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Abstract. Fuzzy matrices play an important role to model svencertain systems. In this
paper, two types of norms, viz. max norm and sgose norm of fuzzy matrices are
introduced. Also, several properties are invegtiga
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1. Introduction

The study of linear algebra has become more an@ mpapular in the last few decades.
People are attracted to this subject becauseloé@sty and its connection with many other
pure and applied areas. In theoretical developrérihe subject as well as in many
application, one often needs to measure the leofjthectors. For this purpose, norm
functions are consider on a vector space.

A norm on a real vector space V is a functiﬂn‘“ 'V - R satisfying
1. ||u|| >0 for any nonzerou[1V.
2. |rul|=|r ||u| forany rOR and uV.

3. ||u +V||S||u||+||v|| for any u,vOV.

The norm is a measure of the size of the vectowhere condition (1) requires the size to
be positive, condition (2) requires the size tetaed as the vector is scaled, and condition

(3) is known as the triangle inequality and haitgin in the notion of distance iR>.
The condition (2) is called homogeneous conditioeh this condition ensure that the norm
of the zero vector in V is 0; this condition isafitincluded in the definition of a norm.

Common example of norms dr" are thel , norms,wherel< p <o, defined by

n 1
|p(U):{Z|uj [P} P if 1< p<o and
j=1

L (u) =max, ., |u; | if p=oo
for any u=(u,U,,....,u;,)' JR". Note that if one define ah, function on R" as

define above withO < p <1, then it does not satisfy the triangle inequalitynce is not a

norm.
Given a norm on a real vector space V, ome aanpare the norms of vectors,
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discuss convergence of sequence of vectors, stadg knd continuity of transformations,
and consider approximation problems such as fintlieghearest element in a subset or a
subspace of V to a given vector. These problense araturally in analysis, numerical
analysis, differential equations, Markov chains, et

The norm of a matrix is a measure of how latgeelements are. It is a way of
determining the "size" of a matrix that is neceggsaelated to how many rows or columns
the matrix has. The norm of a square matrix A f®a negative real number denoted by

|A||. There are several different ways of defining arimaorm but they all share the
following properties:
. ||A{| >0 for any square matrif.

. ||Aﬂ =0 iff the matrix A=0.
. |[KA| =K [|A] for any scaleK .
. |A+B|<|A|+|B| for any square matrixA, B.

| A8 <] AllB].

Different types of matrix norm:

ga A W N B

Thel-norm

A= maxX 12 D.
Ijsn G

(the maximum absolute column sum). Simply we sum ahsolute values down each
column and then take the biggest answer (A usefuirder is that "1" is a tall, thin
character and a column is a tall, thin quantity).

Theinfinity norm

|Al,=max_ 14, I)
I<isn i=1

The infinity norm of a square matrix is the maximaofithe absolute row sum. Simply we
sum the absolute values along each row and therthakbiggest answer.

e = T3 @)

The Euclidean norm of a square matrix is the squmreof the sum of all the squares of the
elements. This is similar to ordinary "Pythagorelamgth where the size of a vector is
found by taking the square root of the sum of tigases of all the elements.

Any definition you can define of which satédfithe five condition mentioned at the
beginning of this section is a definition of a noffinere are many many possibilities, but
the three given above are among the most commaelg.u

Like vector norm and matrix norm, norm of a&Zy matrix is also a function

|.]:M,(F) - [0,1] which satisfies the following properties

Euclidean norm
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1. ||N| >0 for any fuzzy matrix A .

2. ||Aﬂ =0 iff the fuzzy matrixA =0.

3. |[KA|=|K||A|  forany scalerK O[0,1].

4. |A+B|<|A|+|B] for any two fuzzy matrixA and B.

5. |AB|<|A[|B|  for any two fuzzy matrixA and B.
In this project paper we will define different typénorm on fuzzy matrices.

2. Why study different norms?

Different norm on a vector space can give rise iffer@nt geometrical and analytical
structures. In an infinite dimensional vector spdice convergence of a sequence can vary
depending on the choice of norm. This phenomenislEamany interesting questions and
research in analysis and functional analysis.

In a finite dimensional vector space V, two nofiaj, and |.|, are said to be
equivalent if there exist two positive constanttstiat

M, <M, <|M, forattvev.

