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Abstract. Let ∑ be an alphabet. For multiple strings X, Y1, Y2, ..., Yn, and a constrained 

string P over the alphabet ∑, we introduce the constrained longest common subsequence 

and substring problem for strings X, Y1, Y2, ..., Yn with respect to P as to find a longest 

string Z which is a subsequence of X, a substring of Y1, Y2, ..., and Yn, and has P as a 

subsequence. In this paper, we propose an algorithm for solving the above problem. 
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1. Introduction 

Let ∑ be an alphabet and S a string over ∑. A subsequence of a string S over an alphabet 

∑ is obtained by deleting zero or more letters of S. A substring of a string S is a subsequence 

of S consisting of consecutive letters in S. An empty string is a string that does not have 

any letters in it. An empty string is a subsequence and substring of any string. The number 

of letters in a string S, denoted |S|, is called the length, of the string S. The longest common 

subsequence problem (LCSSeq) for two strings is to find a longest string which is a 
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subsequence of both strings. The longest common substring (LCSStr) problem for two 

strings is to find a longest string which is a substring of both strings.  

         Both the longest common subsequence problem and the longest common substring 

problem have been well-investigated in the last several decades. More details on the studies 

for the LCSSeq problem can be found in [2], [3], [4], [5], [7], [9], [11], [12], [13], [16], 

[17], and[18] and the LCSStr problem can be found in [1], [8], [10], and [20]. 

 Motivated by LCSSeq and LCSStr problems, Li, Deka, and Deka [14] introduced 

the longest common subsequence and substring (LCSSeqSStr) problem for two strings. For 

two strings X and Y, the longest common subsequence and substring problem for X and Y 

is to find a longest string which is a subsequence of X and a substring of Y. They also 

designed an O(|X||Y|) time algorithm for LCSSeqSStr problem for two strings X and Y in 

[14]. 

 Motivated by LCSSeq problem, Tsai [19] extended the longest common 

subsequence problem for two strings to the constrained longest common subsequence 

(CLCSSeq) problem for two strings. For two strings X, Y, and a constrained string P, the 

constrained longest common subsequence problem for two strings X and Y with respect to 

P is to find a longest string Z such that Z is a common subsequence for X and Y and P is a 

subsequence of Z. Tsai designed an O(|X|2 |Y|2 |P|) time algorithm for the CLCSSeq 

problem for two strings in [19]. Chin et al. [6] improved Tsai's algorithm and designed an 

O(|X| |Y| |P|) time algorithm for the CLCSSeq problem for two strings X and Y and a 

constrained string P.  

 Motivated by Li, Deka, and Deka's LCSSeqSStr problem and Tsai's CLCSSeq 

problem, Li, Deka, Deka, and Li [15] introduced the constrained longest common 

subsequence and substring problem for two strings with respect to a constrained string. For 

two strings X, Y, and a constrained string P, the constrained longest common subsequence 

and substring (CLCSSeqSStr) problem for two strings X and Y with respect to P is to find 

a longest string Z such that Z is a subsequence of X, a substring of Y, and has P as a 

subsequence. Clearly, the LCSSeqSStr problem is a special CLCSSeqSStr problem with 

an empty constrained string. Li, Deka, Deka, and Li [15] designed an O(|X| |Y| |P|) time 

algorithm for the CLCSSeqSStr problem for two strings and a constrained string.  

In this paper, we further generalize the CLCSSeqSStr problem as follows. For 

multiple strings X, Y1, Y2, ..., Yn, and a constrained string P over an alphabet ∑, we define 

the constrained longest common subsequence and substring (CLCSSeqSStrM) problem for 

strings X, Y1, Y2, ..., and Yn with respect to P as to find a longest string Z which is a 

subsequence of X, a substring of Y1, Y2, ..., and Yn, and has P as a subsequence. We will 

propose an algorithm to solve the CLCSSeqSStrM problem in this paper.  

