
Journal of Mathematics and Informatics

Vol. 28, 2025, 59-72

ISSN: 2349-0632 (P), 2349-0640 (online)

Published 6 August 2025

www.researchmathsci.org

DOI:http://dx.doi.org/10.22457/jmi.v28a06259

59

An Algorithm for the Constrained Longest Common

Subsequence and Substring Problem for Multiple

Strings*

Rao Li1*, Richy Modugu2 and Brandon Weathers3

1Department of Computer Science, Engineering, and Mathematics,

University of South Carolina Aiken, Aiken, SC 29801, USA,

Email: raol@usca.edu
2Department of Computer Science, Engineering, and Mathematics,

University of South Carolina Aiken, Aiken, SC 29801, USA,

Email: rmodugu@usca.edu
3Department of Computer Science, Engineering, and Mathematics,

University of South Carolina Aiken, Aiken, SC 29801, USA,

Email: brw12@usca.edu
*Corresponding author

Received 2 July 2025; accepted 5 August 2025

Abstract. Let ∑ be an alphabet. For multiple strings X, Y1, Y2, ..., Yn, and a constrained

string P over the alphabet ∑, we introduce the constrained longest common subsequence

and substring problem for strings X, Y1, Y2, ..., Yn with respect to P as to find a longest

string Z which is a subsequence of X, a substring of Y1, Y2, ..., and Yn, and has P as a

subsequence. In this paper, we propose an algorithm for solving the above problem.

Keywords: Longest common subsequence, longest common subsequence and substring,

constrained longest common subsequence and substring, constrained longest common

subsequence and substring for multiple strings.

AMS Mathematics Subject Classification (2010): 68W32, 68W40

1. Introduction

Let ∑ be an alphabet and S a string over ∑. A subsequence of a string S over an alphabet

∑ is obtained by deleting zero or more letters of S. A substring of a string S is a subsequence

of S consisting of consecutive letters in S. An empty string is a string that does not have

any letters in it. An empty string is a subsequence and substring of any string. The number

of letters in a string S, denoted |S|, is called the length, of the string S. The longest common

subsequence problem (LCSSeq) for two strings is to find a longest string which is a

* This research was funded by the Summer Scholars Institute (2025) at University of South

Carolina Aiken.

http://www.researchmathsci.org/
mailto:raol@usca.edu
mailto:brw12@usca.edu

Rao Li, Richy Modugu and Brandon Weathers

60

subsequence of both strings. The longest common substring (LCSStr) problem for two

strings is to find a longest string which is a substring of both strings.

 Both the longest common subsequence problem and the longest common substring

problem have been well-investigated in the last several decades. More details on the studies

for the LCSSeq problem can be found in [2], [3], [4], [5], [7], [9], [11], [12], [13], [16],

[17], and[18] and the LCSStr problem can be found in [1], [8], [10], and [20].

 Motivated by LCSSeq and LCSStr problems, Li, Deka, and Deka [14] introduced

the longest common subsequence and substring (LCSSeqSStr) problem for two strings. For

two strings X and Y, the longest common subsequence and substring problem for X and Y

is to find a longest string which is a subsequence of X and a substring of Y. They also

designed an O(|X||Y|) time algorithm for LCSSeqSStr problem for two strings X and Y in

[14].

 Motivated by LCSSeq problem, Tsai [19] extended the longest common

subsequence problem for two strings to the constrained longest common subsequence

(CLCSSeq) problem for two strings. For two strings X, Y, and a constrained string P, the

constrained longest common subsequence problem for two strings X and Y with respect to

P is to find a longest string Z such that Z is a common subsequence for X and Y and P is a

subsequence of Z. Tsai designed an O(|X|2 |Y|2 |P|) time algorithm for the CLCSSeq

problem for two strings in [19]. Chin et al. [6] improved Tsai's algorithm and designed an

O(|X| |Y| |P|) time algorithm for the CLCSSeq problem for two strings X and Y and a

constrained string P.

