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Abstract. In this paper, the concept of picture fuzzy multirelation is introduced. Some basic 

operations and the inverse of picture fuzzy multirelations, together with their properties, 

were established. Additionally, the study examined Arithmetic, Geometric, and Harmonic 

mean operators, providing examples to illustrate both operations and the application of 

these operators to a picture fuzzy multirelation. Finally, the composition of picture fuzzy 

multirelations was defined and associated properties were established. 
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1. Introduction 
The introduction of the concept of fuzzy relation (FR) came into play as a result of the 

work of Zadeh [18]. Atanassov [1] initiated the idea of intuitionistic fuzzy sets to extend 

Zadeh’s work, which served as the basis for the generalisation of fuzzy relations into 

intuitionistic fuzzy relations (IFR) established by Bustince and Burillo [2]. Varghese and 

Kurrikose [13] extended the concept of intuitionistic fuzzy relations (IFRs) to relations 

between intuitionistic fuzzy sets (IFSs). 

         Cuong and Kreinovich [3], introduced the concept of picture fuzzy sets (PFSs) in 

order to generalise both FSs and IFSs and also introduced PFRs as a generalisation of fuzzy 

relations and intuitionistic fuzzy relations. Hasan et al [6] defined max-min composition 

and min-max composition for picture fuzzy relations and investigated some of their 

properties, and also discussed an application of picture fuzzy relations in decision making. 

In [7], Hasan et al. also defined PFRs over PFSs, establishing numerous characteristics 

related to picture fuzzy relations and discussing some operations with examples. 

         In [17], Yagar put forward the idea of fuzzy multisets (FMs) as an extension of fuzzy 

sets. In [12], Shinoj and Sunil initiated the concept of intuitionistic fuzzy multisets (IFMSs) 

as an extension of IFSs and FSs. In [11], Cao et al. introduced the notion of picture fuzzy 

multisets (PFMS) as a generalisation of IFMS and FMS, and established some basic 

operations of picture fuzzy multisets. 

In this paper, the Picture Fuzzy MultiRelation (PFMR) is presented as an extension 

of PFR and a generalisation of IFMR. Investigation of some operations and the inverse of 

PFMR is carried out. Also, some operators, the Arithmetic mean operator, the Geometric 
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mean operator and the Harmonic mean operator, were studied. Lastly, the composition of 

PFMR was defined, and some of its properties were obtained. 

 

2. Preliminaries 

This section gives basic definitions and preliminaries that are needed in the sequel.  

 

Definition 2.1. [18] Let 𝑍 be a nonempty set. A FR 𝑈 on 𝑍 is a Fuzzy set, defined as  

 {〈(𝑟1, 𝑟2), 𝜎𝑈(𝑟1, 𝑟2)〉|(𝑟1, 𝑟2) ∈ 𝑍 × 𝑍} 

where 𝜎𝑈: 𝑍 × 𝑍 ⟶ [0,1]. 
 

Definition 2.2. [3] Let 𝑋 be a universe. A PFS 𝑍 of 𝑋 is an object of the form  

 𝑍 = {〈r, 𝜎𝑍(r), 𝜏𝑍(r), 𝜂𝑍(r))|r ∈ 𝑋〉}, 
such that 𝜎𝑍(r) ∈ [0,1] is referred to as the degree of positive membership, 𝜏𝑍(r) ∈ [0,1] 
is called degree of neutral membership and 𝜂𝑍(r) ∈ [0,1] is called degree of negative 

membership of r ∈ 𝑍 and for all r ∈ 𝑋,  
 𝜎𝑍(r) + 𝜏𝑍(r) + 𝜂𝑍(r) ≤ 1 

and the degree of refusal membership of r ∈ 𝑍 is 1 − (𝜎𝑍(r) + 𝜏𝑍(r) + 𝜂𝑍(r)).  
 

Definition 2.3. [3] Let 𝑍1 and 𝑍2 be nonempty sets. Then, a picture fuzzy relation (PFR) 

𝑈 is a PFS over 𝑍1 × 𝑍2, defined as  

 𝑈 = {〈(𝑟1, 𝑟2), 𝜎𝑈(𝑟1, 𝑟2), 𝜏𝑈(𝑟1, 𝑟2), 𝜂𝑈(𝑟1, 𝑟2)〉|(𝑟1, 𝑟2) ∈ 𝑍1 × 𝑍2} 

with 𝜎𝑈: 𝑍1 × 𝑍2 → [0,1], 𝜏𝑈: 𝑍1 × 𝑍2 → [0,1], 𝜂𝑈: 𝑍1 × 𝑍2 → [0,1], such that 0 ≤
𝜎𝑈(𝑟1, 𝑟2) + 𝜏𝑈(𝑟1, 𝑟2) + 𝜂𝑈(𝑟1, 𝑟2) ≤ 1 for every (𝑟1, 𝑟2) ∈ 𝑍1 × 𝑍2.  

 

Definition 2.4. [3] Let 𝑈 be a PFR between 𝑍1 and 𝑍2. The inverse relation of 𝑈, 𝑈−1 

between 𝑍2 and 𝑍1 is defined as  

 𝜎𝑈−1(𝑟2, 𝑟1) = 𝜎𝑈(𝑟1, 𝑟2), 𝜏𝑈−1(𝑟2, 𝑟1) = 𝜏𝑈(𝑟1, 𝑟2), 𝜂𝑈−1(𝑟2, 𝑟1) = 𝜂𝑈(𝑟1, 𝑟2), 
∀ (𝑟1, 𝑟2) ∈ (𝑍1 × 𝑍2).  

 

Definition 2.5. [3] Let 𝑈 and 𝑉 be two PFRs between 𝑍1 and 𝑍2. Then,   

•𝑈 ≤ 𝑉 ⇔ (𝜎𝑈(𝑟1, 𝑟2) ≤ 𝜎𝑉(𝑟1, 𝑟2)), (𝜏𝑈(𝑟1, 𝑟2) ≤ 𝜏𝑉(𝑟1, 𝑟2)) and (𝜂𝑈(𝑟1, 𝑟2) ≥
                   𝜂𝑉(𝑟1, 𝑟2))  

•𝑈 ∪ 𝑉 = {((𝑟1, 𝑟2), 𝜎𝑈(𝑟1, 𝑟2) ∨ 𝜎𝑉(𝑟1, 𝑟2), 𝜏𝑈(𝑟1, 𝑟2) ∧ 𝜏𝑉(𝑟1, 𝑟2), 𝜂𝑈(𝑟1, 𝑟2) ∧
                   𝜂𝑉(𝑟1, 𝑟2))|(𝑟1, 𝑟2) ∈ 𝑍1 × 𝑍2}  

•𝑈 ∩ 𝑉 = {((𝑟1, 𝑟2), 𝜎𝑈(𝑟1, 𝑟2) ∧ 𝜎𝑉(𝑟1, 𝑟2), 𝜏𝑈(𝑟1, 𝑟2) ∧ 𝜏𝑉(𝑟1, 𝑟2), 𝜂𝑈(𝑟1, 𝑟2) ∨
                  𝜂𝑉(𝑟1, 𝑟2))|(𝑟1, 𝑟2) ∈ 𝑍1 × 𝑍2}  

 • 𝑈𝑐 = {((𝑟1, 𝑟2), 𝜂𝑈(𝑟1, 𝑟2), 𝜏𝑈(𝑟1, 𝑟2), 𝜎𝑈(𝑟1, 𝑟2))|(𝑟1, 𝑟2) ∈ 𝑍1 × 𝑍2}  

 for every (𝑟1, 𝑟2) ∈ (𝑍1 × 𝑍2).  
 

