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Abstract. This paper is concerned with the stability criteria of T-S fuzzy systems
with time-varying delay by delay-partitioning approach. Based on Finsler’s lemma,
LMI approach and an appropriate augmented LKF established in the framework
of state vector augmentation, some tighter bounding inequalities such as Seuret-
Wirtinger’s integral inequality and Peng-Park’s integral inequality are employed to
deal with (time-varying) delay-dependent integral items. Therefore, less conserva-
tive delay-dependent stability criteria are obtained in terms of LMIs, which can be
solved efficiently with the Matlab LMI toolbox. Finally, one numerical example is
provided to show that the proposed conditions are less conservative than existing
ones.
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1. Introduction

Takagi-Sugeno (T-S) fuzzy model was first introduced in [1], then much effort has
been made in the stability analysis and control synthesis of such a model during the
past two decades, due to the fact that it can combine the flexibility of fuzzy logic
theory and fruitful linear system theory into a unified framework to approximate
complex nonlinear systems [2, 3]. On the other hand, as a source of instability
and deteriorated performance, time-delay often occurs in many dynamic systems
such as biological systems, chemical processes,communication networks and so on.
Therefore, stability analysis for T-S fuzzy systems with time-delay has received more
interest in recent years, see, e.g., [4, 5, 6] and references therein.

As long as the recent techniques adopted in the stability analysis of T-S fuzzy
systems with time-varying delay are concerned, the most famous is the delay-
partitioning approach [7, 8, 9, 10, 11]. It has been proved that less conservative
results may be expected with the increasing delay-partitioning segments [7, 10]. Re-
cently, by dividing the delay interval into two uniform segments, [11] obtained the
less conservative results than those in [5, 13] for T-S fuzzy systems with time-varying
delay. More recently, on the basis of delay-partitioning approach and Peng-Park’s
integral inequality established by reciprocally convex approach, [10] has developed
less conservative stability criteria than those in [5, 9, 11] for the uncertain T-S
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fuzzy systems with interval time-varying delay. Most recently, a novel LKF is es-
tablished via the delay-decomposition method, then by means of employing the
reciprocally convex approach, [7] has achieved less conservative results than those
in [5, 10, 14, 15, 16, 17, 18] for the uncertain T-S fuzzy systems with time-varying
delay. However, when revisiting this problem, we find that the aforementioned works
still leave plenty of room for improvement.

This paper will develop new stability criteria of T-S fuzzy systems with time-
varying delay by means of delay-partitioning approach and Finsler’s lemma. Based
on a modified augmented-LKF, less conservative stability criteria are obtained by
employing Seuret-Wirtinger’s integral inequality and Peng-Park’s integral inequality
to deal with (time-varying) delay-dependent integral items. Finally, one numerical
example is provided to show the merits of the proposed results.

Notations. Through this paper, Rn and Rn×m denote, respectively, the n-
dimensional Euclidean space and the set of all n × m real matrices; the notation
A > (≥)B means that A−B is positive (semi-positive) definite; I (0) is the identity
(zero) matrix with appropriate dimension; AT denotes the transpose; He(A) repre-
sents the sum of A and AT; ‖•‖ denotes the Euclidean norm in Rn; “*” denotes
the elements below the main diagonal of a symmetric block matrix; C([−τ, 0],Rn)
is the family of continuous functions φ from interval [−τ, 0] to Rn with the norm
‖φ‖τ = sup−τ≤θ≤0 ‖φ(θ)‖; let xt(θ) = x(t+ θ), θ ∈ [−τ, 0].

2. Problem formulation

In this section, a class of T-S fuzzy systems with time-varying delay is concerned.
For each i = 1, 2, · · · , r (r is the number of plant rules), the ith rule of this T-S
fuzzy model is represented as follows:
Plant Rule i: IF θ1(t) is Mi1, θ2(t) is Mi2, · · · , θp(t) is Mip, THEN

(2.1)

{
ẋ(t) = Aix(t) +Adix(t− τ(t)), t ≥ 0
x(t) = φ(t), t ∈ [−τ, 0],

where θ1(t), θ2(t), · · · , θp(t) are the premise variables, and eachMil(i = 1, 2, · · · , r; l =
1, 2, · · · , p) is a fuzzy set; x(t) ∈ Rn is the state vector; φ(t) ∈ C([−τ, 0],Rn) is the
initial function; Ai and Adi are constant real matrices with appropriate dimensions;
the delay τ(t) is a time-varying functional satisfying

(2.2) 0 ≤ τ(t) ≤ τ,

(2.3) τ̇(t) < µ,

where τ and µ are constants assumed to exist.

