)?      (mod  2) .                                    
= (><; ><)@(−><; ><)@       (let R → >< and > → >< in Theorem 2.3)                            ≡ (><; ><)@
     (mod  2).                                                                                                          (3.13) 
Let ; = 1 in (3.13), we get  

=@
?AB \	,	(�)>? ≡ (>; >)@
     (mod  2). (3.14) 

Combining (3.12) and (3.14), we get  �	,	(�) ≡ \	,	(�)    ( mod   2), 
which completes the proof.             
Proof of Theorem 1.10. By the definition of ̀ 
,
(�), we have  

 =@
?AB `
,
(�)>? = 1(>
; >
)@ =@

?AB >
DVDUD⋯DV?(1 − >V?D
)
= 1(>
; >
)@ =@

?AB (−1)?>?(?D	) ≡ 1(>
; >
)@ =@
?AB >?(?D	)    (mod  2)

= 1(>
; >
)@
(>V; >V)@(>
; >V)@     (let > → >
 in Theorem 2.4 )

≡ (>
; >
)@(>; >
)@
     (mod  2)
≡ (>; >)@V     (mod  2).    (by  Theorem  2.1 )                                 (3.15) 

Let ; = 2 in (3.13), we obtain  

 =@
?AB \
,
(�)>? ≡ (>
; >
)@
     (mod  2) 

                                                                      ≡ (>; >)@V     (mod  2).                                (3.16) 
Combining (3.15) and (3.16), we get  
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`
,
(�) ≡ \
,
(�)    (mod  2). 
which completes the proof.    
           
3.2. Proofs of Theorems 1.11– 1.14 
In this subsection, we shall prove some identities related to overpartitions. 

Comparing the definitions of ]��,�(�) and ]��,�(�)  with the definitions of ��,�(�) and ��,�(�), we can directly deduce the following lemma.  

 
Lemma 3.5. We have  

=@
?AB ]��,�(�)>? = (−>; >)@ =@

?AB ��,�(�)>? (3.17) 

and  

=@
?AB ]��,�(�)>? = (−>; >)@ =@

?AB ��,�(�)>?. (3.18) 

By (1.5), we have  

=@
?AB ]��,�(�)>? + =@

?AB ]��,�(�)>? = (−>; >)@(>; >)@ , 
where 

(%�;�)�(�;�)�  is the generating function of overpartition [9]. 

Proof of Theorem 1.11. By (3.17), we get  

=@
?AB ]��,�(�)>? = (−>; >)@ =@

?AB ��,�(�)>?
= (−>; >)@(>; >)@ =?LB (−1)?>�?(?%	)
 D�?        (by  (1.3))
≡ =?LB >�?(?%	)
 D�?    (mod  2), 

which completes the proof.              
Proof of Theorem 1.12. Let 4 = 3, 3 = 1 and 4 = 3, 3 = 2 in (3.17), respectively, and 
let ; = 1, M = 3, N = 1 and ; = 1, M = 3, N = 2 in Lemma 3.1, respectively, we get  

   =@
?AB ]�9,	(�)>? + =@

?AB ]�9,
(�)>?                
= (−>; >)@ k=@

?AB �9,	(�)>? + =@
?AB �9,
(�)>?l

= (−>; >)@(>; >)@ =@
?AB (−1)?>?(9?%	)/
 + (−>; >)@(>; >)@ =@

?AB (−1)?>?(9?D	)/


= (−>; >)@(>; >)@ k =@
?A%@ (−1)?>?(9?%	)/
 + 1l 
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                             = (−>; >)@(>; >)@ ((>; >)@ + 1)    (by Theorem 2.2)
= (−>; >)@ + (−>; >)@(>; >)@                                
= =@

?AB �T(�)>? + =@
?AB �(�)>?. 

Comparing the coefficients of >? on both sides, we complete the proof.              
Proof of Theorem 1.13. Let 4 = ;, 3 = ; in (3.17), we get  

=@
?AB ]�<,<(�)>? = (−>; >)@ =@

?AB �<,<(�)>?

= (−>; >)@(>; >)@ =@
?AB (−1)?><?(?D	)/
    (by (1.1))

≡ =@
?AB ><?(?D	)/
      (mod  2)

= (>
<; >
<)@(><; >
<)@ �let > → >< in Theorem 2.4�
= (>
<; >
<)@(−><; ><)@        (let > → >< in Theorem 2.1≡ (><; ><)@9     (mod  2).                                                                          (3.19) 

By the definition of �<(�), we get  

     =@
?AB �<(�)>? = 1(><; >V<)@(>
<; >V<)@(>9<; >V<)@                   

= (>V<; >V<)@(><; ><)@                                                               
≡ (><; ><)@V(><; ><)@      (mod  2)                                                 
= (><; ><)@9 .                                                                                                 (3.20) 

Combining (3.19) and (3.20), we arrive at  ]�<,<(�) ≡ �<(�)    ( mod  2), 
which completes the proof.              
Proof of Theorem 1.14. For ; > 0, by the definition of c<,<(�), we get  

=@
?AB c<,<(�)>? = =@

?AB
><D
<D⋯D
?<�1 − >(
?D	)<�(>; >)@

(−>; >)@(−><; ><)@
= (−>; >)@(>; >)@(−><; ><)@ =@

?AB (−1)?><?(?D	)/


≡ 1(−><; ><)@ =@
?AB ><?(?D	)/
    (mod   2) 

                 = 	(%��;��)�
(���;���)�(��;���)�     �let > →   >< in Theorem  2.4 � 
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                              = (>
<; >
<)@    (let  > →   ><  in Theorem  2.1 )≡ (><; ><)@
     (mod  2).                                                                         (3.21)  
Combining (3.21) and (3.13), we get  c<,<(�) ≡ \<,<(�)    (mod  2), 
which completes the proof.              
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