 Motivated by Li, Deka, and Deka's LCSSeqSStr problem and Tsai's CLCSSeq

problem, Li, Deka, Deka, and Li [15] introduced the constrained longest common

subsequence and substring problem for two strings with respect to a constrained string. For

two strings X, Y, and a constrained string P, the constrained longest common subsequence

and substring (CLCSSeqSStr) problem for two strings X and Y with respect to P is to find

a longest string Z such that Z is a subsequence of X, a substring of Y, and has P as a

subsequence. Clearly, the LCSSeqSStr problem is a special CLCSSeqSStr problem with

an empty constrained string. Li, Deka, Deka, and Li [15] designed an O(|X| |Y| |P|) time

algorithm for the CLCSSeqSStr problem for two strings and a constrained string.

In this paper, we further generalize the CLCSSeqSStr problem as follows. For

multiple strings X, Y1, Y2, ..., Yn, and a constrained string P over an alphabet ∑, we define

the constrained longest common subsequence and substring (CLCSSeqSStrM) problem for

strings X, Y1, Y2, ..., and Yn with respect to P as to find a longest string Z which is a

subsequence of X, a substring of Y1, Y2, ..., and Yn, and has P as a subsequence. We will

propose an algorithm to solve the CLCSSeqSStrM problem in this paper.

2. The Recursions in the algorithm

In order to present our algorithm, we need to establish some recursions to be used in our

algorithm. Before doing that, we need some notations as follows. For a given string S = s1

s2 ... sl over an alphabet ∑, the ith prefix of S is defined as S[i] = s1 s2 ... si, where 1 ≤ i ≤ l

l. Conventionally, S[0] is defined as an empty string. The l suffixes of S are the strings

of s1 s2 ... sl, s2 s3 ... sl, ..., sl - 1sl, and sl. Let

X = x1 x2 ... xm,

Y1 = y[1,1] y[1, 2] ... y[1, p1],

An Algorithm for the Constrained Longest Common Subsequence and Substring

Problem for Multiple Strings

61

Y2 = y[2, 1] y[2, 2] ... y[2, p2],

Yn = y[n, 1] y[n, 2] ... y[n, pn], and

P = p1 p2 ... pr.

We define Z[i, j1, j2, ..., jn, k] as a string satisfying the following conditions:

(1.1) it is a subsequence of X[i] = x1 x2 ... xi,

(2.1) it is a suffix of Y1[j1] = y[1, 1] y[1, 2] ... y[1, j1],

(2.2) it is a suffix of Y2[j2] = y[2, 1] y[2, 2] ... y[2, j2],

(2.n) it is a suffix of Y_n[jn] = y[n, 1] y[n, 2] ... y[n, jn],

(3.1) it has Pk as a subsequence,

(4.1) under the conditions above, its length is maximum,

where 0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ p2, ..., 0 ≤ jn ≤ pn, and 0 ≤ k ≤ r.

Obviously, if (i = 0 and k = 0) or (j1 = 0 and k = 0) or (j2 = 0 and k = 0) or ... or (jn

= 0 and k = 0), then Z[i, j1, j2, ..., jn, k] is an empty string and |Z[i, j1, j2, ..., jn, k]| = 0.

Also, if (i = 0 and k ≥ 1) or (j1 = 0 and k ≥ 1) or (j2 = 0 and k ≥ 1) or ... or (jn = 0

and k ≥ 1), then Z[i, j1, j2, ..., jn, k] do not exist.

Next, we will prove the following claims on Z[i, j1, j2, ..., jn, k].

Claim 1. Assume k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1], y[2, j2], ... , and y[n,

jn] are not the same, then Z[i, j1, j2, ..., jn, k] is an empty string.

Proof of Claim 1. Suppose Z[i, j1, j2, ..., jn, k] is not empty. Then the last letter of it must

be equal to y[1, j1], y[2, j2], ... , and y[n, jn]. Thus y[1, j1] = y[2, j2] = … = y[n, jn], a

contradiction. Hence the proof of Claim 1 is complete.