By a center-average defuzzier, product inference and singleton fuzzifier, the dy-
namic fuzzy model in (2.1) can be represented by

(2.4)

 ẋ(t) =
r∑
i=1

hi(θ(t)){Aix(t) +Adix(t− τ(t))},

x(t) = φ(t), t ∈ [−τ, 0],

where

(2.5) hi(θ(t)) =

∏p
l=1Mil(θl(t))∑r

i=1

∏p
l=1Mil(θl(t))

, i = 1, · · · , r,

in whichMil(θl(t)) is the grade of membership of θl(t) inMil, and θ(t) = (θ1(t), · · · , θr(t));
By definition, the fuzzy weighting functions hi(θ(t)) satisfy hi(θ(t)) ≥ 0 and

∑r
i=1 hi(θ(t)) =
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1. For notational simplicity, hi is used to represent hi(θ(t)) in the following descrip-
tion.

Before proceeding, recall the following lemmas which will be used throughout the
proofs.

Lemma 1 (Finsler’s lemma) [19]. Let ζ ∈ Rn, Φ = ΦT ∈ Rn×m, and B ∈ Rm×n
such that rank(B) < n. Then the following statements are equivalent:

(i) ζTΦζ < 0, ∀ Bζ = 0, ζ 6= 0;

(ii) B⊥
T

ΦB⊥ < 0;
(iii) ∃ Y ∈ Rn×m : Φ + He(Y B) < 0.

Lemma 2 (Peng-Park’s integral inequality)[10, 12]. For any matrix

[
Z S
∗ Z

]
≥ 0,

positive scalars τ and τ(t) satisfying 0 < τ(t) < τ , vector function ẋ : [−τ, 0]→ Rn
such that the concerned integrations are well defined, then

−τ
∫ t

t−τ
ẋT(s)Zẋ(s)ds ≤ $T(t)Ω$(t),

where

$(t) = [xT(t), xT(t− τ(t)), xT(t− τ)]T,

Ω =

 −Z Z − S S
∗ −2Z + He(S) −S + Z
∗ ∗ −Z

 .
Lemma 3 (Seuret-Wirtinger’s integral inequality) [20]. For any matrix Z > 0, the
following inequality holds for all continuously differentiable function x : [α, β]→ Rn:∫ β

α
ẋT(s)Zẋ(s)ds ≥ 1

β − α
νT(t)Ω̃ν(t),

where

ν(t) =

 x(β)
x(α)

1
β−α

∫ β
α x(s)ds

 , Ω̃ =

 4Z 2Z −6Z
∗ 4Z −6Z
∗ ∗ 12Z

 .
3. Main results

This section aims to develop a novel stability criteria for fuzzy system (2.4) with
time-varying delay by delay-partitioning approach.

For any integer m ≥ 1, define δ = τ
m , then [0, τ ] can be divided into m segments,

i.e.,

(3.1) [0, τ ] =
⋃m
j=1[(j − 1)δ, jδ].

For notational simplification, motivated by [10], let

(3.2)


es = [0, · · · , 0︸ ︷︷ ︸

s−1

, I, 0, · · · , 0︸ ︷︷ ︸
m−s+4

]T, s = 1, · · · ,m+ 4

ζ(t) = [xT(t− τ(t)), ζT1 (t), xT(t−mδ), 1
δ

∫ t
t−δ x

T(s)ds, ẋ(t)]T,

where

ζ1(t) = [xT(t), xT(t− δ), xT(t− 2δ), · · · , xT(t− (m− 1)δ)]T.
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Based on Lyapunov-Krasovskii stability theorem [21], we firstly state the follow-
ing stability criterion for the system (2.4).

Theorem 1. Given a positive integer m, scalars τ ≥ 0, µ, and δ = τ
m , then

the nominal system (2.4) with a time-delay τ(t) satisfying (2.2) and (2.3) is asymp-

totically stable if there exist symmetric positive matrices P =

[
P1 P2

∗ P3

]
, Rl =

[
R1l R2l

∗ R3l

]
, X = [Xij ]m×m ,

 X11 · · · X1m
...

. . .
...

