Journal of Mathematics and Informatics

Vol. 29, 2025, 23-26

ISSN: 2349-0632 (P), 2349-0640 (online)

Published 9 December 2025

www.researchmathsci.org

DOI:http://dx.doi.org/10.22457/jmi.v29a03262

Journal of Mathematics and Informatics

Short Communication

On the Diophantine Equation $p^x + (p-1)^y = z^2$ where p is a Prime Number with $p \equiv 3 \pmod{4}$

Suton Tadee

Department of Mathematics
Faculty of Science and Technology
Thepsatri Rajabhat University, Lopburi 15000, Thailand
E-mail: suton.t@lawasri.tru.ac.th

Received 28 October 2025; accepted 8 December 2025

Abstract. In this paper, we prove that the Diophantine equation $p^x + (p-1)^y = z^2$, where p is a prime number with $p \equiv 3 \pmod{4}$ and x, y, z are non-negative integers, has exactly three solutions, which are $(p,x,y,z) \in \{(3,0,3,3), (3,1,0,2), (3,2,4,5)\}$.

Keywords: Diophantine equation; Congruence; Legendre symbol

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

There are lots of studies about the exponential Diophantine equation of type $a^x + b^y = z^2$, where a, b are positive integers and x, y, z are non-negative integers (see [1, 2, 3]). For instance, Sroysang [4] proved in 2013 that (0,1,2), (3,0,3) and (4,2,5) are all non-negative integer solutions (x, y, z) of the Diophantine equation $2^x + 3^y = z^2$. In 2022, Gayo and Bacani [5] presented all non-negative integer solutions of the Diophantine equation $M^x + (M-1)^y = z^2$, where M is a Mersenne prime. In 2024, Gayo and Siong [6] proved that the Diophantine equation $11^x + 10^y = z^2$ and $17^x + 16^y = z^2$ are unsolvable in non-negative integers. In 2025, Gayo et al. [7] showed that the Diophantine equation $19^x + 18^y = z^2$ has no non-negative integer solution. Meanwhile, Assiry [8] showed that the Diophantine equation $23^x + 22^y = z^2$ has no non-negative integer solution. Moreover, Gayo [9] also proved that the Diophantine equation $29^x + 28^y = z^2$ has no non-negative integer solution.

Inspired by the above research studies, we will solve the Diophantine equation $p^x + (p-1)^y = z^2$, where p is a prime number with $p \equiv 3 \pmod{4}$ and x, y, z are nonnegative integers.

2. Preliminaries

Suton Tadee

In this section, we present some helpful Definitions and Theorems.

Definition 2.1. Let p be an odd prime and a be an integer such that gcd(a, p) = 1. If the congruence $z^2 \equiv a \pmod{p}$ has an integer solution, then a is said to be a quadratic residue of p. Otherwise, a is called a quadratic non-residue of p.

Definition 2.2. Let p be an odd prime and a be an integer such that gcd(a, p) = 1. The Legendre symbol, $\left(\frac{a}{p}\right)$, is defined by $\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue of } p \\ -1 & \text{if } a \text{ is a quadratic non-residue of } p. \end{cases}$

Theorem 2.1. [10] Let p be an odd prime and a,b be integers with gcd(a,p)=1 and gcd(b,p)=1.

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right).$$

Theorem 2.2. [10] Let p be an odd prime.

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Theorem 2.3. [4] The triple (0,1,2), (3,0,3) and (4,2,5) are only three non-negative integer solutions (x, y, z) of the Diophantine equation $2^x + 3^y = z^2$.

Theorem 2.4. [6] The triple (3, 3, 3) is the unique non-negative integer solution (p, y, z) of the Diophantine equation $1 + (p-1)^y = z^2$, where p is a prime number.

3. Main results

In this section, we present our results.

Theorem 3.1. Let p be a prime number with $p \equiv 3 \pmod{4}$ and x, y, z be non-negative integers. Then all solutions of the Diophantine equation $p^x + (p-1)^y = z^2$ are

$$(p,x,y,z) \in \{(3,0,3,3),(3,1,0,2),(3,2,4,5)\}.$$

Proof: Since x is a non-negative integer, we will separate it into two cases:

Case 1.
$$x = 0$$
. Then $1 + (p-1)^y = z^2$. By Theorem 2.4, we get $(p, x, y, z) = (3, 0, 3, 3)$.