Claim 2. Assume k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1] = y[2, j2] = … = y[n,

jn] : = ω, then

Case 2.1. if xi = ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1.

Case 2.2. if xi ≠ ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|.

Proof of Case 2.1 in Claim 2. In this case, it is clear that the string Z[i - 1, j1 - 1, j2 - 1,

..., jn - 1, k] ω

 (1.1) is a subsequence of X[i],

 (2.1) is a suffix of Y1[j1],

 (2.2) is a suffix of Y2[j2],

 (2.n) is a suffix of Yn[jn],

 (3.1) has Pk, which is empty, as a subsequence.

Rao Li, Richy Modugu and Brandon Weathers

62

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1 - 1, j2

- 1, ..., jn - 1, k] ω| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1.

Suppose Z[i, j_1, j_2, ..., j_n, k] = u1 u2 ... ua – 1 ua. Then ua = y[1, j1] = y[2, j2] = …

= y[n, jn] = ω. Thus Z[i, j1, j2, ..., jn, k] – {ua} = u1 u2 ... ua – 1 is

(1.1) is a subsequence of X[i - 1],

(2.1) is a suffix of Y1[j1 - 1],

(2.2) is a suffix of Y2[j2 - 1],

(2.n) is a suffix of Yn[jn - 1],

(3.1) has Pk, which is empty, as a subsequence.

By the definition of Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k], we have that |Z[i - 1, j1 - 1, j2 - 1, ...,

jn - 1, k]| ≥ |Z[i, j1, j2, ..., jn, k] - {ua}| = |Z[i, j1, j2, ..., jn, k]| - 1.

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1 and the proof of

Case 2.1 in Claim 2 is complete.

Proof of Case 2.2 in Claim 2. In this case, it is clear that the string Z[i - 1, j1, j2, ..., jn, k]

is

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has $Pk, which is empty, as a subsequence.

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1, j2, ...,

jn, k]|.

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ub – 1 ub. Then ub = y[1, j_1] = y[2, j_2] = …

= y[n, jn] = ω ≠ xi. Thus Z[i, j1, j2, ..., jn, k] is

(1.1) is a subsequence of X[i - 1],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk, which is empty, as a subsequence.

By the definition of Z[i - 1, j1, j2, ..., jn, k], we have that $Z[i - 1, j1, j2, ..., jn, k]| ≥ |Z[i, j1,

j2, ..., jn, k]|.

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]| and the proof of Case 2.2 in

Claim 2 is complete.

Claim 3. Assume k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1], y[2, j2], ... , and y[n,

jn] are not the same, then Z[i, j1, j2, ..., jn, k] does not exist.

An Algorithm for the Constrained Longest Common Subsequence and Substring

Problem for Multiple Strings

63

Proof of Claim 3. Suppose Z[i, j1, j2, ..., jn, k] exists. Notice that the condition of k ≥ 1

implies that Z[i, j1, j2, ..., jn, k] is not empty. Thus the last letter of Z[i, j1, j2, ..., jn, k] must

be equal to y[1, j1], y[2, j2], ... , and y[n, jn]. Thus y[1, j1] = y[2, j2] = … = y[n, jn], a

contradiction. Hence the proof of Claim 3 is complete.

Claim 4. Assume k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1] = y[2, j2] = …

= y[n, jn] : = ω and Z[i, j1, j2, ..., jn, k] exists, then we just have the following cases

and the statement in each case is true.

Case 4.1. xi = ω = pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1,

 k - 1]| + 1 in this case.

Case 4.2. xi = ω ≠ pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1,

 k]| + 1 in this case.

Case 4.3. xi ≠ ω, xi ≠ pk, ω = pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|

 in this case.

Case 4.4. xi ≠ ω, xi ≠ pk, ω ≠ pk, and |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn,

 k]| in this case.

Case 4.5. xi ≠ ω, xi = pk, ω ≠ pk, and this case cannot happen.