 

2. The Recursions in the algorithm      

In order to present our algorithm, we need to establish some recursions to be used in our 

algorithm. Before doing that, we need some notations as follows. For a given string S = s1 

s2 ... sl over an alphabet ∑, the ith prefix of S is defined as S[i] = s1 s2 ... si, where 1 ≤ i ≤ l 

l. Conventionally, S[0] is defined as an empty string. The $l$ suffixes of S are the strings 

of s1 s2 ... sl, s2 s3 ... sl, ..., sl - 1sl, and sl. Let  

 

X = x1 x2 ... xm,  

Y1 = y[1,1] y[1, 2] ... y[1, p1],   
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Y2 = y[2, 1] y[2, 2] ... y[2, p2],   

                   ......   

Yn = y[n, 1] y[n, 2] ... y[n, pn], and  

P = p1 p2 ... pr.  

 

We define Z[i, j1, j2, ..., jn, k] as a string satisfying the following conditions:  

 

(1.1) it is a subsequence of X[i] = x1 x2 ... xi,  

(2.1) it is a suffix of Y1[j1] = y[1, 1] y[1, 2] ... y[1, j1],  

(2.2) it is a suffix of Y2[j2] = y[2, 1] y[2, 2] ... y[2, j2],  

                       ......  

(2.n) it is a suffix of Y_n[jn] = y[n, 1] y[n, 2] ... y[n, jn], 

(3.1) it has Pk as a subsequence,  

(4.1) under the conditions above, its length is maximum, 

 

where 0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ p2, ..., 0 ≤ jn ≤ pn, and 0 ≤ k ≤ r.   

 

Obviously, if (i = 0 and k = 0) or (j1 = 0 and k = 0) or (j2 = 0 and k = 0) or ... or (jn 

= 0 and k = 0), then Z[i, j1, j2, ..., jn, k] is an empty string and |Z[i, j1, j2, ..., jn, k]| = 0.  

Also, if (i = 0 and k ≥ 1) or (j1 = 0 and k ≥ 1) or (j2 = 0 and k ≥ 1) or ... or (jn = 0 

and k ≥ 1), then Z[i, j1, j2, ..., jn, k] do not exist.  

Next, we will prove the following claims on Z[i, j1, j2, ..., jn, k].   

 

Claim 1. Assume k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1], y[2, j2], ... , and y[n, 

jn] are not the same, then Z[i, j1, j2, ..., jn, k] is an empty string.  

 

Proof of Claim 1. Suppose Z[i, j1, j2, ..., jn, k] is not empty. Then the last letter of it must 

be equal to y[1, j1], y[2, j2], ... , and y[n, jn]. Thus y[1, j1] = y[2, j2] = … = y[n, jn], a 

contradiction. Hence the proof of Claim 1 is complete. 

 

Claim 2. Assume k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1] = y[2, j2] = … = y[n, 

jn] : = ω, then  

 

Case 2.1. if xi = ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1.  

Case 2.2. if xi ≠ ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|.  

 

Proof of Case 2.1 in Claim 2. In this case, it is clear that the string Z[i - 1, j1 - 1, j2 - 1, 

..., jn - 1, k] ω  

  (1.1) is a subsequence of X[i],  

  (2.1) is a suffix of Y1[j1],  

  (2.2) is a suffix of Y2[j2],  

          ......  

  (2.n) is a suffix of Yn[jn],  

  (3.1) has Pk, which is empty, as a subsequence.  
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By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1 - 1, j2 

- 1, ..., jn - 1, k] ω| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1.  

Suppose Z[i, j_1, j_2, ..., j_n, k] = u1 u2 ... ua – 1 ua. Then ua = y[1, j1] = y[2, j2] = … 

= y[n, jn] = ω. Thus Z[i, j1, j2, ..., jn, k] – {ua} = u1 u2 ... ua – 1 is  

 

(1.1) is a subsequence of X[i - 1],  

(2.1) is a suffix of Y1[j1 - 1],  

(2.2) is a suffix of Y2[j2 - 1],  

           ......  

