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Abstract. This research aims to study and find all solutions of two Diophantine equations 

6x + 4y = z2 and 24x + 4y = z2 where x, y and z are non-negative integers, by using elementary 

concepts of number theory and Mihăilescu’s theorem.  The research results found that the 

Diophantine equation 6x + 4y = z2 has the unique non-negative integer solution (x, y, z) = 

(2,3,10). The Diophantine equation 24x + 4y = z2 has exactly two non-negative integer 

solutions (x, y, z), which are (1, 0, 5) and (2, 5, 40). 
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1. Introduction 
In 2011, Suvarnamani, Singta and Chotchaisthit [1] showed that the Diophantine equations 

24 7x y z   and 24 11x y z   have no non-negative integer solution. In 2012, 

Chotchaisthit [2] presented all solutions of the Diophantine equation 24x yp z  , where 

, ,x y z are non-negative integers and p is a prime number. In the same year, Peker and 

Cenberci [3] studied the Diophantine equation   24
x

n yp z  , where , ,x y z  are non-

negative integers, p is odd prime and n  is a positive integer. In 2014, Sroysang [4] proved 

that the Diophantine equation 
24 10x y z   has no non-negative integer solution. In 2020, 

Kambheera and Kumpapan [5] showed that    , , 1,0,4x y z   is a non-negative integer 

solution of the Diophantine equation 
215 4x y z  . 

 After that, in 2021, Behera and Panda [6] proved that the Diophantine equation 
24 12x y z   has no non-negative integer solution. Orosram, Niratsrok and Sukkharin [7] 

proved that the Diophantine equation 
24x yn z  , where n  is a positive integer with 

 1 mod15n  , has no solution in non-negative integers ,x y  and z . Meanwhile, Saranya 

and Yashvandhini [8] proved that    , , 1,1,7x y z   is a solution of the Diophantine 

equation 
225 24x y z  . Borah and Dutta [9] proved that the Diophantine equation 
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25 24x y z  has exactly one positive integer solution    , , 2,1,7x y z  . Dutta and Borah 

[10] also studied the non-negative integer solutions of the Diophantine equation 
224x yn z  , where n  is a positive integer with  3 mod4n  . Recently, Butsan, 

Phrommarat and Kanchai [11] proved that the Diophantine equation 221 4x y z  has     a 

unique non-negative integer solution    , , 1,1,5x y z  . 

 From the above research study, we are interested in finding all non-negative integer 

solutions  , ,x y z of two Diophantine equations 
26 4x y z  and 224 4x y z  , by using 

elementary concepts of number theory and  Mihăilescu’s theorem.    

 

Theorem 1.1. (Mihăilescu’s theorem) [12] The Diophantine equation 1x ya b   has the 

unique integer solution    , , , 3, 2, 2, 3a b x y  , where , ,a b x  and y are integers with 

 min , , , 1a b x y  . 

  
2. Main results 
In this section, we present our results. 

 

Theorem 2.1. The Diophantine equation 
26 4x y z   has a unique non-negative integer 

solution  , ,x y z , which is  2, 3,10 .  

Proof: Let ,x y and z are non-negative integers such that 

                                                                   
26 4x y z  .            (1) 

Therefore   2 2 2 3y y x xz z     and so there exist two non-negative integers u  and v  

such that  

                                                                 2 2 3y u vz                                                      (2) 

and                                                           2 2 3y x u x vz     .                               (3) 

From Equations (2) and (3), we have  

                                                             
12 2 3 2 3y x u x v u v      .  (4)  

 Assume that 0x v   and 0v  . Then  3 2 3 2 3x u x v u v    . From Equation 

(4), we obtain that 13 2y , which is impossible. Thus, 0x v   or 0v  . 

 

Case 1. 0x v  . Then x v . From Equation (4), we get 

                                                               1 22 2 2 3y u x u x   .    (5) 

Since  2gcd 2 ,2 3 1u x u x   , we have 1y u   and  

                                                              
22 3 1x u x   .  (6) 

Case 1.1 0x  . From Equation (6), we get 22 2u  and so 2 1u  , which is impossible. 

 

Case 1.2 1x  . From Equation (6), we obtain that 1 2 22 2u  and so 1 2 2u  , which is 

impossible. 
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Case 1.3 1x  . From Equation (6), it easy to check that 2 1x u  . It contradicts Theorem 

1.1. 

 

Case 2. 0v  . From Equation (4), we get  

                                          
12 2 3 2y x u x u    .  (7) 

Case 2.1 x u u  . From Equation (7), we have 

                                                      1 22 2 3 2y x u x u x    .  (8) 

Since  2gcd 2 ,3 2 1x u x u x   , it follows that 1y x u   and  

                                                             
23 2 1x u x  .  (9) 

Then 1x   and 2 1u x  . By Theorem 1.1, we have 2x   and 2 3u x  . Thus 2 5u  . 

This is impossible. 

 

Case 2.2 x u u  . From Equation (7), we obtain that  1 22 2 2 3 1y u x u x    . Since 

 2gcd 2 ,2 3 1 1u x u x    , it follows that 1y u   and 
22 3 2x u x   . Then 2 1x u   and 

0x  . It implies that 2 1u  . This is impossible. 