First, for a given sequence it may be easier tegopammnvergence with respect to
one norm rather than another. In application sgchusnerical analysis one would like to
use a norm that can determine convergence effigieftierefore, it is a good idea to have
knowledge of different norms.

Second, sometimes a specific norm may be needdsbiavith a certain problem.
For instance, if one travels in Manhattan and wenteeasure the distance from a location
marked as the origir{0,0) to a destination marked g%, y) on the map, one may use

the I, norm of (X, y), which measures the straight line distance betweerpoints, or
one may need to use the norm of v, which measures the distance for atakito drive

from (0,0) to (X,y). The |, normis sometimes referred to as the taxi cab rforrthis

reason.
In approximation theory, solutions of a problem gary with different problems.

For example, if W is a subspace &' and vV does not belongs t&, then for
1< p<o thereis a uniqual, JW such that

IV=ug|<[v-u|  forall udOwW,
but the uniqueness condition may fail f=1 or . To see a concrete example let
v=(1,0) and W ={(0, y): yOR} . Then for all yOd[-1,1] we havd.=|v—(0,y)|
<|v-w| for allwOW. For some problems, having a unique approximasigod, but

for others it may be better to have many so that @ihthem can be chosen to satisfy
additional conditions.

3. Fuzzy matrix
Fuzzy matrices were introduce for the first time hyomason [42], who discussed the
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convergence of powers of fuzzy matrix. Ragab.d88l34] presented some properties of
the min-max composition of fuzzy matrices. Hashimr[d8,19] studied the canonical form
of a transitive fuzzy matrix. Hemashina et al. [R®}estigated iterates of fuzzy circulant
matrices. Dererminant theory, powers and nilpoteonditions of matrices over a
distributive lattice are consider by Zhang [43] areh [41]. After that Pal, Bhowmik,
Adak, Shyamal, Mondal have done lot of works onzjyzintuitionistic fuzzy,
interval-valued fuzzy, etc. matrices [1-12,24,2532735-39].

A Boolean matrix is a matrix with elements eachvelse 0 or 1. A fuzzy matrix
is a matrix with elements having values in the etbmterval [0,1]. We can still see that all
fuzzy matrices are matrices but every matrix inggehis not a fuzzy matrix. We see the
fuzzy interval i.e., the unit interval is a subséteals. Thus a matrix in general is not a
fuzzy matrix since the unit interval [0,1] is coiniad in the set of reals. The big question is
can we add two fuzzy matrices A and B and get time of them to be fuzzy matrix. The
answer in general is not possible for the sum of fuzzy matrices may turn out to be a
matrix which is not a fuzzy matrix. If we add abavwe fuzzy matrix A and B then all
entries in A+B will not lie in [0,1], hence A+B @nly just a matrix and not a fuzzy matrix.

So only in case of fuzzy matrices the max or mierapon are defined. Clearly
under the max or min operations the resultant matragain a fuzzy matrix. In general to
add two matrix we use max operation.

Now we wish to find the product of two fuzzy magsX and Y where X and Y are
compatible under multiplication. We see the prodafctwo fuzzy matrices under usual
matrix multiplication is not a fuzzy matrix. So weed to define a compatible operation
analogous to product so that the product againdrapip be a fuzzy matrix. However even
for this new operation if the product XY is to befided we need the number of columns of
X is equal to the number of rows of Y. The two tyjé operations which we can have are
max-min operation and min-max operation.

In fuzzy matrices only the elements are uncertaimje rows and columns are
taken as certain. But in many real life situatiom @bserve that rows and columns also be
uncertain. For example, in afuzzy graph the vestanad edges both are uncertain. So, if we
represent a fuzzy graph in matrix form where thenfership values of vertices and edges
represents the membership values of rows and caluamdl elements represent the
membership values of the corresponding edge. Bhat this matrices rows and columns
all are uncertain. We call this types of matrices fazzy matrices with fuzzy rows and
columns. A=[r ()][c a()][a j] mxn be @ fuzzy matrix with fuzzy rows and columns ey
mxn. Hereg; i=1,2,....,m; j=1,2,...,n represents thé™ elements ofA, ra(i) and ca(j)
represents the membership values of ith row andgthmn respectively for1,2,...,m;
j=1,2,...,n.

Definition 1. [41] A fuzzy matrix (FM) of order $mitimes n$ is defined ds=<
a;j,a;j, > wherea;j, is the membership value of the ij-th elementn A.