(2.n) is a suffix of Yn[jn - 1],  

(3.1) has Pk, which is empty, as a subsequence.  

 

By the definition of Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k], we have that |Z[i - 1, j1 - 1, j2 - 1, ..., 

jn - 1, k]| ≥ |Z[i, j1, j2, ..., jn, k] - {ua}| = |Z[i, j1, j2, ..., jn, k]| - 1.  

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1 and the proof of 

Case 2.1 in Claim 2 is complete.  

 

Proof of Case 2.2 in Claim 2. In this case, it is clear that the string Z[i - 1, j1, j2, ..., jn, k] 

is  

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2],  

                  ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has $Pk, which is empty, as a subsequence.  

 

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1, j2, ..., 

jn, k]|.  

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ub – 1 ub. Then ub = y[1, j_1] = y[2, j_2] = … 

= y[n, jn] = ω ≠ xi. Thus Z[i, j1, j2, ..., jn, k] is  

 

(1.1) is a subsequence of X[i - 1],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2],  

    ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk, which is empty, as a subsequence.  

 

By the definition of Z[i - 1, j1, j2, ..., jn, k], we have that $Z[i - 1, j1, j2, ..., jn, k]| ≥ |Z[i, j1, 

j2, ..., jn, k]|.  

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]| and the proof of Case 2.2 in 

Claim 2 is complete.  

 

Claim 3. Assume k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1], y[2, j2], ... , and y[n, 

jn] are not the same, then Z[i, j1, j2, ..., jn, k] does not exist.  
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Proof of Claim 3. Suppose Z[i, j1, j2, ..., jn, k] exists. Notice that the condition of k ≥ 1 

implies that Z[i, j1, j2, ..., jn, k] is not empty. Thus the last letter of Z[i, j1, j2, ..., jn, k] must 

be equal to y[1, j1], y[2, j2], ... , and y[n, jn]. Thus y[1, j1] = y[2, j2] = … = y[n, jn], a 

contradiction. Hence the proof of Claim 3 is complete.  

 

Claim 4. Assume k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1] = y[2, j2] = … 

= y[n, jn] : = ω and Z[i, j1, j2, ..., jn, k] exists, then we just have the following cases 

and the statement in each case is true.  

 

Case 4.1. xi = ω  = pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1,  

                k -  1]| + 1 in this case.  

Case 4.2. xi = ω  ≠ pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1,  ..., jn - 1,   

                k]| + 1 in this case.  

Case 4.3. xi ≠ ω, xi ≠ pk, ω = pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|  

               in this case.  

Case 4.4. xi ≠ ω, xi ≠ pk, ω ≠ pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn,  

                k]| in this case.  

Case 4.5. xi ≠ ω, xi = pk, ω ≠ pk, and this case cannot happen.  
 

Proof of Claim 4. The five cases can be figured out in the following way. Firstly, 

we have two cases of xi = ω or xi ≠ ω. When xi = ω, we just can have two possible 

cases of xi = ω = pk or xi = ω  ≠ pk. When xi ≠ ω, we just can have three possible 

cases of xi ≠ pk and ω = pk, xi ≠ pk and ω ≠ pk, or xi = pk and ω ≠ pk. Since Z[i, j1, j2, 

..., jn, k] exists and k ≥ 1, Z[i, j1, j2, ..., jn, k] is not empty. Next we will prove the 

statements in the five cases.  
 

Case 4.1. xi = ω  = pk.  

In this case, it is clear that Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] ω   

 

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2], 

                   ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1 - 1, j2 

- 1, ..., jn - 1, k - 1] ω| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1]| + 1.  