 

Case 2.3 x u u  . From Equation (7), we have 

                                                              
13 2 1x y u   .  (10) 

Then 1x   and 1 1y u   . By Theorem 1.1, we get 2x   and 1 3y u   . It follows 

that 1u  and 3y  . From Equation (2), we have 10z  . Hence    , , 2,3,10x y z  . 

 

Theorem 2.2. The Diophantine equation 224 4x y z   has exactly two non-negative 

integer solutions  , ,x y z , which are  1,0,5 and  2,5,40 .  

Proof: Let ,x y and z are non-negative integers such that 

                                                                   224 4x y z  . (11) 

 

Case 1. x y . From Equation (11), we have 

                                                                  

2

6 4
2

x y x

x

z  
   

 
. (12) 

By Theorem 2.1, we have  , , 2,3,10
2x

z
x y x

 
  

 
. Then 2, 3x y x    and 10

2x

z
 . 

Hence    , , 2,5,40x y z  . 

 

Case 2. x y . From Equation (11), we have 

                                                                

2

4 6 1
2

x y x

y

z  
    

 
.  (13) 
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Let 
2y

z
w  . From Equation (13), we have  

                                                           3 21 1 2 3x y xw w     .  (14) 

Then there exist two non-negative integers u  and v  such that 

 

                                                                   1 2 3u vw     (15) 

and                                                         
3 21 2 3x y u x vw      . (16) 

From Equations (15) and (16), we get   

                                                           
3 22 2 3 2 3x y u x v u v      . (17) 

 Assume that 0x v  and 0v  . It implies that  3 23 2 3 2 3x y u x v u v     . From 

Equation (17), we get 3 2 . This is impossible. Thus 0x v   or 0v  .  

 

Case 2.1 0x v  . From Equation (17), we have  

                                                               3 2 22 2 2 3u x y u x   . (18) 

Since  3 2 2gcd 2 ,2 3 1u x y u x    , we obtain that 1u   and  

                                                                
3 2 22 3 1x y u x    .  (19) 

Case 2.1.1 0x  . From Equation (19), we have 2 22 2y u   . Then  2 1y u    and so 

2 1 . This is impossible. 

 

Case 2.1.2 1x  . From Equation (19), we have 3 2 2 22 2y u   . Then 3 2 2 2y u    or 

 3 2 1y u   . Therefore 2 3 . This is impossible. 

 

Case 2.1.3 1x  . From Equation (19), it easy to check that 3 2 2 1x y u   . It contradicts 

Theorem 1.1. 

 

Case 2.2 0v  . From Equation (17), we have  

                                                              
3 22 2 3 2x y u x u    . (20) 

Case 2.2.1 3 2x y u u   . From Equation (20), we have 

                                                                     2 2 3 1u x  .  (21) 

Then 0u   or 1u  . 

 If 0u  , then form Equation (21), we have 3 3x  and so 1x  . Therefore 3 2y  

. Thus 2 3 . This is impossible. 

 If 1u  , then form Equation (21), we have 2 3x . This is impossible. 

 

Case 2.2.2 3 2x y u u   . From Equation (20), we have 

                                                             3 2 2 3 22 2 3 2x y u x u x y     .  (22) 
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Since  3 2 2 3 2gcd 2 ,3 2 1x y u x u x y     , we get  

                                                                   3 2 1x y u     (23) 

and                                                           2 3 23 2 1x u x y   .  (24) 

 

Case 2.2.2.1 0x  . From Equation (24), we get 2 22 0u y  . This is impossible. 

 

Case 2.2.2.2 1x  . From Equation (24), we get 2 3 22 2u y    and so 2 3 2 1u y   . From 

Equations (23) and (15), we obtain that 0y  , 2u  and 5z  . Hence    , , 1,0,5x y z  . 

 

Case 2.2.2.3 1x  . 

 If 2 3 2 0u x y   , then from Equation (24), we get 3 2x  . This is impossible. 

 If 2 3 2 1u x y   , then from Equation (24), we have 3 3x   and so 1x  . This 

is impossible. 

 If 2 3 2 1u x y   , then from Equation (24) and Theorem 1.1, we get 2x   and 

2 3 2 3u x y   . Then  2 9u y   and so 2 9 . This is impossible. 

 

Case 2.2.3 3 2x y u u   . From Equation (20), we have 

                                                          3 2 22 2 2 3 1u x y u x    .  (25) 

Since  3 2 2gcd 2 ,2 3 1 1u x y u x      and Equation (25), we get 1u   and 
3 2 22 2 3x y u x   . 

Then 0x   and  2 1y u   . Therefore 2 1 . This is impossible. 

 

3. Conclusion 

In this article, we show that all solutions of two Diophantine equations 
26 4x y z  and 

224 4x y z  , where ,x y and z  are non-negative integers, are    , , 2,3,10x y z  and  

      , , 1,0,5 , 2,5,40x y z  , respectively.  
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