Definition 2.6. [11] Let 𝑌 be a nonempty set. A PFMS 𝑍 in 𝑌 is characterised by three 

functions namely positive membership count function 𝑝𝑚𝑐, neutral membership count 

function 𝑛𝑒𝑚𝑐 and negative membership count function 𝑛𝑚𝑐 such that 𝑝𝑚𝑐: 𝑌 → 𝑊, 

𝑛𝑒𝑚𝑐: 𝑌 → 𝑊 and 𝑛𝑚𝑐: 𝑌 → 𝑊, respectively, where 𝑊 is the set of all crisp multisets 

drawn from [0,1]. Thus, for any 𝑟 ∈ 𝑌, 𝑝𝑚𝑐 is the crisp multiset from [0,1] whose positive 

membership sequence is defined by (𝜎𝑍
1(𝑟), 𝜎𝑍

2(𝑟), ⋯ , 𝜎𝑍
𝑛(𝑟)) such that 𝜎𝑍

1(𝑟) ≥ 𝜎𝑍
2(𝑟) ≥

⋯ ≥ 𝜎𝑍
𝑛(𝑟), 𝑛𝑒𝑚𝑐 is the crisp multiset from [0,1] whose neutral membership sequence is 
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defined by (𝜏𝑍
1(𝑟), 𝜏𝑍

2(𝑟), ⋯ , 𝜏𝑍
𝑛(𝑟)) and 𝑛𝑚𝑐 is the crisp multiset from [0,1] whose 

negative membership sequence is defined by (𝜂𝑍
1(𝑟), 𝜂𝑍

2(𝑟), ⋯ , 𝜂𝑍
𝑛(𝑟)), these can be either 

decreasing or increasing functions satisfying 0 ≤ 𝜎𝑍
𝑘(𝑟) + 𝜏𝑍

𝑘(𝑟) + 𝜂𝑍
𝑘(𝑟) ≤ 1 ∀𝑟 ∈ 𝑌,  

𝑘 = 1,2, ⋯ , 𝑛. 
  

Thus, 𝑍 is represented by  

𝑍1 = {〈𝑟, 𝜎𝑍1

𝑘 (𝑟), 𝜏𝑍1

𝑘 (𝑟)), 𝜂𝑍1

𝑘 (𝑟)〉| 𝑟 ∈  𝑌} 

𝑘 = 1,2, ⋯ , 𝑛.  
 

Definition 2.7. [11] Let   
𝑍1 = {〈𝑟, 𝜎𝑍1

𝑘 (𝑟), 𝜏𝑍1

𝑘 (𝑟)), 𝜂𝑍1

𝑘 (𝑟)〉| 𝑟 ∈  𝑌} 

 

and  

 𝑍2 = {〈𝑟, 𝜎𝑍2

𝑘 (𝑟)), 𝜏𝑍2

𝑘 (𝑟), 𝜂𝑍2

𝑘 (𝑟))〉| 𝑟 ∈  𝑌} 

be two PFMSs drawn from 𝑌. Then,   

• 𝑍1 ⊆ 𝑍2, ⇔ (𝜎𝑍1

𝑘 (𝑟) ≤ 𝜎𝑍2

𝑘 (𝑟)), (𝜏𝑍1

𝑘 (𝑟) ≤ 𝜏𝑍2

𝑘 (𝑟)) and (𝜂𝑍1

𝑘 (𝑟) ≥ 𝜂𝑍2

𝑘 (𝑟)); 𝑘 =

                         1,2, ⋯ , 𝑛, 𝑟 ∈ 𝑌.  

• 𝑍1 = 𝑍2, ⇔ 𝑍1 ⊆ 𝑍2 and 𝑍2 ⊆ 𝑍1.  
• 𝑍1 ∪ 𝑍2 = {(𝑟, (𝜎𝑍1

𝑘 (𝑟) ∨ 𝜎𝑍2

𝑘 (𝑟)), (𝜏𝑍1

𝑘 (𝑟) ∧ 𝜏𝑍2

𝑘 (𝑟)), (𝜂𝑍1

𝑘 (𝑟) ∧ 𝜂𝑍2

𝑘 (𝑟)))| 𝑟 ∈  𝑌}, 𝑘 =

                      1,2, ⋯ , 𝑛.  
• 𝑍1 ∩ 𝑍2 = {(𝑟, (𝜎𝑍1

𝑘 (𝑟) ∧ 𝜎𝑍2

𝑘 (𝑟))(𝜏𝑍1

𝑘 (𝑟) ∧ 𝜏𝑍2

𝑘 (𝑟)), (𝜂𝑍1

𝑘 (𝑟) ∨ 𝜂𝑍2

𝑘 (𝑟)))| 𝑟 ∈  𝑌}, 𝑘 =

                       1,2, ⋯ , 𝑛.  
• 𝑍1

′ = {(𝑟, 𝜂𝑍1

𝑘 (𝑟), 𝜏𝑍1

𝑘 (𝑟), 𝜎𝑍1

𝑘 (𝑟))| 𝑟 ∈  𝑌}, 𝑘 = 1,2, ⋯ , 𝑛. 

 

3. Operations of picture fuzzy multirelations 

This section defines operations of picture fuzzy multirelations and establishes some 

properties associated with the operations. It also defines the Arithmetic Mean Operator, the 

Geometric Mean Operator and the Harmonic Mean Operator. Examples were given to 

illustrate both operations and operators of PFMRs. 

 

Definition 3.1. Let 𝑍 be a nonempty set. Then, a picture fuzzy multirelation (PFMR) 𝑈 on 

𝑍 is PFMS defined by  

 𝑈 = {〈(𝑟1, 𝑟2), 𝜎𝑈
𝑘(𝑟1, 𝑟2), 𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜂𝑈
𝑘 (𝑟1, 𝑟2)〉|(𝑟1, 𝑟2) ∈ 𝑍1 × 𝑍2} 

where 𝑘 = 1,2, ⋯ , 𝛽 (𝛽 is the cardinality of the PFMS 𝑍) 𝜎𝑍
𝑘(𝑟), 𝜏𝑍

𝑖 (𝑟), 𝜂𝑍
𝑘(𝑟): 𝑌 → 𝑊, and 

𝑊 is the set of all crisp multisets drawn from [0,1].  
 