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... uc - 1 uc. Then uc = y[1, j1] = y[2, j2] = … = 

y[n, jn] = ω = xi = pk. Thus Z[i, j1, j2, ..., jn, k] - {uc} = u1 u2 ... uc - 1  

 

(1.1) is a subsequence of X[i - 1],  

(2.1) is a suffix of Y1[j1 - 1],  

(2.2) is a suffix of Y2[j2 - 1],  
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    ......  

(2.n) is a suffix of Yn[jn - 1],  

(3.1) has Pk - 1 as a subsequence.  

 

By the definition of Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1], we have |Z[i - 1, j1 - 1, j2 - 1, ..., jn 

- 1, k - 1]| ≥ |Z[i, j1, j2, ..., jn, k] - {uc}| = |Z[i, j1, j2, ..., jn, k]| - 1. 

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1]| + 1 and the proof 

of Case 4.1 in Claim 4 is complete.  

 

Case 4.2. xi = ω ≠ pk.  

In this case, it is clear that Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] ω  

 

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2],  

         ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1 - 1, j2 

- 1, ..., jn - 1, k] ω| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1.  

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ud – 1 ud. Then ud = y[1, j1] = y[2, j2] = … = 

y[n, jn] = ω = xi ≠ pk. Thus Z[i, j1, j2, ..., jn, k] - {ud} = u1 u2 ... ud - 1  

 

(1.1) is a subsequence of X[i - 1], 

(2.1) is a suffix of Y1[j1 - 1], 

(2.2) is a suffix of Y2[j2 - 1], 

     ......  

(2.n) is a suffix of Yn[jn - 1], 

(3.1) has Pk as a subsequence. 

 

By the definition of Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k], we have |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 

1, k]| ≥ |Z[i, j1, j2, ..., jn, k] - {ud}| = |Z[i, j1, j2, ..., jn, k]| - 1. 

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1 and the proof of 

Case 4.2 in Claim 4 is complete.  

 

Case 4.3. xi ≠ ω, xi ≠ pk, ω = pk.  

In this case, it is clear that Z[i - 1, j1, j2, ..., jn, k] 

 

(1.1) is a subsequence of X[i], 

(2.1) is a suffix of Y1[j1], 

(2.2) is a suffix of Y2[j2], 

     ......  

(2.n) is a suffix of Yn[jn], 

(3.1) has Pk as a subsequence.  
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By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1, j2, ..., 

jn, k]|.  

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ue – 1 ue. Then ue = y[1, j1] = y[2, j2] = … = 

y[n, jn] = ω ≠ xi. Thus Z[i, j1, j2, ..., jn, k]  

 

(1.1) is a subsequence of X[i - 1],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2],  

      ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

By the definition of Z[i - 1, j1, j2, ..., jn, k], we have |Z[i - 1, j1, j2, ..., jn, k]| ≥ |Z[i, j1, j2, ..., 

jn, k]|. 

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]| and the proof of Case 4.3 in 

Claim 4 is complete.  

 
Case 4.4. xi ≠ ω, xi ≠ pk, ω ≠ pk.  

In this case, it is clear that Z[i - 1, j1, j2, ..., jn, k]  

 

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2],  

                  ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1, j2, ..., 

jn, k]|.  

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... uf – 1 uf. Then uf = y[1, j1] = y[2, j2] = … = 

y[n, j_n] = ω ≠ xi. Thus Z[i, j1, j2, ..., jn, k] 

 

(1.1) is a subsequence of X[i - 1],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2],  

                  ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

By the definition of Z[i - 1, j1, j2, ..., jn, k], we have |Z[i - 1, j1, j2, ..., jn, k]| ≥ |Z[i, j1, j2, ..., 

jn, k]|. 

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]| and the proof of Case 4.4 in 

Claim 4 is complete.  