An nxn fuzzy matrix R is called reflexive iff =1 for all i=1,2,...,n. It is calleda
-reflexive iff r, > a for all i=1,2,...,n wherea [0[0,1]. It is called weakly reflexive iff

r; 2r; forallij=1,2,..,n. Annxn fuzzy matrix R is called irreflexive iff =0 for all
i=1,2,...,n.
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Definition 2. An nxn fuzzy matrix S is called symmetric qj =S for all i,j=1,2,...,n.
It is called antisymmetric iffSOS < |, where | is the usual unit matrix.
Note that the conditiorSS < I |, means thats; Us; =0 for all i # j and

<l,,
5 <1 foralli. Soif § =1 then s; =0, which the crisp case.

Definition 3. An nxn fuzzy matrix N is called nilpotent ifl" = 0 (the zero matrix). If
N™=0 and N™ 20; 1<m<n then N is called nilpotent of degree m. Axn
fuzzy matrix E is called idempotent B = E. It is called transitive iffE°< E. It is
called compact iffE? > E .

Definition 4. A triangular fuzzy matrix of ordemxn is defined asA= (a,-j) where

mxn
a; =(m;,a;,B,) istheij" elementofA, m; is the mean value o, and a; ./,
are left and right spread o8, respectively.

4. Max norm

We already know that norm of a fuzzy matrix candedéine in several ways. It is also
known to us that every norm must be satisfied itheedondition which already we discuss
in introduction. Now we define a new type of norailled max norm which gives the
maximum element of the fuzzy matrix.

Max norm of a fuzzy matrixACJM (F) is denoted by|A|, and defined by

1A, = Oa,

i,j=1

n
Lemma 1. All the condition of norm are satisfied lﬂ)A”M =g -
i,j=1
Proof: Let us consider

all a12 ain b.Ll QZ b.Ln
A= a:21 a:22 a:2n and B= b:21 b:22 b?n
anl a‘nZ ann bnl bn2 bnn
We also consideré g =a, and nD b, =by.
ij=1 i,j=1

so. | A, =2y, and[B, =b,.
(i) Clearly ||, 20 and |A|, =0 iff D a,=0
i,j=1

e iff a;=0, forallie.iff A=0
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aa, da, ... 4dq,
(i) Let o 0[0,1] then aA= 0?21 a«'?\gz aa:\Qn
aa, aa, ... aa,

n
it @>a, then []ag =a,. So.[aA, =[A], =Ial|A],

i,j=1

If a<a,, then [Jaa, =a. So, |aA|, =la|=|a||A|,.
ij=1

If a=a, then obviously|aA|, =la||A,, -

(iii) Now
a11 +k).Ll 5112 *-tJLZ e a1n *-t%I

/\_+ E3 - a21 j-t)21 a'22 j-t)ZZ T a2n j-t)Zn
a'nl+bnl a'nZ +bn2 e a'nn +bnn

i, <hy then [)(a +b;)=hy. So.[A+B|, =[B], =[A, +|B],.

i,j=1
n
i a2, then (] +b) =a,. So.[A+B], =|4, =|A|, +|8],
Therefore|A+B|,, =|A,, +|B|,, - forall ABOM,(F).

(iv) Now ) i
dab, Dahb, .. Dab,
i=1 i=1 i=1

AB = ZaZibll Zaziblz Z:a,abIn
=1 i=1 =

Dby Db, .. Dab,
i=1 i=1 i=1

As a; +b; = |_:{a1.j b} and g b, =[{a;,b} therefore maximum element GAB

is less than or equal to minimum af,, and by,. Here the symbol_ used to indicate
maximum element and the symbbl used to indicate minimum element.
Thus, |AB|,, <|A,,|B|,, - Hence all the condions of norm are proved.

5. Properties of max norm
Properties 1. For every fuzzy matrixA, |A|, = HAT“M always hold.
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Proof: As maximum element ofA and A" are equal so the above property hold
trivially.

Properties 2. For any two fuzzy matrixXA and B in M (F),

H(A+ B)THM =HATHM +HBTHM always hold.

Proof: H(A+ B)THM =|A+B|,, [using first property of max-norm.]
=|Al, /8], [from the definition of max-norm.]
:HATHM +HBTHM [using first property of max-norm.]

Properties3.1f A and B are two fuzzy matrices anA< B then |A|, <[B],, -
Proof: As A<B thereforea; <b, forall i, j.