Definition 3.2. Let 𝑌 be a nonempty set and 𝑍1 and 𝑍2 be PFMSs in 𝑌 with positive 

membership 𝜎𝑍1

𝑘 (𝑟) and 𝜎𝑍2

𝑘 (𝑟), neutral membership 𝜏𝑍1

𝑘 (𝑟) and 𝜏𝑍2

𝑘 (𝑟) and negative 

membership 𝜂𝑍1

𝑘 (𝑟) and 𝜂𝑍2

𝑘 (𝑟) such that  

 𝜎𝑍1

𝑘 (𝑟), 𝜎𝑍2

𝑘 (𝑟), 𝜏𝑍1

𝑘 (𝑟), 𝜏𝑍2

𝑘 (𝑟), 𝜂𝑍1

𝑘 (𝑟), 𝜂𝑍2

𝑘 (𝑟): 𝑌 → 𝑊 

and 𝑊 is the set of all crisp multisets drawn from [0,1]. Then, Cartesian product of 𝑍1 and 

𝑍2, 𝑍1 × 𝑍2 is the PFMS in 𝑌 × 𝑌 defined by  

 𝜎𝑍1×𝑍2

𝑘 (𝑟1, 𝑟2) =∧ {𝜎𝑍1

𝑘 (𝑟1), 𝜎𝑍2

𝑘 (𝑟2)}, 
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 𝜏𝑍1×𝑍2

𝑘 (𝑟1, 𝑟2) =∧ {𝜏𝑍1

𝑘 (𝑟1), 𝜏𝑍2

𝑘 (𝑟2)} 

and  

 𝜂𝑍1×𝑍2

𝑘 (𝑟1, 𝑟2) =∨ {𝜂𝑍1

𝑘 (𝑟1), 𝜂𝑍2

𝑘 (𝑟2)} 

∀𝑟1, 𝑟2 ∈ 𝑌, 𝑘 = 1,2, ⋯ , 𝛽 (𝛽 is the cardinality of the PFMS 𝑍1 and 𝑍2).  

 

Definition 3.3. Let 𝑈 be a PFMS (𝑌 × 𝑌), 𝑈 ⊆ 𝑍1 × 𝑍2. Then, 𝑈 is called a PFMR from 

𝑍1 to 𝑍2 if for all (𝑟1, 𝑟2) ∈ 𝑌 × 𝑌,  
 𝜎𝑈

𝑘(𝑟1, 𝑟2) ≤ 𝜎𝑍1×𝑍2

𝑘 (𝑟1, 𝑟2), 𝜏𝑈
𝑘(𝑟1, 𝑟2) ≤ 𝜏𝑍1×𝑍2

𝑘 (𝑟1, 𝑟2), 𝜂𝑈
𝑘 (𝑟1, 𝑟2) ≥ 𝜂𝑍1×𝑍2

𝑘 (𝑟1, 𝑟2), 

with 0 ≤ 𝜎𝑈
𝑘(𝑟1, 𝑟2) + 𝜏𝑈

𝑘(𝑟1, 𝑟2) + 𝜂𝑈
𝑘 (𝑟1, 𝑟2) ≤ 1. 

In particular, if 𝑍1 = 𝑍2, then 𝑈 is called a PFMR on 𝑍1.  
 

 Using matrix representation for the PFMR 𝑈 from 𝑍1 to 𝑍2 we have  

 𝑈 = [𝜎𝑘𝑙 , 𝜏𝑘𝑙 , 𝜂𝑘𝑙] 
where  

 𝜎𝑘𝑙 = 𝜎𝑈(𝑟𝑘, 𝑟𝑙), 𝜏𝑘𝑙 = 𝜏𝑈(𝑟𝑘, 𝑟𝑙), and 𝜂𝑘𝑙 = 𝜂𝑈(𝑟𝑘 , 𝑟𝑙), 𝑘, 𝑙 = 1,2, ⋯ , 𝑛. 
 

Example 3.1. Let 𝑌 = {𝑟1, 𝑟2, 𝑟3} be nonempty set. Let  

𝑍1 = [

𝑟1 𝑟2 𝑟3

(0.1,0.5,0.3) (0.2,0.4,0.7) (0.5,0.2,0.3)
(0.3,0.4,0.2) (0.4,0.6,0.0) (0.2,0.7,0.3)
(0.6,0.1,0.5) (0.4,0.0,0.3) (0.3,0.1,0.4)

]  and 

 

 𝑍2 = [

𝑟1 𝑟2 𝑟3

(0.5,0.3,0.5) (0.4,0.1,0.3) (0.7,0.1,0.2)
(0.3,0.2,0.2) (0.2,0.6,0.5) (0.2,0.4,0.4)
(0.2,0.5,0.3) (0.4,0.3,0.2) (0.1,0.5,0.4)

] 

 

Then, 

  𝑍1 × 𝑍2 = [

(0.23,0.23,0.53) (0.13,0.27,0.47) (0.13.0.27,0.53)
(0.33,0.17,0.40) (0.20,0.27,0.33) (0.17,0.20,0.43)
(0.33,0.20,0.40) (0.27,0.37,0.37) (0.27,0.30,0.40)

] 

 

Let  

 𝑈 = [

(0.17,0.13,0.70) (0.13,0.27,0.50) (0.13,0.23,0.57)
(0.30,0.20,0.50) (0.17,0.27,0.56) (0.17,0.20,0.53)
(0.33,0.17,0.43) (0.23,0.33,0.38) (0.27,0.30,0.43)

]. 

Then, 𝑈 is a relation from 𝑍1 to 𝑍2.  
 

Definition 3.4. Given a PFMR 𝑈 on 𝑍, 𝑈 complement is a PFMR, 𝑈𝑐 , where 𝜎𝑈𝑐
𝑘 =

𝜂𝑈
𝑘 , 𝜏𝑈𝑐

𝑘 = 𝜏𝑈
𝑘 , 𝑎𝑛𝑑 𝜂𝑈𝑐

𝑘 = 𝜎𝑈
𝑘 , i.e;  

𝑈𝑐 = {((𝑟1, 𝑟2), 𝜂𝑈
𝑘 (𝑟1, 𝑟2), 𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜎𝑈
𝑘(𝑟1, 𝑟2))| (𝑟1, 𝑟2) ∈  𝑌 × 𝑌}, 𝑘 = 1,2, ⋯ , 𝑛. 
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Definition 3.5. Let 𝑈 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). The inverse relation of 𝑈, denoted by 𝑈−1 from 

𝑍2 to 𝑍1 is defined by  

 𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑈

𝑘(𝑟1, 𝑟2), 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑈

𝑘 (𝑟1, 𝑟2). 
 

Definition 3.6. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then, 𝑈 ⊆ 𝑉 if for every 𝑟1, 𝑟2 ∈ 𝑌 

(𝜎𝑈
𝑘(𝑟1, 𝑟2) ≤ 𝜎𝑉

𝑘(𝑟1, 𝑟2)), (𝜏𝑈
𝑘(𝑟1, 𝑟2) ≤ 𝜏𝑉

𝑘(𝑟1, 𝑟2)) and (𝜂𝑈
𝑘 (𝑟1, 𝑟2) ≥ 𝜂𝑉

𝑘(𝑟1, 𝑟2)); 𝑘 =
1,2, ⋯ , 𝑛. If 𝑈 ⊆ 𝑉 and 𝑉 ⊆ 𝑈, then 𝑈 = 𝑉.  

 

Example 3.2. From Example 3.1, let  

 𝑈 = [

(0.17,0.13,0.70) (0.13,0.27,0.50) (0.13,0.23,0.57)
(0.30,0.20,0.50) (0.17,0.27,0.56) (0.17,0.20,0.53)
(0.33,0.17,0.43) (0.23,0.33,0.38) (0.27,0.30,0.43)

] 

and  

 𝑉 = [

(0.27,0.13,0.53) (0.33,0.37,0.30) (0.13,0.23,0.57)
(0.53,0.20,0.27) (0.27,0.27,0.40) (0.13,0.23,0.57)
(0.40,0.17,0.43) (0.33,0.33,0.27) (0.37,0.30,0.33)

] 

be PFMRs from 𝑍1 to 𝑍2.  
 