∗ · · · Xmm

 , Qj , Z0, Zj , and any ma-

trices Y and Sij(i = 1, · · · , r; j = 1, · · · ,m; l = 1, · · · ,m − 1) with appropriate
dimensions, such that the following LMIs hold for i = 1, · · · , r and k = 1, · · · ,m:

(3.3) Θ(i, k) + He(Y Γi) < 0,

(3.4) Ψ(i, k) =

[
Zk Sik
∗ Zk

]
≥ 0,

where
Γi = Aie

T
2 +Adie

T
1 − eTm+4,

Θ(i, k) =
3∑
j=0

Θj + Θ4(k) + Θ5(i, k) + em+4Z̄e
T
m+4,

Θ0 =

 eT2
eT3
eTm+3

T  −4Z0 −2Z0 6Z0

∗ −4Z0 6Z0

∗ ∗ −12Z0

 eT2
eT3
eTm+3

 ,
Θ1 = He

{[
eT2

δeTm+3

]T [
P1 P2

∗ P3

] [
eTm+4

eT2 − eT3

]}
,

Θ2 =


eT2
eT3
...

eTm+1


T

X


eT2
eT3
...

eTm+1

−


eT3
eT4
...

eTm+2


T

X


eT3
eT4
...

eTm+2

 ,
Θ3 =

m−1∑
j=1

([
eTj+1

eTj+2

]T
Rj

[
eTj+1

eTj+2

]
−
[
eTj+2

eTj+3

]T
Rj

[
eTj+2

eTj+3

])
,

Θ4(k) =
k−1∑
j=1

[
ej+1Qje

T
j+1 − ej+2Qje

T
j+2

]
+ ek+1Qke

T
k+1 − (1− µ)e1Qke

T
1 ,

Θ5(i, k) =

 eTk+1

eT1
eTk+2

T  −Zk Zk − Sik Sik
∗ −2Zk + He(Sik) Zk − Sik
∗ ∗ −Zk

 eTk+1

eT1
eTk+2


+

m∑
j=1,j 6=k

[
eTj+1

eTj+2

]T [ −Zj Zj
∗ −Zj

] [
eTj+1

eTj+2

]
,

with Z̄ = δ2
m∑
j=0

Zj .

Proof. For any t ≥ 0, there should exist an integer k ∈ {1, 2, · · · ,m}, such that
6
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τ(t) ∈ [(k − 1)δ, kδ]. Then, choose the following Lyapunov-Krasovskii functional
candidate:

(3.5) V (t, xt) =
5∑
i=1

Vi(xt),

where

V1(xt) = ηT0 (t)Pη0(t),

V2(xt) =

∫ t

t−δ
ζT1 (s)Xζ1(s)ds,

V3(xt) =

m−1∑
j=1

∫ t

t−δ
ηTj (s)Rjηj(s)ds,

V4(xt) =
k−1∑
j=1

∫ t−(j−1)δ

t−jδ
xT(s)Qjx(s)ds+

∫ t−(k−1)δ

t−τ(t)
xT(s)Qkx(s)ds,

V5(xt) =
m∑
j=1

δ

∫ −(j−1)δ
−jδ

∫ t

t+θ
ẋT(s)Zj ẋ(s)dsdθ + δ

∫ 0

−δ

∫ t

t+θ
ẋT(s)Z0ẋ(s)dsdθ,

with

η0(t) = [xT(t),

∫ t

t−δ
xT(s)ds]T,

ηj(s) = [xT(s− (j − 1)δ), xT(s− jδ)]T, j = 1, · · · ,m− 1.

Taking derivative of V (t, xt) along the trajectory of the system (2.4) yields:

(3.6) V̇ (t, xt) =
5∑
i=1

V̇i(xt).

where

(3.7) V̇1(xt) = 2ηT0 (t)P η̇0(t) = ζT(t)Θ1ζ(t),

(3.8) V̇2(xt) = ζT1 (t)Xζ1(t)− ζT1 (t− δ)Xζ1(t− δ) = ζT(t)Θ2ζ(t),

(3.9) V̇3(xt) =

m−1∑
j=1

[ηTj (t)Rjηj(t)− ηTj (t− δ)Rjηj(t− δ)] = ζT(t)Θ3ζ(t),

(3.10) V̇4(xt) ≤ ζT(t)Θ4(k)ζ(t),

(3.11)

V̇5(xt) = ẋT(t)Z̄ẋ(t)− δ
∫ t

t−δ
ẋT(s)Z0ẋ(s)ds− δ

m∑
j=1

∫ t−(j−1)δ

t−jδ
ẋT(s)Zj ẋ(s)ds.