 

Case 4.5. xi ≠ ω, xi = pk, and ω ≠ pk.  
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Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ug – 1 ug. Then ug = y[1, j1] = y[2, j2] = … = y[n, jn] = 

ω ≠ xi. Since u1 u2 ... ug – 1 ug is a subsequence of Xi and xi ≠ ug, we have that ug appears 

before xi on Xi. Since p1 p2 ... pk is a subsequence of u1 u2 ... ug – 1 ug, pk appears in u1 u2 ... 

ug – 1 ug which is a subsequence of Xi, contradicting to pk = xi. Thus this case cannot 

happen and the proof of Case 4.5 in Claim 4 is complete. Since this case does not happen, 

it is not necessary for us to deal with this case in our algorithm. 

 

Claim 5. Assume k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If  y[1, j1] = y[2, j2] = … = y[n, 

jn] : = ω and Z[i, j1, j2, ..., jn, k] does not exist, then  

 

[1]. If xi = ω = pk, then Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] does not exist. 

 

[2]. If xi = ω ≠ pk, then Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] does not exist.  

 

[3]. If xi ≠ ω, xi ≠ pk, ω = pk, then Z[i - 1, j1, j2, ..., jn, k] does not exist.  

 

[4]. If xi ≠ ω, xi ≠ pk, ω ≠ pk, then Z[i - 1, j1, j2, ..., jn, k] does not exist.  

 

Proof of [1] in Claim 5. Suppose Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] exists. Since xi = ω 

= pk, Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] ω  

 

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[j1], 

(2.2) is a suffix of Y2[j2], 

         ......  

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [1] in Claim 

5 is complete.  

 

Proof of [2] in Claim 5. Suppose Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] exists. Since xi = ω ≠ 

pk, Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] ω  

 

(1.1) is a subsequence of X[i], 

(2.1) is a suffix of Y1[j1], 

(2.2) is a suffix of Y2[j2], 

......  

(2.n) is a suffix of Yn[jn], 

(3.1) has Pk as a subsequence.  

 

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [2] in Claim 

5 is complete. 

 

Proof of [3] in Claim 5. Suppose Z[i - 1, j1, j2, ..., jn, k] exists. Since xi ≠ ω, xi ≠ pk, ω = 

pk, Z[i - 1, j1, j2, ..., jn, k]  
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(1.1) is a subsequence of X[i], 

(2.1) is a suffix of Y1[j1], 

(2.2) is a suffix of Y2[j2], 

    ......  

(2.n) is a suffix of Yn[jn], 

(3.1) has Pk as a subsequence.  

 

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [3] in Claim 

5 is complete.  

 

Proof of [4] in Claim 5. Suppose Z[i - 1, j1, j2, ..., jn, k] exists. Since xi ≠ ω, xi ≠ pk, ω ≠ 

pk, Z[i - 1, j1, j2, ..., jn, k]  

 

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[j1],  

(2.2) is a suffix of Y2[j2] 

                   ...... 

(2.n) is a suffix of Yn[jn],  

(3.1) has Pk as a subsequence.  

 

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [4] in Claim 

5 is complete.  

 

Claim 6. Let Uk = u1
k u2

k ... uh(k)
k, where 0 ≤ k ≤ r, be a longest string which  

 

(1.1) is a subsequence of X, 

(2.1) is a substring of Y1,  

(2.2) is a substring of Y2,  

                   ......  

(2.n) is a substring of Yn,  

(3.1) has Pk as a subsequence.  

 

Then h(k) = max{|Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, ..., 1 ≤ jn ≤ 

pn, 0 ≤ k ≤ r}. 

 

Proof of Claim 6. For each i with 1 ≤ i ≤ m, each j1 with 1 ≤ j1 ≤ p1, each j2 with 1 

≤ j2 ≤ p2, ..., each jn with 1 ≤ jn ≤ pn, and each k with 0 ≤ k ≤ r. By the definition of 

Z[i, j1, j2, ..., jn, k], we have that  

 

(1.1) is a subsequence of X,  

(2.1) is a substring of Y1,  

(2.2) is a substring of Y2,  

           ......  