Proof of Claim 4. The five cases can be figured out in the following way. Firstly,

we have two cases of xi = ω or xi ≠ ω. When xi = ω, we just can have two possible

cases of xi = ω = pk or xi = ω ≠ pk. When xi ≠ ω, we just can have three possible

cases of xi ≠ pk and ω = pk, xi ≠ pk and ω ≠ pk, or xi = pk and ω ≠ pk. Since Z[i, j1, j2,

..., jn, k] exists and k ≥ 1, Z[i, j1, j2, ..., jn, k] is not empty. Next we will prove the

statements in the five cases.

Case 4.1. xi = ω = pk.

In this case, it is clear that Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] ω

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1 - 1, j2

- 1, ..., jn - 1, k - 1] ω| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1]| + 1.

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... uc - 1 uc. Then uc = y[1, j1] = y[2, j2] = … =

y[n, jn] = ω = xi = pk. Thus Z[i, j1, j2, ..., jn, k] - {uc} = u1 u2 ... uc - 1

(1.1) is a subsequence of X[i - 1],

(2.1) is a suffix of Y1[j1 - 1],

(2.2) is a suffix of Y2[j2 - 1],

Rao Li, Richy Modugu and Brandon Weathers

64

(2.n) is a suffix of Yn[jn - 1],

(3.1) has Pk - 1 as a subsequence.

By the definition of Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1], we have |Z[i - 1, j1 - 1, j2 - 1, ..., jn

- 1, k - 1]| ≥ |Z[i, j1, j2, ..., jn, k] - {uc}| = |Z[i, j1, j2, ..., jn, k]| - 1.

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1]| + 1 and the proof

of Case 4.1 in Claim 4 is complete.

Case 4.2. xi = ω ≠ pk.

In this case, it is clear that Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] ω

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1 - 1, j2

- 1, ..., jn - 1, k] ω| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1.

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ud – 1 ud. Then ud = y[1, j1] = y[2, j2] = … =

y[n, jn] = ω = xi ≠ pk. Thus Z[i, j1, j2, ..., jn, k] - {ud} = u1 u2 ... ud - 1

(1.1) is a subsequence of X[i - 1],

(2.1) is a suffix of Y1[j1 - 1],

(2.2) is a suffix of Y2[j2 - 1],

(2.n) is a suffix of Yn[jn - 1],

(3.1) has Pk as a subsequence.

By the definition of Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k], we have |Z[i - 1, j1 - 1, j2 - 1, ..., jn -

1, k]| ≥ |Z[i, j1, j2, ..., jn, k] - {ud}| = |Z[i, j1, j2, ..., jn, k]| - 1.

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1 and the proof of

Case 4.2 in Claim 4 is complete.

Case 4.3. xi ≠ ω, xi ≠ pk, ω = pk.

In this case, it is clear that Z[i - 1, j1, j2, ..., jn, k]

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

An Algorithm for the Constrained Longest Common Subsequence and Substring

Problem for Multiple Strings

65

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1, j2, ...,

jn, k]|.

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ue – 1 ue. Then ue = y[1, j1] = y[2, j2] = … =

y[n, jn] = ω ≠ xi. Thus Z[i, j1, j2, ..., jn, k]

(1.1) is a subsequence of X[i - 1],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

By the definition of Z[i - 1, j1, j2, ..., jn, k], we have |Z[i - 1, j1, j2, ..., jn, k]| ≥ |Z[i, j1, j2, ...,

jn, k]|.

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]| and the proof of Case 4.3 in

Claim 4 is complete.

Case 4.4. xi ≠ ω, xi ≠ pk, ω ≠ pk.

In this case, it is clear that Z[i - 1, j1, j2, ..., jn, k]

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

By the definition of Z[i, j1, j2, ..., jn, k], we have that |Z[i, j1, j2, ..., jn, k]| ≥ |Z[i - 1, j1, j2, ...,

jn, k]|.