For the case of τ(t) /∈ [(k − 1)δ, kδ] and τ(t) ∈ [(k − 1)δ, kδ], 1 ≤ k ≤ m ,
applying Jensen’s inequality and Lemma 2 to deal with the last integral item in
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(3.11), respectively, it can be deduced for

[
Zk Ŝk
∗ Zk

]
≥ 0 (where Ŝk =

r∑
i=1

hiSik)

that

(3.12)

−δ
m∑
j=1

∫ t−(j−1)δ

t−jδ
ẋT(s)Zj ẋ(s)ds

≤
m∑

j=1,j 6=k
νT1 (t)

[
−Zj Zj
∗ −Zj

]
ν1(t) +$T

1 (t)

 −Zk Zk − Ŝk Ŝk
∗ −2Zk + He(Ŝk) Zk − Ŝk
∗ ∗ −Zk

$1(t)

=
r∑
i=1

hiζ
T(t)Θ5(i, k)ζ(t),

where ν1(t) =
[
xT(t− (j − 1)δ), xT(t− jδ)

]T
, $1(t) = [xT(t − (k − 1)δ), xT(t −

τ(t)), xT(t− kδ)]T.

On the other hand, it follows from Lemma 3 that

(3.13) −δ
∫ t

t−δ
ẋT(s)Zj ẋ(s)ds ≤ ζT(t)Θ0ζ(t).

By (3.6)-(3.13), the following inequality holds

(3.14) V̇ (t, xt) ≤
r∑
i=1

hiζ
T(t)Θ(i, k)ζ(t),

where Θ(i, k) are defined in Theorem 1.
In what follows, the system (2.4) with the augmented vector ζ(t) can be rewritten

as:

0 =
r∑
i=1

hiΓiζ(t)

where Γi (i = 1, 2, · · · , r) are defined in Theorem 1.
Therefore, the asymptotic stability conditions for the system (2.4) can be repre-

sented by

(3.15)

r∑
i=1

hiζ
T(t)Θ(i, k)ζ(t) < 0,

subject to : 0 =
r∑
i=1

hiΓiζ(t).

By Finsler’s lemma, for any matrix Y with appropriate dimension, the conditions
in (3.15) are equivalent to

(3.16)
r∑
i=1

hiζ
T(t)[Θ(i, k) + He(Y Γi)]ζ(t) < 0.

Then, it follows from (3.14), (3.15), (3.16) and LMIs (3.3) that V̇ (t, xt) < 0.
Therefore, by Lyapunov-Krasovskii stability theorem [21], the system (2.4) with
any delay τ(t) satisfying (2.2) and (2.3) is globally asymptotically stable. This com-
pletes the proof. 2

Remark 1. Based on delay-partitioning approach, the new LKF (3.5) is differ-
ent from those in [5, 7, 10, 14, 23] on account of the [Xij ]m×m-dependent integral
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item is considered. By employing such a [Xij ]m×m-dependent LKF, less conserva-
tive results can be achieved, which will be demonstrated later by numerical example.

Remark 2. The tighter bounding inequality, i.e., Peng-Park’s integral inequality
(Lemma 2), is employed to effectively estimate the time-varying delay-dependent in-

tegral term −δ
∫ t−(k−1)δ
t−kδ ẋT(s)Zkẋ(s)ds. Therefore, significant improvement in both

computational efficiency and performance behavior may be expected while inherit-
ing the advantages of delay-partitioning method.

Remark 3. In the proof of Theorem 1, motivated by [7], some fuzzy-weighting

matrices Ŝk =
r∑
i=1

hiSik are introduced to consider the relationships of the T-S fuzzy

models, which will lead to less conservative results.

By means of Finsler’s lemma, one can eliminate free variables which were used in
zero equalities. Theorem 1 is based on the form of (iii) in Lemma 1. From Lemma

1, one can check that the B⊥
T

ΦB⊥ < 0 is equivalent to the existence of Y such
that Φ + He(Y B) < 0 holds. Therefore, we will propose another stability criterion
based on the form of (ii) in Lemma 1, i.e. the following corollary.