 𝑈𝑐 = [

(0.70,0.13,0.17) (0.50,0.27,0.13) (0.57,0.23,0.13)
(0.50,0.20,0.30) (0.56,0.27,0.17) (0.53,0.20,0.17)
(0.43,0.17,0.33) (0.38,0.33,0.23) (0.43,0.30,0.27)

] 

 

 𝑈−1 = [

(0.70,0.13,0.17) (0.30,0.20,0.50) (0.33,0.17,0.43)
(0.13,0.27,0.50) (0.17,0.27,0.56) (0.23,0.33,0.38)
(0.13,0.23,0.57) (0.17,0.20,0.53) (0.27,0.30,0.43)

] 

and  𝑈 ⊆ 𝑉. 
 

Definition 3.7. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then, 𝑈 ∪ 𝑉 is a PFMR from 𝑍1 to 𝑍2 such 

that  

 𝜎𝑈∪𝑉
𝑘 (𝑟1, 𝑟2) =∨ {𝜎𝑈

𝑘(𝑟1, 𝑟2), 𝜎𝑉
𝑘(𝑟1, 𝑟2)}, 

 

 𝜏𝑈∪𝑉
𝑘 (𝑟1, 𝑟2) =∧ {𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜏𝑉
𝑘(𝑟1, 𝑟2)} 

and  

 𝜂𝑈∪𝑉
𝑘 (𝑟1, 𝑟2) =∧ {𝜂𝑈

𝑘 (𝑟1, 𝑟2), 𝜂𝑉
𝑘(𝑟1, 𝑟2)} 

𝑘 = 1,2, ⋯ , 𝑛.  
 

Example 3.3. From Example 3.1, let  

 𝑈 = [

(0.17,0.13,0.70) (0.13,0.27,0.50) (0.13,0.23,0.57)
(0.30,0.20,0.50) (0.17,0.27,0.56) (0.17,0.20,0.53)
(0.33,0.17,0.43) (0.23,0.33,0.38) (0.27,0.30,0.43)

] 

and  

 𝑉 = [

(0.27,0.03,0.63) (0.23,0.37,0.40) (0.10,0.23,0.60)
(0.23,0.10,0.67) (0.17,0.17,0.60) (0.13,0.23,0.64)
(0.10,0.17,0.63) (0.33,0.33,0.27) (0.37,0.20,0.43)

] 



Taiwo O. Sangodapo 

50 

 

be PFMRs from 𝑍1 to 𝑍2. Then, 

 

 𝑈 ∪ 𝑉 = [

(0.27,0.03,0.63) (0.23,0.27,0.40) (0.13,0.23,0.57)
(0.30,0.10,0.50) (0.17,0.17,0.56) (0.17,0.20,0.53)
(0.33,0.17,0.43) (0.30,0.33,0.27) (0.37,0.20,0.43)

] 

 

Definition 3.8. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then, 𝑈 ∩ 𝑉 is a PFMR from 𝑍1 to 𝑍2 such 

that  

 𝜎𝑈∩𝑉
𝑘 (𝑟1, 𝑟2) =∧ {𝜎𝑈

𝑘(𝑟1, 𝑟2), 𝜎𝑉
𝑘(𝑟1, 𝑟2)}, 

 

 𝜏𝑈∩𝑉
𝑘 (𝑟1, 𝑟2) =∧ {𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜏𝑉
𝑘(𝑟1, 𝑟2)} 

and  

 𝜂𝑈∩𝑉
𝑘 (𝑟1, 𝑟2) =∨ {𝜂𝑈

𝑘 (𝑟1, 𝑟2), 𝜂𝑉
𝑘(𝑟1, 𝑟2)} 

𝑘 = 1,2, ⋯ , 𝑛.  
 

Example 3.4. From Example 3.5,  

 𝑈 ∩ 𝑉 = [

(0.17,0.03,0.70) (0.13,0.27,0.50) (0.10,0.23,0.60)
(0.23,0.10,0.67) (0.17,0.17,0.60) (0.13,0.20,0.64)
(0.10,0.17,0.63) (0.23,0.33,0.38) (0.27,0.20,0.43)

] 

 

Proposition 3.1. Let 𝑈, 𝑉, 𝑊 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then,   

    • (𝑈−1)−1 = 𝑈  

    • (𝑈 ∪ 𝑉)−1 = 𝑈−1 ∪ 𝑉−1  

    • (𝑈 ∩ 𝑉)−1 = 𝑈−1 ∩ 𝑉−1  

    • 𝑈 ∩ (𝑉 ∪ 𝑊) = (𝑈 ∩ 𝑉) ∪ (𝑉 ∩ 𝑊)  

    • 𝑈 ∪ (𝑉 ∩ 𝑊) = (𝑈 ∪ 𝑉) ∩ (𝑉 ∪ 𝑊)  

Proof: 

• Since 𝑈−1 is a PFMR between 𝑍2 and 𝑍1, it implies that  

 𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑈

𝑘(𝑟1, 𝑟2), 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑈

𝑘(𝑟1, 𝑟2) and 𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑈

𝑘 (𝑟1, 𝑟2). 
Now,  

 𝜎𝑈
𝑘(𝑟1, 𝑟2) = 𝜎𝑈−1

𝑘 (𝑟2, 𝑟1) = 𝜎(𝑈−1)−1
𝑘 (𝑟1, 𝑟2), 

 

 𝜏𝑘𝑘𝑈(𝑟1, 𝑟2) = 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜏(𝑈−1)−1

𝑘 (𝑟1, 𝑟2) 

and  

 𝜂𝑈
𝑘 (𝑟1, 𝑟2) = 𝜂𝑈−1

𝑘 (𝑟2, 𝑟1) = 𝜂(𝑈−1)−1
𝑘 (𝑟1, 𝑟2) 

• From the definition of inverse,  

𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑈

𝑘(𝑟1, 𝑟2), 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑈

𝑘 (𝑟1, 𝑟2) 

and  

 𝜎𝑉−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑉

𝑘(𝑟1, 𝑟2), 𝜏𝑉−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑉

𝑘(𝑟1, 𝑟2), 𝜂𝑉−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑉

𝑘(𝑟1, 𝑟2). 
Thus,  

  

     𝜎(𝑈∪𝑉)−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑈∪𝑉

𝑘 (𝑟1, 𝑟2) 
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    = 𝜎𝑈
𝑘(𝑟1, 𝑟2) ∨ 𝜎𝑉

𝑘(𝑟1, 𝑟2) 

    = 𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) ∨ 𝜎𝑉−1

𝑘 (𝑟2, 𝑟1) 

     = 𝜎𝑈−1
𝑘 ∪ 𝜎𝑉−1

𝑘 (𝑟2, 𝑟1), 

     𝜏(𝑈∪𝑉)−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑈∪𝑉

𝑘 (𝑟1, 𝑟2) 

    = 𝜏𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟1, 𝑟2) 

    = 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) ∧ 𝜏𝑉−1

𝑘 (𝑟2, 𝑟1) 

    = 𝜏𝑈−1
𝑘 ∪ 𝜏𝑉−1

𝑘 (𝑟2, 𝑟1) 

 and  

   𝜂(𝑈∪𝑉)−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑈∪𝑉

𝑘 (𝑟1, 𝑟2) 

   = 𝜂𝑈
𝑘 (𝑟1, 𝑟2) ∧ 𝜂𝑉

𝑘(𝑟1, 𝑟2) 