= Oa < b= A, <|8|,

i,j=1 i,j=1
0.5 0.3 01 0.6 04 0.2
Examplel. Let A={0.4 0.6 0.4 and B=|0.5 0.7 0.5
0.3 0.2 0.1 0.4 0.3 0.2

O|A,, =0.6 and|8], =0.7. So, |A], <[B],.

Properties4. If A and B are two fuzzy matrices anA < B then |AC|, <[BC]|,
forall COM, (F).
Proof: As A<B thereforea; <b, forall i, j.
This implies thata;c; <b;c; for all values ofc;;1<i<nml<j<n.
n n

So, _Dlaiicu S_leu'cu' =|Ad], <|Bd],

)= )=
Properties 5. For any two fuzzy matrixA and B(# A) AB and BA may or may not
be equal but| AB|,, =||BA|,, always hold.

0.3 05 01 0.4 0.6 0.2
Example2. Let A={0.6 0.2 0.4 and B=|0.7 0.3 0.5
0.7 04 0.3 0.8 0.5 04
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0.5 0.3 05 06 04 04
0 AB=/0.4 0.6 0.4 and BA=|0.5 0.5 0.3
04 06 04 0.5 05 04

0 |AB|, =06 and [BA, =0.6. SofAB|, =[BA,,.
Properties6.1If |A], <|A,, <--<|A), then

O [A+A+.+ A, =]Al,

i) AR A, <A,

Properties 7. Max norm follows Laplace transform.
Proof: Let AL BOM_ (F) and a,£0[0,1] then

|aA+ g8, =laA, +]68], =lal|A,+I 1|8,

Definition 5. Define a mappingd : M, (F)xM (F) - [0,1] as d(A, B) :||A+ B”M
forall A/B in M (F).

Proposition 1. The above mapping d satisfies the following céowlifor all A, B,C in
M, (F)

(i) d(A,B)=0 and d(A,B)=0 iff A=B=0.

(i) d(A,B)=d(B,A)

(i) d(A,B)<d(AC)+d(B,C) forall AB,C in M (F).

Proof: (i) d(A,B)=|A+B|, =0 [by first condition of norm.]

Again d(A,B)=0 < |A+B|, =0

= A+B=0

= A=0 and B=0

(i) d(AB)=|A+B|, =|B+A|, =d(B,A)

(i) d(AB)=|A+B|, <|A+B|, +|C|, =|A+B+C|, =|A+B+C+C|,
=|(A+C)+(B+C)|, =|A+C], +|B+C], =d(AC)+d(B,C)

So, d(A,B)<d(AC)+d(B,C) forall A B,C in M (F).

0.8 0.3 0.2 0.6 0.2 0.1
Example3.Let A=|0.6 0.9 0.6/, B={0.4 0.3 0.7| and
0.1 0.7 0.7 06 0.7 04
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06 04 0.6 0.8 0.3 0.2
C=/0.2 0.5 0.2]. OA+B=(0.6 09 0.7

0.1 0.6 0.4 0.6 0.7 0.7
() d(AB)=|A+B|, =0.9>0
0.8 0.3 0.2
(ii) B+A{o.6 0.9 0.7],then||3+,o4|M =0.9
0.6 0.7 0.7

So, d(A,B)=d(B, A).
0.8 04 06 0.6 04 06
(iii) Now A+C:{O.6 0.9 0.6] andB+c{o.4 0.5 0.7].
0.1 0.7 0.7 0.6 0.7 0.4
O |A+C|,, =0.9 and|B+C|, =0.7.

Then d(A,C)+d(B,C) =0.9+0.7=0.9,
So, d(A B) = d(A,C)+d(B,C).

Theorem 1. 1f A A,B,B'0M,(F) then d(A B)+d(A +B)=d(A A)+d(B,B).
Proof: d(A,B) +d(A', B")

=|A+8], +|A+8], =|A, +I8], +[Al, +&],

= (A *IAT) + (8], +[B],) =[A+ A, +[B+B], =d(A A)+d(B,B)

Theorem2.1f A BOM (F) and A<B then d(AC)<d(B,C) forall
CUM,(F).
Proof: As A<B.

So, |A],, <8},

= A, *cl, <8l +[cl.,
=|A+c], <[B+c],

— d(AC)<d(B,C) forall COM,(F).