24

On the Diophantine Equation $p^x + (p-1)^y = z^2$ where p is a Prime Number with $p \equiv 3 \pmod{4}$

Case 2. $x \ge 1$. Then $p^x \equiv 0 \pmod{p}$. It implies that $p^x + (p-1)^y \equiv (-1)^y \pmod{p}$. Thus $z^2 \equiv (-1)^y \pmod{p}$ and so $\left(\frac{(-1)^y}{p}\right) = 1$. By Theorem 2.1, we get $\left(\frac{-1}{p}\right)^y = 1$. Since p is a

prime number with $p \equiv 3 \pmod 4$ and Theorem 2.2, we have $(-1)^y = 1$. It follows that y is even. There exists a non-negative integer k such that y = 2k. It implies that $p^x + (p-1)^{2k} = z^2$. Then $\left[z - (p-1)^k\right] \left[z + (p-1)^k\right] = p^x$. Since p is a prime number, we have $z - (p-1)^k = p^u$ and $z + (p-1)^k = p^{x-u}$ for some non-negative integer u. Then $2(p-1)^k = p^u \left(p^{x-u} - 1\right)$. Therefore u = 0 and so $2(p-1)^k = p^x - 1$. Since $2(p-1)^k \equiv 2(-1)^k \equiv \pm 2 \pmod p$ and $p^x - 1 \equiv -1 \pmod p$, we get $\pm 2 \equiv -1 \pmod p$. Since p is a prime number, we have p = 3. By Theorem 2.3, we obtain that $(p,x,y,z) \in \{(3,1,0,2),(3,2,4,5)\}$.

From both cases, we can conclude that (3,0,3,3), (3,1,0,2) and (3,2,4,5) are all non-negative integer solutions (p,x,y,z) of the equation $p^x + (p-1)^y = z^2$.

By Theorem 3.1, we can easily show that some previous researches are true.

Corollary 3.2. [5] The Diophantine equation $7^x + 6^y = z^2$ has no non-negative integer solution.

Corollary 3.3. [6] The Diophantine equation $11^x + 10^y = z^2$ has no non-negative integer solution.

Corollary 3.4. [7] The Diophantine equation $19^x + 18^y = z^2$ has no non-negative integer solution.

Corollary 3.5. [8] The Diophantine equation $23^x + 22^y = z^2$ has no non-negative integer solution.

4. Conclusion

By using a modular arithmetic method, the Diophantine equation $p^x + (p-1)^y = z^2$, where p is a prime number with $p \equiv 3 \pmod{4}$ and x, y, z are non-negative integers, has exactly three solutions, which are $(p, x, y, z) \in \{(3, 0, 3, 3), (3, 1, 0, 2), (3, 2, 4, 5)\}$.

Acknowledgements. The author would like to thank reviewers for careful reading of this manuscript and the useful comments. This work was supported by Research and

Suton Tadee

Development Institute and Faculty of Science and Technology, Thepsatri Rajabhat University, Thailand.

Conflict of interest. The paper is written by a single author so there is no conflict of interest. *Authors' Contributions.* It is a single-author paper. So, full credit goes to the author.

REFERENCES

- 1. S. Tadee, On the Diophantine equation $p^x + (p+14)^y = z^2$ where p, p+14 are primes, *Annals of Pure and Applied Mathematics*, 26(2) (2022) 125-130.
- 2. S. Tadee, On the Diophantine equation $n^x + 5^y = z^2$, *Journal of Mathematics and Informatics*, 27 (2024) 55-59.
- 3. S. Chuankhunthod, N. Lohthaisong, N. Hermkhuntod and S. Tadee, The Diophantine equations $6^x + 4^y = z^2$ and $24^x + 4^y = z^2$, *Journal of Mathematics and Informatics*, 28 (2025) 39-44.
- 4. B. Sroysang, More on the Diophantine equation $2^x + 3^y = z^2$, *International Journal of Pure and Applied Mathematics*, 84(2) (2013) 133-137.
- 5. W.S. Gayo and J.B. Bacani, On the solutions of the Diophantine equation $M^x + (M-1)^y = z^2$, *Italian Journal of Pure and Applied Mathematics*, 47 (2022) 1113-1117.
- 6. W.S. Gayo and V.D. Siong, Unsolvability of two Diophantine equations of the form $p^a + (p-1)^b = c^2$, International Journal of Mathematics and Computer Science, 19(4) (2024) 1143-1145.
- 7. W.S. Gayo, R.M. de Leon and R.R. Rola, Non-existence of solution of the Diophantine equation $19^x + 18^y = z^2$, *International Journal of Mathematics and Computer Science*, 20(4) (2025) 1029-1031.
- 8. A. Assiry, On the unsolvability of the exponential Diophantine equation $23^x + 22^y = z^2$ in nonnegative integers. *European Journal of Pure and Applied Mathematics*, 18(3) (2025) Article Number 6553.
- 9. W.S. Gayo, On the exponential Diophantine equation $29^x + 28^y = z^2$, *International Journal of Mathematics and Computer Science*, 20(2) (2025) 517-519.
- 10. D.M. Burton, *Elementary Number theory*. 7th ed., McGraw-Hill, New York, 2010.