   = 𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) ∧ 𝜂𝑉−1

𝑘 (𝑟2, 𝑟1) 

   = 𝜂𝑈−1
𝑘 ∪ 𝜂𝑉−1

𝑘 (𝑟2, 𝑟1) 

  

• From the definition of inverse,  

 𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑈

𝑘(𝑟1, 𝑟2), 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑈

𝑘(𝑟1, 𝑟2), 𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑈

𝑘 (𝑟1, 𝑟2) 

and  

 𝜎𝑉−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑉

𝑘(𝑟1, 𝑟2), 𝜏𝑉−1
𝑘 (𝑟2, 𝑟1) = 𝜏𝑉

𝑘(𝑟1, 𝑟2), 𝜂𝑉−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑉

𝑘(𝑟1, 𝑟2). 
Thus,  

𝜎(𝑈∩𝑉)−1
𝑘 (𝑟2, 𝑟1) = 𝜎𝑈∩𝑉

𝑘 (𝑟1, 𝑟2) 

 = 𝜎𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟1, 𝑟2) 

 = 𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) ∧ 𝜎𝑉−1

𝑘 (𝑟2, 𝑟1) 

 = 𝜎𝑈−1
𝑘 ∩ 𝜎𝑉−1

𝑘 (𝑟2, 𝑟1), 
 

𝜏(𝑈∩𝑉)−1
𝑘 (𝑟2, 𝑟1)  = 𝜏𝑈∩𝑉

𝑘 (𝑟1, 𝑟2) 

 = 𝜏𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟1, 𝑟2) 

 = 𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) ∧ 𝜏𝑉−1

𝑘 (𝑟2, 𝑟1) 

 = 𝜏𝑈−1
𝑘 ∩ 𝜏𝑉−1

𝑘 (𝑟2, 𝑟1) 

 and  

𝜂(𝑈∩𝑉)−1
𝑘 (𝑟2, 𝑟1) = 𝜂𝑈∩𝑉

𝑘 (𝑟1, 𝑟2) 

 = 𝜂𝑈
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟1, 𝑟2) 

 = 𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) ∨ 𝜂𝑉−1

𝑘 (𝑟2, 𝑟1) 

 = 𝜂𝑈−1
𝑘 ∩ 𝜂𝑉−1

𝑘 (𝑟2, 𝑟1) 

 •  

𝜎𝑈∩(𝑉∪𝑊)
𝑘 (𝑟1, 𝑟2) = 𝜎𝑈

𝑘(𝑟1, 𝑟2) ∧ (𝜎𝑉∪𝑊
𝑘 (𝑟1, 𝑟2)) 

 = 𝜎𝑈
𝑘(𝑟1, 𝑟2) ∧ (𝜎𝑉

𝑘(𝑟1, 𝑟2) ∨ 𝜎𝑊
𝑘 (𝑟1, 𝑟2)) 

 = (𝜎𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟1, 𝑟2)) ∨ 𝜎𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜎𝑊

𝑘 (𝑟1, 𝑟2) 

 = 𝜎𝑈∩𝑉
𝑘 (𝑟1, 𝑟2) ∪ 𝜎𝑈∩𝑊

𝑘 (𝑟1, 𝑟2), 
 

𝜏𝑈∩(𝑉∪𝑊)
𝑘 (𝑟1, 𝑟2) = 𝜏𝑈

𝑘(𝑟1, 𝑟2) ∧ (𝜏𝑉∪𝑊
𝑘 (𝑟1, 𝑟2)) 

 = 𝜏𝑈
𝑘(𝑟1, 𝑟2) ∧ (𝜏𝑉

𝑘(𝑟1, 𝑟2) ∨ 𝜏𝑊
𝑘 (𝑟1, 𝑟2)) 
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 = (𝜏𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟1, 𝑟2)) ∨ 𝜏𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑊

𝑘 (𝑟1, 𝑟2) 

 = 𝜏𝑈∩𝑉
𝑘 (𝑟1, 𝑟2) ∪ 𝜏𝑈∩𝑊

𝑘 (𝑟1, 𝑟2) 

 

𝜂𝑈∩(𝑉∪𝑊)
𝑘 (𝑟1, 𝑟2) = 𝜂𝑈

𝑘 (𝑟1, 𝑟2) ∧ (𝜂𝑉∪𝑊
𝑘 (𝑟1, 𝑟2)) 

 = 𝜂𝑈
𝑘 (𝑟1, 𝑟2) ∨ (𝜂𝑉

𝑘(𝑟1, 𝑟2) ∧ 𝜂𝑊
𝑘 (𝑟1, 𝑟2)) 

 = (𝜂𝑈
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟1, 𝑟2)) ∧ 𝜂𝑈
𝑘 (𝑟1, 𝑟2) ∧ 𝜂𝑊

𝑘 (𝑟1, 𝑟2) 

 = 𝜂𝑈∩𝑉
𝑘 (𝑟1, 𝑟2) ∪ 𝜂𝑈∩𝑊

𝑘 (𝑟1, 𝑟2). 

  

• Replace ∩ with ∪ and ∪ with ∩ in the above proof.  
  

Definition 3.9. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then, 𝑈@𝑉 is an Arithmetic Mean Operator 

from 𝑍1 to 𝑍2 given by  

 𝑈@𝑉 = (𝜎𝑈@𝑉
𝑘 (𝑟1, 𝑟2), 𝜏𝑈@𝑉

𝑘 (𝑟1, 𝑟2), 𝜂𝑈@𝑉
𝑘 (𝑟1, 𝑟2)) 

where  

 𝜎𝑈@𝑉
𝑘 (𝑟1, 𝑟2) =

𝜎𝑈
𝑘(𝑟1,𝑟2)+𝜎𝑉

𝑘(𝑟1,𝑟2)

2
, 

 

 𝜏𝑈@𝑉
𝑘 (𝑟1, 𝑟2) =

𝜏𝑈
𝑘 (𝑟1,𝑟2)+𝜏𝑉

𝑘(𝑟1,𝑟2)

2
 

and  

 𝜂𝑈@𝑉
𝑘 (𝑟1, 𝑟2)) =

𝜂𝑈
𝑘 (𝑟1,𝑟2)+𝜂𝑉

𝑘(𝑟1,𝑟2)

2
 

 

Definition 3.10. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then, 𝑈℘𝑉 is a Geometric Mean Operator 

from 𝑍1 to 𝑍2 given by  

 𝑈℘𝑉 = (𝜎𝑈℘𝑉
𝑘 (𝑟1, 𝑟2), 𝜏𝑈℘𝑉

𝑘 (𝑟1, 𝑟2), 𝜂𝑈℘𝑉
𝑘 (𝑟1, 𝑟2)) 

where  

 𝜎𝑈℘𝑉
𝑘 (𝑟1, 𝑟2) = √𝜎𝑈

𝑘(𝑟1, 𝑟2). 𝜎𝑉
𝑘(𝑟1, 𝑟2), 

 

 𝜏𝑈℘𝑉
𝑘 (𝑟1, 𝑟2) = √𝜏𝑈

𝑘(𝑟1, 𝑟2). 𝜏𝑉
𝑘(𝑟1, 𝑟2) 

and  

 𝜂𝑈℘𝑉
𝑘 (𝑟1, 𝑟2)) = √𝜂𝑈

𝑘 (𝑟1, 𝑟2). 𝜂𝑉
𝑘(𝑟1, 𝑟2) 