Definition 6. Define a mappingd’: M (F)xM  (F) - [0,1] as
d'(A B) =min{|Al,,.|B],,} forall A,B in M (F).

Proposition 2. The above mappingl’ satisfies the following condition for alf, B,C
in M, (F).
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(i) d'(AB)=0 andd'(A,B)=0 iff A=0 or B=0 orboth A=B=0
(i) d'(A B)=d'(B,A).

Proof: (i) d'(A B)=mir{|A|,.|B],}20 as|A|, =20 and|B|, =0
Now d'(A,B) =min{|A|,.|B],} =0

=|A, =0 or [B], =0 orboth |A], =8|, =0

= either A=0 orB=0 orboth A=B=0

@ o'(AB)=min(| 4], B} =min(|e],, ], } = (8, &)
Proposition 3. 1f A/ BOM,(F) and A<B then d'(A,C)<d'(B,C) for all
CUOM,(F).

Proof: Since A<B, so ||A4|M s||B||M.

Now d'(A,C)=min{|A|,.|C][,} and d'(B,C)=min{|B],.|C],}-
Case-1:

it A, <|B], <[C],, then d'(A.C) =[A],, <[B], =d'(B,C)

i.,e d'(AC)<d'(B,C).

Case-2:

i [Cl,, <[A, <[Bl, then d'(A C) =[c],, =d'®.0).

Case-3:

i |4, <ICl, <[Bl, thend(AC)= |4, and d(B.C)=[c],,
So, d'(A,C)<d'(B,C).

Therefored'(A,C)<d'(B,C) forall COM (F).

Definition 7. For all A in M, (F) we define

A ={XOM, (F): [, > [ A}

A ={XOM,(F): [, <[A],}

A\equ :{XD M n(F) ||X”M = ”A”M}

Clearly Mn(F) = 'Aguplz| Anf O A\equ'

The set A, is calledmax-superioto A, A, is called max-inferiorto A and A,
is called max-equivalento A.

Theorem 3. For each A in M, (F) the following results hold true

@) If XTAr Ay or A,)then X" isalsoin Ayp(or Ay or A,) where X7
is the transpose oKX .

@iyIf AOA,, , AOA, and AOA,, then|A +A +A] =|A],-
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(i) |AAA, <[4,
(iv) A'OA,, forall A in M (F).

Proof: (i) Since maximum element oA and A" are equal therefore
[, =[A"], - so.it XD A, then X[, >[A, =[x"] >4,
Therefore, X' [J A,,,- Similarly other two cases also hold.

@) ADA,=[Al, >[A,

A DA, = |4, <[A,

ADAL= A, =[Al,

So, we can write [Ay],, <[A],, =[A), <[Al, O

From above relation it is clear that maximum eletm&in A is grater than maximum
element of A, and maximum element oA, .

Therefore, maximum element oA + A, + A,= maximum element ofA .

This implies|A + A, + A, =[A],,-

(iii) We know that |AB|,, <|A|,,[B],,-

Then we have|AA A, <|Al, A, <[Al, Al Al =|A], [Usingo)

So. [AAA], <[Al,-
(iv) As [|A], =|AT| therefore A" O A, forall A in M,(F).

6. Square-max norm
Here we will define another new norm of fuzzy matramed Square-Max norm. In this
norm at first we will find the maximum element dktfuzzy matrix and then square it.

Square-max norm of a fuzzy matrix A is denoted|#y|_, and define by

[Alo, =0 a)*= (A, )*

i,j=1

Lemma 2. All the conditions of norm are satisfied|#y]., = (_|_n] a;)*=(|Al,)?

i,j=1
Proof: Let us consider

&, &, .. a, b, b, .. by,

A= a:21 a:22 a\:2n and B = b:21 b:22 b?n

anl a'n2 a'nn bnl bn2 bnn
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n
Let maximum element of A b@.pq ie. .Dla“ =a,,
i,j=
n

and maximum element of B b, i.e. []b, =a,.