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... uf – 1 uf. Then uf = y[1, j1] = y[2, j2] = … =

y[n, j_n] = ω ≠ xi. Thus Z[i, j1, j2, ..., jn, k]

(1.1) is a subsequence of X[i - 1],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

By the definition of Z[i - 1, j1, j2, ..., jn, k], we have |Z[i - 1, j1, j2, ..., jn, k]| ≥ |Z[i, j1, j2, ...,

jn, k]|.

Hence |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]| and the proof of Case 4.4 in

Claim 4 is complete.

Case 4.5. xi ≠ ω, xi = pk, and ω ≠ pk.

Rao Li, Richy Modugu and Brandon Weathers

66

Suppose Z[i, j1, j2, ..., jn, k] = u1 u2 ... ug – 1 ug. Then ug = y[1, j1] = y[2, j2] = … = y[n, jn] =

ω ≠ xi. Since u1 u2 ... ug – 1 ug is a subsequence of Xi and xi ≠ ug, we have that ug appears

before xi on Xi. Since p1 p2 ... pk is a subsequence of u1 u2 ... ug – 1 ug, pk appears in u1 u2 ...

ug – 1 ug which is a subsequence of Xi, contradicting to pk = xi. Thus this case cannot

happen and the proof of Case 4.5 in Claim 4 is complete. Since this case does not happen,

it is not necessary for us to deal with this case in our algorithm.

Claim 5. Assume k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1. If y[1, j1] = y[2, j2] = … = y[n,

jn] : = ω and Z[i, j1, j2, ..., jn, k] does not exist, then

[1]. If xi = ω = pk, then Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] does not exist.

[2]. If xi = ω ≠ pk, then Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] does not exist.

[3]. If xi ≠ ω, xi ≠ pk, ω = pk, then Z[i - 1, j1, j2, ..., jn, k] does not exist.

[4]. If xi ≠ ω, xi ≠ pk, ω ≠ pk, then Z[i - 1, j1, j2, ..., jn, k] does not exist.

Proof of [1] in Claim 5. Suppose Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] exists. Since xi = ω

= pk, Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k - 1] ω

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [1] in Claim

5 is complete.

Proof of [2] in Claim 5. Suppose Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] exists. Since xi = ω ≠

pk, Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k] ω

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

......

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [2] in Claim

5 is complete.

Proof of [3] in Claim 5. Suppose Z[i - 1, j1, j2, ..., jn, k] exists. Since xi ≠ ω, xi ≠ pk, ω =

pk, Z[i - 1, j1, j2, ..., jn, k]

An Algorithm for the Constrained Longest Common Subsequence and Substring

Problem for Multiple Strings

67

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2],

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [3] in Claim

5 is complete.

Proof of [4] in Claim 5. Suppose Z[i - 1, j1, j2, ..., jn, k] exists. Since xi ≠ ω, xi ≠ pk, ω ≠

pk, Z[i - 1, j1, j2, ..., jn, k]

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[j1],

(2.2) is a suffix of Y2[j2]

(2.n) is a suffix of Yn[jn],

(3.1) has Pk as a subsequence.

This implies that Z[i, j1, j2, ..., jn, k] exists, a contradiction. Thus the proof of [4] in Claim

5 is complete.

Claim 6. Let Uk = u1
k u2

k ... uh(k)
k, where 0 ≤ k ≤ r, be a longest string which

(1.1) is a subsequence of X,

(2.1) is a substring of Y1,

(2.2) is a substring of Y2,

(2.n) is a substring of Yn,

(3.1) has Pk as a subsequence.

Then h(k) = max{|Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, ..., 1 ≤ jn ≤

pn, 0 ≤ k ≤ r}.

Proof of Claim 6. For each i with 1 ≤ i ≤ m, each j1 with 1 ≤ j1 ≤ p1, each j2 with 1

≤ j2 ≤ p2, ..., each jn with 1 ≤ jn ≤ pn, and each k with 0 ≤ k ≤ r. By the definition of

Z[i, j1, j2, ..., jn, k], we have that

(1.1) is a subsequence of X,

(2.1) is a substring of Y1,

(2.2) is a substring of Y2,

(2.n) is a substring of Yn,

Rao Li, Richy Modugu and Brandon Weathers

68

(3.1) has Pk as a subsequence.