(2.n) is a substring of Yn,  
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(3.1) has Pk as a subsequence.  

 

By the definition of Uk, we have that |Z[i, j1, j2, ..., jn, k]| ≤ |Uk| = h(k). Thus max{ 

|Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, ..., 1 ≤ jn ≤ pn, 1 ≤ k ≤ r } ≤ 

h(k).  

Since Uk = u1
k u2

k ... uh(k)
k is a longest string which  

 

(1.1) is a subsequence of X,  

   (2.1) is a substring of Y1,  

(2.2) is a substring of Y2,  

                                                          ......  

(2.n) is a substring of Yn,  

(3.1) has Pk as a subsequence,  

 

there are indices i, l1, l2, ..., and ln with uh(k)
k = xi, uh(k)

k = y[1, l1], uh(k)
k = y[2, l2], 

..., uh(k
k = y[n, ln], and Uk = u1

k u2
k ... uh(k)

k has Pk as a subsequence, where 0 ≤ k ≤ 

r such that Uk = u1
k u2

k ... uh(k)
k is a string which  

 

(1.1) is a subsequence of X[i],  

(2.1) is a suffix of Y1[l1],  

(2.2) is a suffix of Y2[l2],  

     ......  

(2.n) is a suffix of Yn[ln],  

(3.1) has Pk as a subsequence.  

 

By the definition of Z[i, j1, j2, ..., jn, k], we have that h(k) ≤|Z[i, l1, l2, ..., ln, k]| ≤ 

max{ |Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, ..., 1 ≤ jn ≤ pn, 0 ≤ k ≤ 

r }.  

Hence h(k) = max{|Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, 

..., 1 ≤ jn ≤ pn, 0 ≤ k ≤ r} and the proof of Claim 6 is complete.  
 

3. The algorithm 

Now we can present our algorithm. Let us recall  

 

X = x1 x2 ... xm,  

Y1 = y[1,1] y[1, 2] ... y[1, p1],   

Y2 = y[2, 1] y[2, 2] ... y[2, p2],   

                   ......   

Yn = y[n, 1] y[n, 2] ... y[n, pn], and  

P = p1 p2 ... pr.  

 

Let M be a (n + 2)-dimensional array of size (m + 1)(p1 + 1)(p2 + 1) … (pn + 1)(r + 1).  
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For 0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ p2, ..., 0 ≤ jn ≤ pn, 0 ≤ k ≤ r, if Z[i, j1, j2, ..., jn, k] 

exist, the cell M[i][j1][j2] …[jn][k] = |Z[i, j1, j2, ..., jn, k]|; if Z[i, j1, j2, ..., jn, k] do not exist, 

the cell M[i][j1][j2] … [jn][k] = -∞, where ∞ is a larger number. For instance, ∞ can be 

1000(m + 1)(p1 + 1)(p2 + 1) … (pn + 1)(r + 1). Our algorithm consists of the following 

steps. Firstly, we will fill in the cells in array M.  

 

Step 1. If (i = 0 and k = 0) or (j1 = 0 and k = 0) or (j2 = 0 and k = 0) or ... or (jn = 0 and k 

= 0), then Z[i, j1, j2, ..., jn, k] is an empty string and |Z[i, j1, j2, ..., jn, k]| = 0. Thus M[i] 

[j1][j2] … [jn][k] = 0.  

 

Step 2. If (i = 0 and k ≥ 1) or (j1 = 0 and k ≥ 1) or (j2 = 0 and k ≥ 1) or ... or (jn = 0 and k 

≥ 1), then Z[i, j1, j2, ..., jn, k] do not exist. Thus M[i][j1][j2] … [jn][k] = -∞.  

 

Step 3. If k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ..., and jn ≥ 1, y[1, j1], y[2, j2], ... , and y[n, jn] are not 

the same, then Z[i, j1, j2, ..., jn, k] is an empty string. Thus M[i][j1][j2] … [jn][k] = 0.  