Definition 3.11. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then, 𝑈©𝑉 is a Harmonic Mean Operator 

from 𝑍1 to 𝑍2 given by  

 𝑈©𝑉 = (𝜎𝑈©𝑉
𝑘 (𝑟1, 𝑟2), 𝜏𝑈©𝑉

𝑘 (𝑟1, 𝑟2), 𝜂𝑈©𝑉
𝑘 (𝑟1, 𝑟2)) 

where  

 𝜎𝑈©𝑉
𝑘 (𝑟1, 𝑟2) =

2𝜎𝑈
𝑘(𝑟1,𝑟2).𝜎𝑉

𝑘(𝑟1,𝑟2)

𝜎𝑈
𝑘(𝑟1,𝑟2)+𝜎𝑉

𝑘(𝑟1,𝑟2)
, 

 

 𝜏𝑈©𝑉
𝑘 (𝑟1, 𝑟2) =

2𝜏𝑈
𝑘 (𝑟1,𝑟2).𝜏𝑉

𝑘(𝑟1,𝑟2)

𝜏𝑈
𝑘 (𝑟1,𝑟2)+𝜏𝑉

𝑘(𝑟1,𝑟2)
 

and  
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 𝜂𝑈©𝑉
𝑘 (𝑟1, 𝑟2) =

2𝜂𝑈
𝑘 (𝑟1,𝑟2).𝜂𝑉

𝑘(𝑟1,𝑟2)

𝜂𝑈
𝑘 (𝑟1,𝑟2)+𝜂𝑉

𝑘(𝑟1,𝑟2)
 

 

Example 3.5. From Example 3.1, let  

 𝑈 = [

(0.17,0.13,0.70) (0.13,0.27,0.50) (0.13,0.23,0.57)
(0.30,0.20,0.50) (0.17,0.27,0.56) (0.17,0.20,0.53)
(0.33,0.17,0.43) (0.23,0.33,0.38) (0.27,0.30,0.43)

] 

and  

 𝑉 = [

(0.27,0.03,0.63) (0.23,0.37,0.40) (0.10,0.23,0.60)
(0.23,0.10,0.67) (0.17,0.17,0.60) (0.13,0.23,0.64)
(0.10,0.17,0.63) (0.33,0.33,0.27) (0.37,0.20,0.43)

] 

be PFMRs from 𝑍1 to 𝑍2. Then, 

 

 𝑈@𝑉 = [

(0.22,0.08,0.67) (0.18,0.32,0.45) (0.12,0.23,0.59)
(0.27,0.15,0.59) (0.17,0.22,0.58) (0.15,0.22,0.59)
(0.22,0.17,0.53) (0.28,0.33,0.33) (0.32,0.25,0.43)

] 

 

 𝑈℘𝑉 = [

(0.21,0.06,0.66) (0.17,0.32,0.45) (0.11,0.23,0.58)
(0.26,0.14,0.58) (0.17,0.21,0.58) (0.15,0.21,0.58)
(0.18,0.17,0.52) (0.28,0.33,0.32) (0.32,0.24,0.43)

] 

 

 𝑈©𝑉 = [

(0.21,0.05,0.66) (0.17,0.31,0.44) (0.11,0.23,0.58)
(0.26,0.13,0.57) (0.17,0.21,0.58) (0.15,0.21,0.58)
(0.15,0.17,0.51) (0.27,0.33,0.32) (0.31,0.24,0.43)

] 

 

4. Composite relation of picture fuzzy multirelations 

In this section, we defined max-min-max composition of PFMRs and obtained some 

associated properties.  

Definition 4.1. Let 𝑈 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2) and 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍2 × 𝑍3). The composite 

relation 𝑉 ∘ 𝑈 is a PFMR between 𝑍1 and 𝑍3 defined by  

 𝑉 ∘ 𝑈 = {〈(𝑟1, 𝑟3), 𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟3), 𝜏𝑉∘𝑈

𝑘 (𝑟1, 𝑟3), 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟3)〉|(𝑟1, 𝑟3) ∈ 𝑍1 × 𝑍3} 

where ∀ (𝑟1, 𝑟3) ∈ 𝑍1 × 𝑍3 and ∀ 𝑟2 ∈ 𝑍2, its positive membership, neutral membership 

and negative membership functions are defined by  

 𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) = ∨

𝑟2∈𝑉
{𝜎𝑈

𝑘(𝑟1, 𝑟2) ∧ 𝜎𝑉
𝑘(𝑟2, 𝑟3)}, 

 

 𝜏𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) = ∧

𝑟2∈𝑉
{𝜏𝑈

𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑉
𝑘(𝑟2, 𝑟3)} 

and  

 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) = ∧

𝑟2∈𝑉
{𝜂𝑈

𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉
𝑘(𝑟2, 𝑟3)}, 

respectively.  

 

Example 4.1. Consider 𝑈 and 𝑉 from Example 3.5. Let  
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 𝑈 = [

(0.17,0.13,0.70) (0.13,0.27,0.50) (0.13,0.23,0.57)
(0.30,0.20,0.50) (0.17,0.27,0.56) (0.17,0.20,0.53)
(0.33,0.17,0.43) (0.23,0.33,0.38) (0.27,0.30,0.43)

] 

and  

 𝑉 = [

(0.27,0.03,0.63) (0.23,0.37,0.40) (0.10,0.23,0.60)
(0.23,0.10,0.67) (0.17,0.17,0.60) (0.13,0.23,0.64)
(0.10,0.17,0.63) (0.33,0.33,0.27) (0.37,0.20,0.43)

] 

be PFMRs from 𝑍1 to 𝑍2. Then, 

 

 𝑉 ∘ 𝑈 = [

(0.17,0.03,0.63) (0.17,0.13,0.57) (0.13,0.13,0.57)
(0.27,0.03,0.63) (0.23,0.17,0.50) (0.17,0.20,0.53)
(0.27,0.03,0.63) (0.27,0.17,0.43) (0.10,0.17,0.43)

] 

 

Proposition 4.1. Let 𝑈 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2) and 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍2 × 𝑍3). The composite 

relation 𝑉 ∘ 𝑈 is in 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍3).  
Proof:  For all (𝑟1, 𝑟3) ∈ 𝑍1 × 𝑍3, let check  

 𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) + 𝜏𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) + 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) ≤ 1 

For all 𝜖 > 0, there exists 𝑟2
⋆ ∈ 𝑍2 such that  

 𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) < 𝜎𝑈

𝑘(𝑟1, 𝑟2
∗) ∧ 𝜎𝑉

𝑘(𝑟2
∗, 𝑟3) + 𝜖                            (⋆) 

It is easily seen that  

 𝜏𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) ≤ 𝜏𝑈

𝑘(𝑟1, 𝑟2
∗) ∧ 𝜏𝑉

𝑘(𝑟2
∗, 𝑟3)                                    (⋆⋆) 

and  

 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) ≤ 𝜂𝑈

𝑘 (𝑟1, 𝑟2
∗) ∨ 𝜂𝑉

𝑘(𝑟2
∗, 𝑟3)                                  (⋆⋆⋆) 

Combining (⋆), (⋆⋆), (⋆⋆⋆), we have  

𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟2) + 𝜏𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) + 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟3)

< 𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜎𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜏𝑉
𝑘(𝑟2

∗, 𝑟3) 

 + 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) ∨ 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜖 

 Here, two things to check, 

Firstly: If  

 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) ∨ 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3) = 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗). 
Then, 

𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜎𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜏𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) ∨ 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜖  

= 𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜎𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜏𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) + 𝜖 

≤ 𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) + 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) + 𝜖 

≤ 1 + 𝜖 
 

 Secondly: If  

 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) ∨ 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3) = 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3). 
Then, 

𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜎𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜏𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) ∨ 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜖  

= 𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜎𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) ∧ 𝜏𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜂𝑈
𝑘 (𝑟1, 𝑟2

∗) + 𝜖 

≤ 𝜎𝑈
𝑘(𝑟1, 𝑟2

∗) + 𝜏𝑈
𝑘(𝑟1, 𝑟2

∗) + 𝜂𝑉
𝑘(𝑟2

∗, 𝑟3) + 𝜖 

≤ 1 + 𝜖 
 Thus,  
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 𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) + 𝜏𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) + 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟2) < 1 + 𝜖 for all 𝜖 > 0 

 Therefore,  

 𝜎𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) + 𝜏𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) + 𝜂𝑉∘𝑈
𝑘 (𝑟1, 𝑟3) ≤ 1 

  

Proposition 4.2. Let 𝑈 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2) and 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍2 × 𝑍3). Then (𝑉 ∘ 𝑈)−1 =
𝑈−1 ∘ 𝑉−1  

Proof:  

  𝜎(𝑉∘𝑈)−1
𝑘 (𝑟3, 𝑟1) = 𝜎𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) 

 = ∨
𝑟2∈𝑍2

{𝜎𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟2, 𝑟3)} 

 = ∨
𝑟2∈𝑍2

{𝜎𝑈−1
𝑘 (𝑟2, 𝑟1) ∧ 𝜎𝑉−1

𝑘 (𝑟3, 𝑟2)} 

 = ∨
𝑟2∈𝑍2

{𝜎𝑉−1
𝑘 (𝑟3, 𝑟2) ∧ 𝜎𝑈−1

𝑘 (𝑟2, 𝑟1)} 

 = 𝜎𝑈−1∘𝑉−1
𝑘 (𝑟3, 𝑟1) 

 

  𝜏(𝑉∘𝑈)−1
𝑘 (𝑟3, 𝑟1) = 𝜏𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) 

 = ∨
𝑟2∈𝑍2

{𝜏𝑈
𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟2, 𝑟3)} 

 = ∨
𝑟2∈𝑍2

{𝜏𝑈−1
𝑘 (𝑟2, 𝑟1) ∧ 𝜏𝑉−1

𝑘 (𝑟3, 𝑟2)} 

 = ∨
𝑟2∈𝑍2

{𝜏𝑉−1
𝑘 (𝑟3, 𝑟2) ∧ 𝜏𝑈−1

𝑘 (𝑟2, 𝑟1)} 

 = 𝜏𝑈−1∘𝑉−1
𝑘 (𝑟3, 𝑟1) 

 

  𝜂(𝑉∘𝑈)−1
𝑘 (𝑟3, 𝑟1) = 𝜂𝑉∘𝑈

𝑘 (𝑟1, 𝑟3) 

 = ∧
𝑟2∈𝑍2

{𝜂𝑈
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟2, 𝑟3)} 

 = ∧
𝑟2∈𝑍2

{𝜂𝑈−1
𝑘 (𝑟2, 𝑟1) ∨ 𝜂𝑉−1

𝑘 (𝑟3, 𝑟2)} 

 = ∧
𝑟2∈𝑍2

{𝜂𝑉−1
𝑘 (𝑟3, 𝑟2) ∨ 𝜂𝑈−1

𝑘 (𝑟2, 𝑟1)} 

 = 𝜂𝑈−1∘𝑉−1
𝑘 (𝑟3, 𝑟1) 

  

Proposition 4.3. Let 𝑈, 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍2 × 𝑍3) and 𝑊 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2). Then,   

    • (𝑉 ∧ 𝑈) ∘ 𝑊 = (𝑉 ∘ 𝑊) ∧ (𝑈 ∘ 𝑊)  

    • (𝑉 ∨ 𝑈) ∘ 𝑊 = (𝑉 ∘ 𝑊) ∨ (𝑈 ∘ 𝑊)  

  

Proof: 

𝜎(𝑉∧𝑈)∘𝑊
𝑘 (𝑟1, 𝑟3) =∨

𝑟2

{𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ (𝜎𝑉

𝑘(𝑟2, 𝑟3) ∧ 𝜎𝑈
𝑘(𝑟2, 𝑟3))} 

 =∨
𝑟2

{(𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟2, 𝑟3)) ∧ (𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑈

𝑘(𝑟2, 𝑟3))} 

 =∨
𝑟2

{𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟2, 𝑟3)} ∧∨
𝑟2

{𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑈

𝑘(𝑟2, 𝑟3)} 

 = 𝜎𝑉∘𝑊
𝑘 (𝑟1, 𝑟3) ∧ 𝜎𝑈∘𝑉

𝑘 (𝑟1, 𝑟3) 

 

𝜏(𝑉∧𝑈)∘𝑊
𝑘 (𝑟1, 𝑟3) =∧

𝑟2

{𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ (𝜏𝑉

𝑘(𝑟2, 𝑟3) ∧ 𝜏𝑈
𝑘(𝑟2, 𝑟3))} 
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 =∧
𝑟2

{(𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟2, 𝑟3)) ∧ (𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑈

𝑘(𝑟2, 𝑟3))} 

 =∧
𝑟2

{𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟2, 𝑟3)} ∧∧
𝑟2

{𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑈

𝑘(𝑟2, 𝑟3)} 

 = 𝜏𝑉∘𝑊
𝑘 (𝑟1, 𝑟3) ∧ 𝜏𝑈∘𝑊

𝑘 (𝑟1, 𝑟3) 

 

𝜂(𝑉∧𝑈)∘𝑊
𝑘 (𝑟1, 𝑟3) =∧

𝑟2

{𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ (𝜂𝑉

𝑘(𝑟2, 𝑟3) ∧ 𝜂𝑈
𝑘 (𝑟2, 𝑟3))} 

 =∧
𝑟2

{(𝜂𝑤
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟2, 𝑟3)) ∧ (𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑈

𝑘 (𝑟2, 𝑟3))} 

 =∧
𝑟2

{𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟2, 𝑟3)} ∧∧
𝑟2

{𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑈

𝑘 (𝑟2, 𝑟3)} 

 = 𝜂𝑉∘𝑊
𝑘 (𝑟1, 𝑟3) ∧ 𝜂𝑈∘𝑊

𝑘 (𝑟1, 𝑟3) 

 

                    • 

 𝜎(𝑉∨𝑈)∘𝑊
𝑘 (𝑟1, 𝑟3) =∨

𝑟2

{𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ (𝜎𝑉

𝑘(𝑟2, 𝑟3) ∨ 𝜎𝑈
𝑘(𝑟2, 𝑟3))} 

 =∨
𝑟2

{(𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟2, 𝑟3)) ∨ (𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑈

𝑘(𝑟2, 𝑟3))} 

 =∨
𝑟2

{𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑉

𝑘(𝑟2, 𝑟3)} ∨∨
𝑟2

{𝜎𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜎𝑈

𝑘(𝑟2, 𝑟3)} 

 = 𝜎𝑉∘𝑊
𝑘 (𝑟1, 𝑟3) ∨ 𝜎𝑈∘𝑊

𝑘 (𝑟1, 𝑟3) 

 