By the definition of Uk, we have that |Z[i, j1, j2, ..., jn, k]| ≤ |Uk| = h(k). Thus max{

|Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, ..., 1 ≤ jn ≤ pn, 1 ≤ k ≤ r } ≤

h(k).

Since Uk = u1
k u2

k ... uh(k)
k is a longest string which

(1.1) is a subsequence of X,

 (2.1) is a substring of Y1,

(2.2) is a substring of Y2,

(2.n) is a substring of Yn,

(3.1) has Pk as a subsequence,

there are indices i, l1, l2, ..., and ln with uh(k)
k = xi, uh(k)

k = y[1, l1], uh(k)
k = y[2, l2],

..., uh(k
k = y[n, ln], and Uk = u1

k u2
k ... uh(k)

k has Pk as a subsequence, where 0 ≤ k ≤

r such that Uk = u1
k u2

k ... uh(k)
k is a string which

(1.1) is a subsequence of X[i],

(2.1) is a suffix of Y1[l1],

(2.2) is a suffix of Y2[l2],

(2.n) is a suffix of Yn[ln],

(3.1) has Pk as a subsequence.

By the definition of Z[i, j1, j2, ..., jn, k], we have that h(k) ≤|Z[i, l1, l2, ..., ln, k]| ≤

max{ |Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, ..., 1 ≤ jn ≤ pn, 0 ≤ k ≤

r }.

Hence h(k) = max{|Z[i, j1, j2, ..., jn, k]| : 1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2,

..., 1 ≤ jn ≤ pn, 0 ≤ k ≤ r} and the proof of Claim 6 is complete.

3. The algorithm

Now we can present our algorithm. Let us recall

X = x1 x2 ... xm,

Y1 = y[1,1] y[1, 2] ... y[1, p1],

Y2 = y[2, 1] y[2, 2] ... y[2, p2],

Yn = y[n, 1] y[n, 2] ... y[n, pn], and

P = p1 p2 ... pr.

Let M be a (n + 2)-dimensional array of size (m + 1)(p1 + 1)(p2 + 1) … (pn + 1)(r + 1).

An Algorithm for the Constrained Longest Common Subsequence and Substring

Problem for Multiple Strings

69

For 0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ p2, ..., 0 ≤ jn ≤ pn, 0 ≤ k ≤ r, if Z[i, j1, j2, ..., jn, k]

exist, the cell M[i][j1][j2] …[jn][k] = |Z[i, j1, j2, ..., jn, k]|; if Z[i, j1, j2, ..., jn, k] do not exist,

the cell M[i][j1][j2] … [jn][k] = -∞, where ∞ is a larger number. For instance, ∞ can be

1000(m + 1)(p1 + 1)(p2 + 1) … (pn + 1)(r + 1). Our algorithm consists of the following

steps. Firstly, we will fill in the cells in array M.

Step 1. If (i = 0 and k = 0) or (j1 = 0 and k = 0) or (j2 = 0 and k = 0) or ... or (jn = 0 and k

= 0), then Z[i, j1, j2, ..., jn, k] is an empty string and |Z[i, j1, j2, ..., jn, k]| = 0. Thus M[i]

[j1][j2] … [jn][k] = 0.

Step 2. If (i = 0 and k ≥ 1) or (j1 = 0 and k ≥ 1) or (j2 = 0 and k ≥ 1) or ... or (jn = 0 and k

≥ 1), then Z[i, j1, j2, ..., jn, k] do not exist. Thus M[i][j1][j2] … [jn][k] = -∞.

Step 3. If k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ..., and jn ≥ 1, y[1, j1], y[2, j2], ... , and y[n, jn] are not

the same, then Z[i, j1, j2, ..., jn, k] is an empty string. Thus M[i][j1][j2] … [jn][k] = 0.

Step 4. If k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω,

and xi = ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1. Thus M[i]

[j1][j2] … [jn][k] = M[i - 1][j1 - 1][j2 - 1] … [jn - 1][k] + 1.