Corollary 1. Given a positive integer m, scalars τ ≥ 0, µ, and δ = τ
m , then

the T-S system (2.4) with a time-delay τ(t) satisfying (2.2) and (2.3) is asymp-

totically stable if there exist symmetric positive matrices P =

[
P1 P2

∗ P3

]
, X =

[Xij ]m×m, Z0, Zj , Rl =

[
R1l R2l

∗ R3l

]
and any matrices Sij (i = 1, · · · , r; j =

1, · · · ,m; l = 1, · · · ,m − 1) with appropriate dimensions, such that the following
LMIs hold for i = 1, · · · , r and k = 1, · · · ,m:

(3.17) Γi
⊥TΘ(i, k)Γi

⊥ < 0,

(3.18) Ψ(i, k) ≥ 0,

where Θ(i, k), Γi and Ψ(i, k) are defined in Theorem 1.

Finally, in the case of the time-varying delay τ(t) being non-differentiable or
unknown τ̇(t), setting Qk = 0 (Qj 6= 0, j = 1, · · · , k − 1) in Theorem 1, one has the
following corollary.

Corollary 2. Given a positive integer m, scalars τ ≥ 0, µ, and δ = τ
m , then the

T-S system (2.4) with a time-delay τ(t) satisfying (2.2) is asymptotically stable if

there exist symmetric positive matrices P =

[
P1 P2

∗ P3

]
, X = [Xij ]m×m, Z0, Zj ,

Rl =

[
R1l R2l

∗ R3l

]
and any matrices Y and Sij (i = 1, · · · , r; j = 1, · · · ,m; l =

1, · · · ,m − 1) with appropriate dimensions, such that the following LMIs hold for
i = 1, · · · , r and k = 1, · · · ,m:

(3.19) Θ̃(i, k) + He(Y Γi) < 0,

(3.20) Ψ(i, k) ≥ 0,
9
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where

Θ̃(i, k) =
3∑
j=0

Θj + Θ̃4(k) + Θ5(i, k) + em+4Z̄e
T
m+4

with Γi, Ψ(i, k), Θ0, · · · ,Θ3, Θ5(i, k) and Z̄ are defined in Theorem 1 and Θ̃4(k) =
k−1∑
j=1

[
ej+1Qje

T
j+1 − ej+2Qje

T
j+2

]
.

4. Numerical example

This section gives one example to demonstrate the effectiveness of the proposed
approach. For comparisons, we study the T-S fuzzy system (2.4) with fuzzy rules
investigated in recent publications [5, 7, 10, 14, 16, 18].

Example 1. Consider the following T-S fuzzy systems with time-varying delay
and the following rules [7, 10]:

R1 : If θ(t) is± π/2, then x(t) = A1x(t) +Ad1x(t− τ(t));

R2 : If θ(t) is 0, then x(t) = A2x(t) +Ad2x(t− τ(t)).

where

A1 =

[
−2 0
0 −0.9

]
, Ad1 =

[
−1 0
−1 −1

]
,

A2 =

[
−1 0.5
0 −1

]
, Ad2 =

[
−1 0
0.1 −1

]
.

The membership functions for above rules 1 and 2 are h1(θ(t)) = sin2(θ(t)), h2(θ(t)) =
cos2(θ(t)), where θ(t) = x1(t).

For different µ, the Maximum allowable delay bounds of the time-varying delay
computed by Theorem 1 with m = 3, 4 are listed in Table 1. For comparison, the
upper bounds obtained by the conditions in [5, 7, 14, 16, 17] are also tabulated in
Table 1. It is clear that the method proposed in this paper is less conservative than
those in [5, 7, 14, 16, 17]. It is also concluded that the conservatism is gradually
reduced with the increase of m.

Table 1. Maximum bounds of τ for different µ: Example 1

µ 0 0.1 ≥ 1
Lien et al. [5] 1.59 1.48 0.83
Li et al.[16] 1.59 1.48 0.98
Liu et al. [17] 1.59 1.49 1.26
Kwon et al. [14] 1.66 1.53 1.27
Zeng et al. [7] (m=3) 2.00 1.81 1.36
Theorem 1 (m=3) 2.33 2.17 1.64
Theorem 1 (m=4) 2.49 2.33 1.83

5. Conclusion

In this paper, new stability criteria for T-S fuzzy systems with time-varying delay
have been investigated by delay-partitioning approach, Finsler’s lemma and LMI
approach. A modified augmented-LKF is established in the framework of state vec-
tor augmentation. Then, by virtue of employing some tighter bounding inequalities
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(Seuret-Wirtinger’s integral inequality and Peng-Park’s integral inequality) to deal
with (time-varying) delay-dependent integral items, none of any useful time-varying
items are arbitrarily ignored, therefore, less conservative results can be expected.
At last, the effectiveness and merits of the theoretical results has been demonstrated
by one numerical example.
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