𝜏(𝑉∨𝑈)∘𝑊
𝑘 (𝑟1, 𝑟3) =∧

𝑟2

{𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ (𝜏𝑉

𝑘(𝑟2, 𝑟3) ∨ 𝜏𝑈
𝑘(𝑟2, 𝑟3))} 

 =∧
𝑟2

{(𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟2, 𝑟3)) ∨ (𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑈

𝑘(𝑟2, 𝑟3))} 

 =∧
𝑟2

{𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑉

𝑘(𝑟2, 𝑟3)} ∨∧
𝑟2

{𝜏𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜏𝑈

𝑘(𝑟2, 𝑟3)} 

 = 𝜏𝑉∘𝑊
𝑘 (𝑟1, 𝑟3) ∨ 𝜏𝑈∘𝑊

𝑘 (𝑟1, 𝑟3) 

 

𝜂(𝑉∨𝑈)∘𝑊
𝑘 (𝑟1, 𝑟3) =∧

𝑟2

{𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ (𝜂𝑉

𝑘(𝑟2, 𝑟3) ∨ 𝜂𝑈
𝑘 (𝑟2, 𝑟3))} 

 =∧
𝑟2

{(𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟2, 𝑟3)) ∨ (𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∧ 𝜂𝑈

𝑘 (𝑟2, 𝑟3))} 

 =∧
𝑟2

{𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑉

𝑘(𝑟2, 𝑟3)} ∨∧
𝑟2

{𝜂𝑊
𝑘 (𝑟1, 𝑟2) ∨ 𝜂𝑈

𝑘 (𝑟2, 𝑟3)} 

 = 𝜂𝑉∘𝑊
𝑘 (𝑟1, 𝑟3) ∨ 𝜂𝑈∘𝑊

𝑘 (𝑟1, 𝑟3) 

  

Proposition 4.4. Let 𝑉 ∈ 𝑃𝐹𝑀𝑅(𝑍1 × 𝑍2), 𝑈 ∈ 𝑃𝐹𝑀𝑅(𝑍2 × 𝑍3) and 𝑊 ∈ 𝑃𝐹𝑀𝑅(𝑍3 ×
𝑍4). Then, (𝑊 ∘ 𝑈) ∘ 𝑉 = 𝑊 ∘ (𝑈 ∘ 𝑉).  
Proof: 

 𝜎(𝑊∘𝑈)∘𝑉
𝑘 (𝑟1, 𝑟4) =∨

𝑟2

{𝜎𝑉
𝑘(𝑟1, 𝑟2) ∧ (𝜎𝑊∘𝑈

𝑘 )(𝑟2, 𝑟3)} 

 =∨
𝑟2

{𝜎𝑉
𝑘(𝑟1, 𝑟2) ∧ {∨

𝑟3

{𝜎𝑈
𝑘(𝑟2, 𝑟3) ∧ 𝜎𝑊

𝑘 (𝑟3, 𝑟4)}}} 

 =∨
𝑟2

{∨
𝑟3

{𝜎𝑉
𝑘(𝑟1, 𝑟2) ∧ {𝜎𝑈

𝑘(𝑟2, 𝑟3) ∧ 𝜎𝑊
𝑘 (𝑟3, 𝑟4)}}} 

 =∨
𝑟2

{∨
𝑟3

{𝜎𝑉
𝑘(𝑟1, 𝑟2) ∧ 𝜎𝑈

𝑘(𝑟2, 𝑟3)} ∧ 𝜎𝑊
𝑘 (𝑟3, 𝑟4)} 

 =∨
𝑟3

{𝜎𝑈∘𝑉
𝑘 (𝑟1, 𝑟3) ∧ 𝜎𝑊

𝑘 (𝑟3, 𝑟4) 

 = 𝜎𝑊∘(𝑈∘𝑉)
𝑘 (𝑟1, 𝑟4) 
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  𝜏(𝑊∘𝑈)∘𝑉
𝑘 (𝑟1, 𝑟4) =∧

𝑟2

{𝜏𝑉
𝑘(𝑟1, 𝑟2) ∧ (𝜏𝑊∘𝑈

𝑘 )(𝑟2, 𝑟3)} 

 =∧
𝑟2

{𝜏𝑉
𝑘(𝑟1, 𝑟2) ∧ {∧

𝑟3

{𝜏𝑈
𝑘(𝑟2, 𝑟3) ∧ 𝜏𝑊

𝑘 (𝑟3, 𝑟4)}}} 

 =∧
𝑟2

{∧
𝑟3

{𝜏𝑉
𝑘(𝑟1, 𝑟2) ∧ {𝜏𝑈

𝑘(𝑟2, 𝑟3) ∧ 𝜏𝑊
𝑘 (𝑟3, 𝑟4)}}} 

 =∧
𝑟2

{∧
𝑟3

{𝜏𝑉
𝑘(𝑟1, 𝑟2) ∧ 𝜏𝑈

𝑘(𝑟2, 𝑟3)} ∧ 𝜏𝑊
𝑘 (𝑟3, 𝑟4)} 

 =∧
𝑟3

{𝜏𝑈∘𝑉
𝑘 (𝑟1, 𝑟3) ∧ 𝜏𝑊

𝑘 (𝑟3, 𝑟4) 

 = 𝜏𝑊∘(𝑈∘𝑉)
𝑘 (𝑟1, 𝑟4) 

 

 𝜂(𝑊∘𝑈)∘𝑉
𝑘 (𝑟1, 𝑟4) =∧

𝑟2

{𝜂𝑉
𝑘(𝑟1, 𝑟2) ∧ (𝜂𝑊∘𝑈

𝑘 )(𝑟2, 𝑟3)} 

 =∧
𝑟2

{𝜂𝑉
𝑘(𝑟1, 𝑟2) ∧ {∧

𝑟3

{𝜂𝑈
𝑘 (𝑟2, 𝑟3) ∧ 𝜂𝑊

𝑘 (𝑟3, 𝑟4)}}} 

 =∧
𝑟2

{∧
𝑟3

{𝜂𝑉
𝑘(𝑟1, 𝑟2) ∧ {𝜂𝑈

𝑘 (𝑟2, 𝑟3) ∧ 𝜂𝑊
𝑘 (𝑟3, 𝑟4)}}} 

 =∧
𝑟2

{∧
𝑟3

{𝜂𝑉
𝑘(𝑟1, 𝑟2) ∧ 𝜂𝑈

𝑘 (𝑟2, 𝑟3)} ∧ 𝜂𝑊
𝑘 (𝑟3, 𝑟4)} 

 =∧
𝑟3

{𝜂𝑈∘𝑉
𝑘 (𝑟1, 𝑟3) ∧ 𝜂𝑊

𝑘 (𝑟3, 𝑟4) 

                              = 𝜂𝑊∘(𝑈∘𝑉)
𝑘 (𝑟1, 𝑟4). 

5. Conclusion  

In this paper, it has been established that the Picture Fuzzy MultiRelation (PFMR) is an 

extension of the Picture Fuzzy Relation (PFR). Some operations (union, intersection and 

complement) and some operators (Arithmetic mean operator, Geometric mean operator 

and Harmonic mean operator) have been studied with examples. Finally, the composition 

of PFMRs was introduced, and some of its properties were obtained. For future work, some 

applications of PFMR in decision-making, medical diagnosis, electoral systems, 

appointment procedures and pattern recognition will be explored. 
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