Step 5. If k = 0, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω,

and xi ≠ ω, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|. Thus M[i][j1][j2] … [jn][k] =

M[i - 1][j1][j2] … [jn][k].

Step 6. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1], y[2, j2], ..., and y[n, jn] are not

the same, then Z[i, j1, j2, ..., jn, k] do not exist. Thus M[i][j1][j2] … [jn][k] = -∞.

Step 7. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω,

and xi = ω = pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k -]| + 1. Thus

M[i][j1][j2] … [jn][k] = M[i - 1][j1 - 1][j2 - 1] … [jn - 1][k - 1] + 1.

Step 8. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ..., and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω,

and xi = ω ≠ pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1 - 1, j2 - 1, ..., jn - 1, k]| + 1. Thus

M[i][j1][j2] … [jn][k] = M[i - 1][j1 - 1][j2 - 1] … [jn - 1][k] + 1.

Step 9. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω,

and xi ≠ ω, xi ≠ pk, ω = pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|. Thus M[i]

[j1][j2] … [jn][k] = M[i - 1][j1][j2] … [jn][k].

Step 10. If k ≥ 1, i ≥ 1, j1 ≥ 1, j2 ≥ 1, ... , and jn ≥ 1, y[1, j1] = y[2, j2] = … = y[n, jn] : = ω,

and xi ≠ ω, xi ≠ pk, ω ≠ pk, then |Z[i, j1, j2, ..., jn, k]| = |Z[i - 1, j1, j2, ..., jn, k]|. Thus M[i]

[j1][j2] … [jn][k] = M[i - 1][j1][j2] … [jn][k].

Notice that Claim 6 implies that if a longest string which

Rao Li, Richy Modugu and Brandon Weathers

70

(1.1) is a subsequence of X,

(2.1) is a substring of Y1,

(2.2) is a substring of Y2,

(2.n) is a substring of Yn,

(3.1) has Pr as a subsequence,

called a desired string, exists, then its length is equal to max { M[i][j1][j2] … [jn][k] :

1 ≤ i ≤ m, 1 ≤ j1 ≤ p1, 1 ≤ j2 ≤ p2, …, 1 ≤ jn ≤ pn, 0 ≤ k ≤ r }. Hence a desired string can

be found in the following steps.

Step 11. Define one variable called maxLength which eventually denotes the length of a

desired string and its initial value is 0.

Step 12. Define another variable called lastIndexOnY1 which eventually denotes the

last index of the desired string on the string Y1 and its initial value is p1.

Step 13. Visit all the cells of M[i][j1][j2] … [jn][k], where 0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤

p2, …, 0 ≤ jn ≤ pn, and k = r, in array M by using loops embedded loops. During the

visitation, if M[i][j1][j2] … [jn][k] > maxLength, then update and lastIndexOnY1 and

maxLength to and j1 and M[i][j1][j2] … [jn][k] respectively.

Step 14. After finishing the visitation of all the cells of M[i][j_1][j_2] … [jn][k], where

0 ≤ i ≤ m, 0 ≤ j1 ≤ p1, 0 ≤ j2 ≤ p2, …, 0 ≤ jn ≤ pn, and k = r, we output the substring of Y1

with starting index of (lastIndexOnY1 - maxLength) and ending index of lastIndexOnY1

and maxLength.

The combination of Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, and Claim 6 in Section

2 ensures that the output string is a desired string and the output maxLength is the length

of the desired string. It is clear that both time complexity and space complexity of the

above algorithm are O((m + 1)(p1 + 1)(p2 + 1) … (pn + 1)(r + 1)) = O(m p1 p2 … pn r).

4. Conclusion

In this paper, we introduce a new problem called the constrained longest common

subsequence and substring problem for multiple strings X, Y1, Y2, …, Yn and a constrained

string P. We propose an algorithm with time complexity and space complexity of

O(|X||Y1||Y2| … |Yn||P|) to solve the problem. In future, we will design new algorithms

improving the time and space complexities and find the practical applications of our

algorithm.