 

Step 4. If k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω, 

and xi = ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1. Thus M[i] 

[j1][j2] … [jn][k] = M[i - 1][j1 - 1][j2 - 1] … [jn - 1][k] + 1.  

 

Step 5. If k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω, 

and xi ≠ ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|. Thus M[i][j1][j2] … [jn][k] = 

M[i - 1][j1][j2] … [jn][k]. 

 

Step 6. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1], y[2, j2], ..., and y[n, jn] are not 

the same, then Z[i, j1, j2, ..., jn, k] do not exist. Thus M[i][j1][j2] … [jn][k] = -∞. 

 

Step 7. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω, 

and xi = ω = pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - ]| + 1. Thus 

M[i][j1][j2] … [jn][k] = M[i - 1][j1 - 1][j2 - 1] … [jn - 1][k - 1] + 1.  

 

Step 8. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ..., and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω, 

and xi = ω ≠ pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1. Thus 

M[i][j1][j2] … [jn][k] = M[i - 1][j1 - 1][j2 - 1] … [jn - 1][k] + 1.  

 

Step 9. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω, 

and xi ≠ ω, xi ≠ pk, ω = pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|. Thus M[i] 

[j1][j2] … [jn][k] = M[i - 1][j1][j2] … [jn ][k].  

 

Step 10. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω, 

and xi ≠ ω, xi ≠ pk, ω ≠ pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|. Thus M[i] 

[j1][j2] … [jn][k] = M[i - 1][j1][j2] … [jn ][k].  

 

Notice that Claim 6 implies that if a longest string which  
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(1.1) is a subsequence of X,  

(2.1) is a substring of Y1,  

(2.2) is a substring of Y2,  

         ......  

(2.n) is a substring of Yn,  

(3.1) has Pr as a subsequence,  

 

called a desired string, exists, then its length is equal to max { M[i][j1][j2] …  [jn][k] :  

1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, …, 1 ≤ jn ≤ pn, 0 ≤ k ≤ r }. Hence a desired string can  

be found in the following steps.  

 

Step 11. Define one variable called maxLength which eventually denotes the length of a 

desired string and its initial value is 0.   

 

Step 12. Define another variable called lastIndexOnY1 which eventually denotes the  

last index of the desired string on the string Y1 and its initial value is p1.  

 

Step 13. Visit all the cells of M[i][j1][j2] … [jn][k], where 0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ 

p2, …, 0 ≤ jn ≤ pn, and k = r, in array M by using loops embedded loops. During the 

visitation, if M[i][j1][j2] … [jn][k] > maxLength, then update and lastIndexOnY1 and 

maxLength to and j1 and M[i][j1][j2] … [jn][k] respectively.  

 

Step 14. After finishing the visitation of all the cells of M[i][j_1][j_2] … [jn][k], where  

0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ p2, …, 0 ≤ jn ≤ pn, and k = r, we output the substring of Y1 

with starting index of (lastIndexOnY1 - maxLength) and ending index of lastIndexOnY1  

and maxLength.  

 

The combination of Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, and Claim 6 in Section 

2 ensures that the output string is a desired string and the output maxLength is the length 

of the desired string. It is clear that both time complexity and space complexity of the 

above algorithm are O((m + 1)(p1 + 1)(p2 + 1) … (pn + 1)(r + 1)) = O(m p1 p2 … pn r).  

 

4. Conclusion 

In this paper, we introduce a new problem called the constrained longest common 

subsequence and substring problem for multiple strings X, Y1, Y2, …, Yn and a constrained 

string P. We propose an algorithm with time complexity and space complexity of 

O(|X||Y1||Y2| … |Yn||P|) to solve the problem. In future, we will design new algorithms 

improving the time and space complexities and find the practical applications of our 

algorithm.  
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