i,j=1
[Als = (@) and [Bl, = (B)°
(i) Obviously |A|,, =0 and |A|, =0 iff a,=0 ie. iff a =0 for all i, ], ie.
iff A=0
(i) Now we define scalar multiplication of a matas follows
oo, = A T 1aPIA,
lal it Jak[A,
So.if [a > |Al, then [aA],, =[Al5, =la [|A],
and if |a [<|[Af, then [aAlg, =la |=la [[A],,-
Therefore oA, =|a || A, forall @ 0[0,1].
(ii)
all*-tal EHZ +-tH2 T Eﬁn-kt%n
Now A+po | tha Bathe .. aZn:+b2n
anl*-t%1 ELQ +-t%2 e aﬂn-kt%n
If apq < bkl then [(au +bli) - bkl and then”A+ B”sm = ||B||SM - ”AHSM + " B"SM'
Againif a >, then [ (g, +b)=4a, andthen
[A+Blg =[Alsw =[Alsu +Bls-
(iii) i
2ab, Yab, .. Dab,
i=1 i=1 i=1

Now AB= Zazibll zazib|2 z:algibIn
i=1 i=1 i1

dab, Dah, . Dab,
i=1 i=1 i=1

As a; +b, = {a;,b} and a; b, = [ {a,b} therefore maximum element oAB is
less than or equal to minimum @&f,, and b,. Here the symbol_ used to indicate
maximum element and the symbbl used to indicate minimum element.

SO’”AB”SM s ”A”sm ”B”sm'
Hence all the conditions of norm are satiesfiedbyare-max norm.
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Theorem 4. Addition of two norm of fuzzy matrices is alscoam
Proof: Let |||, and|.|, be two norm onM(F) .

Now let us consider a functioh. |: M ,(F) —[0,1] define by ||A| = |A|, +|A], for all
AOM (F).

(i) Since ||A”l >0 and ||P“2 >0 so, ||A4| >0

Again |A| =0 and|A|,=0 iff A=0.So,|A=0 iff A=0.
(i) Let @ OF then |oA|=|aA|, +]aA|,

=la||A,*lal|A, fas .|, and].]|,be two norm]
=lal(A,+[AL)=1a1]A

(iiiy Let A BOM_(F)

|A+B]=[A+B], +[A+8],

<| Al +[8], + A, +[8],= (A, +]|A,) + (8], +[B],) = Al +]8]
So, [A+B|<|A|+|B| forall A BOM,(F).

(v) |AB|=|AB|, +|Ag],

< | A8l + A8, = |AlIBl, + AL, +|ALIBl, + A8,
=(1A, +[A,) (B, +[B],) = A8

So, |AB| <||A||B| forall A BOM,(F).

Therefore || || fulfill all the conditions of norm and henqb || is a norm onM , (F).
Theorem 5. Scalar multiplication of a norm of fuzzy matricesiot a norm.

Proof : Let | .|, be anormonM (F).

Case-1

Now let |.|: M, (F) - [0,1] be a function define byA| = C|A|, forall AOM (F)
and C[(0,1).

(i) As ||N|l >0 and C>0, so||A” >0 and ||A4| =0 iff A=0.

(i) Let @OF then |aA|=ClaA,=C|a||A], [as ., is a norm]
=la|(C|A)=lal|A forall aOF.

(i) |A+B|=C|A+B], < C(|A|, +|B],)=C|A|, + C|8],

=|Al|+|B]| forall A BOM,(F).

(v) |AB|=C|Ag|, <C|A| 8], = C|A/C[E], [-cO@)]
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So, || . || dose not fulfill all the condions of a norm .

Therefore || . || is not a norm onM ,(F) .

Case-2:

As ||A“ =20 for all AOM (F) so, C never be negative.
Case-3:

Let C=0, then||A4| = C||A”l =0 always hold.

So, | A|=0 and it does not implyA =0.Therefore C # 0

Case-4:
Let C>1, then |A| = C||A|, does not belongs t0,1] for all C>1.
From above fore cases it is clear that scalar pligétion of a norm never become a norm.

7. Conclusion

In this paper, we define max-norm and square-marraf fuzzy matrices. In different
situation we use different norm. Somewhere max risrsuitable to use than square-max
norm, somewhere square-max norm is suitable thamaen. We already prove that max
norm satisfied Laplace transformation. So max ndsmvery important things in
application area. Using these norm we can defimglitonal number to check whether a
system of linear equation is ill posed or well ghsidorm of fuzzy matrices can take a
effective contribution to solve a fuzzy systemiokhlr equation. Similarly we can define
norm on triangular fuzzy matrix, circulant triangulfuzzy matrix, fuzzy membership
matrix etc. fuzzy membership matrix is used in roatliiagnosis and decision making. So,
if we define norm on fuzzy membership matrix thiewill take a effective contribution on
medical science.
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