Acknowledgments. The authors would like to thank the referee for his or her comments on

improving the initial manuscript.

Conflicts of interest. The authors declare no conflicts of interest.

Authors' contributions. All authors contributed equally to this work.

An Algorithm for the Constrained Longest Common Subsequence and Substring

Problem for Multiple Strings

71

REFERENCES

1. A. Amir, P. Charalampopoulos, S. Pissis and J. Radoszewski, Dynamic and internal

longest common substring, Algorithmica, 82 (2020) 3707-3743.

2. A. Apostolico, String editing and longest common subsequences, in: G. Rozenberg and

A. Salomaa (Eds.), Linear Modeling: Background and Application, in: Handbook of

Formal Languages, Vol. 2, Springer-Verlag, Berlin, 1997.

3. A. Apostolico, Chapter 13: General pattern matching, in: M. J. Atallah (Ed.),

Handbook of Algorithms and Theory of Computation, CRC, Boca Raton, FL, 1998.

4. L. Bergroth, H. Hakonen and T. Raita, A survey of longest common subsequence

algorithms, in: SPIRE, A Corua, Spain, 2000.

5. C. Blum, M. Djukanovic, A. Santini, H. Jiang, C. Li, F. Manyà, and G. R. Raidl,

Solving longest common subsequence problems via a transformation to the maximum

clique problem, Computers and Operations Research, 125 (2021) 105089.

6. F. Y. L. Chin, A. De Santis, A. L. Ferrara, N. L. Ho, and S. K. Kim, A simple algorithm

for the constrained sequence problems, Information Processing Letters, 90 (2004) 175-

179.

7. T. Cormen, C. Leiserson, and R. Rivest, Section 16.3: Longest common subsequence,

Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.

8. M. Crochemore, C. S. Iliopoulos, A. Langiu, and F. Mignosi, The longest common

substring problem. Mathematical Structures in Computer Science, pp 1-19, Cambridge

University Press 2015, doi:10.1017/S0960129515000110.

9. M. Djukanovic, G. Raidl, and C. Blum, Finding longest common subsequences: New

anytime A* search results, Applied Soft Computing, 95 (2020) 106499.

10. D. Gusfield, II: Suffix Trees and Their Uses, Algorithms on Strings, Trees, and

Sequences: Computer Science and Computational Biology, Cambridge University

Press, 1997.

11. D. Hirschberg, A linear space algorithm for computing maximal common

subsequences, Communications of the ACM, 18 (1975) 341-343.

12. D. Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico and Z.

Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, Oxford, 1997.

13. J. Hunt and T. Szymanski, A fast algorithm for computing longest common

subsequences, Communications of the ACM, 20 (1977) 350-353.

14. R. Li, J. Deka, and K. Deka, An algorithm for the longest common subsequence and

substring problem, Journal of Mathematics and Informatics, 25 (2023) 77-81.

15. R. Li, J. Deka, K. Deka, and D. Li, An algorithm for the constrained longest common

subsequence and substring problem, Journal of Mathematics and Informatics, 26

(2024) 41-48.

16. Y. Li, An efficient algorithm for LCS problem between two arbitrary sequences,

Mathematical Problems in Engineering (2018), Article ID 4158071,

https://doi.org/10.1155/2018/4158071.

17. S. R. Mousavi and F. Tabataba, An improved algorithm for the longest common

subsequence problem, Computers and Operations Research, 39 (2012) 512-520.

18. C. Rick, New algorithms for the longest common subsequence problem, Research

Report No. 85123-CS, University of Bonn, 1994.

Rao Li, Richy Modugu and Brandon Weathers

72

19. Y. T. Tsai, The constrained longest common subsequence problem, Information

Processing Letters, 88 (2003) 173-176.

20. P. Weiner, Linear pattern matching algorithms. In: 14th Annual Symposium on

Switching and Automata Theory, Iowa City, Iowa, USA, October 15–17, 1973, pp. 1-

11.

