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Abstract. Aclass of system of the predatory functional responses with Holling-III style 
and Logistic growth rate is considered in this paper. Then singular point of the system is 
obtained. Finally, the sufficient conditions of partial and global stability of the positive 
equilibrium of the system are obtained. 
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1. Introduction 
In ecology, lots of single population models had been investigated. However, in nature, 
population is not dependent rather than co-exist with other population. They cooperate or 
compete between each other that is coming into being the complex ecosystem [1]. In this 
paper, we discuss a model of ecosystem with two populations. And the paper is organized 
as follows. In section 2, we give the model which we research. In section3, the partial and 
global stability have been investigated. Section 4 contains conclusions. 
 
2. The model 
In this paper, we discuss the model as follows: 
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( )1  

wherex , y respectively present the density of prey populationand predator 

population, and ( ), , , , 1,2i ik A B C D i =  are positive constant. 

3. Stability of system 

( )i  Simplifying the system parameter [2] 
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( )ii Calculating the singular point [3]. 

The system has three singular points: 

0E ( )0,0 ， 1E 







0,

2

1

a

a
， *E















−
−

−− 11
,

1

1

3

32

3

31

3 a

aa

a

aa

a
 

where the third one should satisfy 13 >a and 01 231 >−− aaa . 

( )iii Partialstability of the singular point 

The coefficient matrix of( )3  around singular points is ( ) 









=

yx

yx

QQ

PP
EJ ， 

where xP
( )
( ) xa

x

yxx

x

xy
xaa 222

2

221
1

1

1
−

+
−−









+
−−= ( )2221

1

2
2

x

xy
xaa

+
−−=  

yP
2

2

1 x

x

+
−=  

( )22

3

1

2

x

xya
Qx

+
=  

1
1 2

2
3 −
+

=
x

xa
Qy  

( )a ( )000 =E ( ) 








−
=

10

01
0

a
EJ  

Characteristic roots are ,011 >= aλ ,012 >−=λ so 0E is the saddle point. 
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Discussing the positive and negative: if it is positive, 1E  isthe saddle point; otherwise 1E  

is the stable point. 
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We can get the characteristic equation: 
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( )iv  Global stability of the singular point 

     In order to investigate the global stability of the singular point, we should study the 
limit cycle of system first. 
     Now we construct the outer boundary of the limit cycle which is 1l , 2l , 3l and 4l ,where 
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When k is large enough, 0| 0l

dl

dt = < can be got. 

So the path is going through 2l  from its upper right to its lower left. 

3l  
and 4l are both the path. So we can get a region G  which have outer boundary of 1l , 

2l  , 3l and 4l . There is no singular point without *E . ( )0,0O and ( )1 1,0E x which are the 

singular points on G∂ are the saddle points. So the pathG  cannot get inG  from forward 

direction. The system at least has one stablelimit cycle which contains *E in G . 
 
4. Conclusion 
In this paper, we discuss a model of ecosystem with two populations with Holling-III 
style and Logistic growth rate. And we investigate the stability of thesystem of the 
predatory functional responses by discussing characteristic roots. Lastly, the sufficient 
conditions of the partial and global stability have been had. 
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