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Abstract. In this paper, we proposed and analyzed a prejapoe system with discrete

time delay incorporating ratio-dependent Il fuoctl response. The equilibrium of
proposed system are determined and behavior ofsystem is investigated around
equilibrium. In the presence of delay, the conditfor boundedness of the system is
established. Choosing delay as a bifurcation paenmie existence of Hopf bifurcation

of the system has been investigated. We also shatvimcreasing delay may cause
bifurcations into periodic solutions. Some numdrgimulation has been performed to
substantiate our analytical findings. .

Keywords. Prey-Predator system, discrete time delay, Ragipeddent Ill functional
response, Hopf bifurcation.

1. Introduction

The predator-prey model forms the building blocleobsystem. The dynamical behavior
of predator and its prey exhibits a variety of gatt It paves interest for many biologists
and mathematicians to develop significant modelsfallenging situations. A system of
differential or difference equation is used to fotate a predator-prey model
mathematically. The key component in the predateypnteraction is the functional
response. Generally, functional response dependgrem density. If the functional
response relies on the predator-prey ratio, theh aufunctional response is called ratio-
dependent functional response.

Decades ago, predator-prey models having ratiordige functional response
have been proposed.(see[1,2,3]) and referencethited in. it is pointed out qualitative
analysis of food chain and multispecies models daseratio-dependent approach exists
in Kesh [11], Gakkar [6], Baek [5]. The study of Hf8] and Xiao [17] portrays that
ratio-dependent model produce richer dynamics.c&mefindings of Jost et al [9] shows
that prey dependent and ratio dependent modelfitaaell with time series generated by
eacch other. Jost and Ellner [10] proposed andyaedla two species model with ratio
dependent Ill functional response.
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2. Mathematical model
Mathematical model considered is based on the toegeey system with Ratio
dependent Ill functional response.

2
R (1) -
dT K’) mY?+X
dy _ BX%Y
ar mveex? Y 1)

where ' is the intrinsic growth rate of prel{ is the environmental carrying capacity of
the prey,d is the maxima relative increase of predatidfis the half-saturation
constantg is the conversion factoy.is the death rate of predator.

In order to minimize the number of parameters iveo with the model system,
it is extremely useful to write the system in mtdmensionalized form. For this purpose
we introduce the variableX,Y andT as follows.

X—»l,yaﬂ and t - Tr
K K

In terms of the non-dimensionalized variables tloeleh system (1) become

ax Xy

S =x-0) -2

ot Vo + X

y_ &Ky

2 2
+

d  y +X o

where
a zﬁ ’e:Z

c=—=,d
rvm r'or
The non-negative initial conditions are associatéd system (2)
x=20,y=20 €))

The objective of this paper is to perform a qualia analysis on this ratio
dependent IIl functional response in the systenm wiscrete time delay. . The paper is
organized as follows: In section 3 we present spositive invariance and boundedness
results. In section 4 we obtain the existencehefdquilibrium points of model (2) .In
section 5, we investigate local behavior of theildgyium points in absence of delay. In
section 6 analysis of the model in presence ofreliscdelay is discussed. In section 7
Numerical simulations are used to illustrate sof@uo result.

3. Positive invariance and boundedness
Preliminaries
Let X and y represent the prey and predator population reispéct We have formed

positive invariance and boundedness for the sy§8mThe positivex and y ensures
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that population ever survives. Since the resousreslimited, the boundedness may
depicta natural suspension to growth.
Positive invariance

Theorem 1. The positive quadrant ian) is invariant for system(2)

Proof: We prove that for alt [J[0,Q[, X(t) >0, y(t) > O.we show this by method of
contradiction
Suppose, it is not true, there must exists onetq . 0<tq <Q such that

Oto[0,t,[,x(t)>0,y(t)>0
And minimum of x(t,), y(t,) vanish.
From the system (2), we have

x(t) = x(0) ex;{le &,y )JItJ

y(t) = y(0) ex;{ [G. &y )dtj

where
_ CXy
G(xy)=(@1- X_XZTyZ)
X
GZ(X’y)_(szyz €)

Since (X, y) are defined and continuous d6,t_] there exists aL >0 such that
OtO[o,t,[

X(t) = x(0) eprGl .y )jtJ > x (0) expft,L )

t
y(t) = y(0) exr{ [G &y )dt] > y (0) exptt,L
0
It is clear that if limitt — tq we obtain
X(t,) = X(0) exptt,L)

y(t;) 2 y(0)expft L)
which contradicts the fact minimum of ont, ), y(t,) vanish

There fore O tO[0,Q[, x(t) >0,y(t)>0
This completes the proof.

Theorem 2. All the solution of the system (2) with initial cdition (3) that initiate ian
are uniformly bounded.
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4. Existence of equilibrium points

In this section we first determine the existencé@fd points of the differential equations
(2) and then we investigate their stability by odédting the eigenvalues for the
variational matrix (2) at each fixed point. To detane the fixed points, the equilibrium
is the solution of pair of equation given below

Xy \_—
X(l_X_m)—o (4)

( dx®
Yo
By simple computation of the above algebraic systitrwas found that there are two

non-negative fixed points
i) E;(1,0) is axial fixed point is always exists, as theypp®pulation grows to the

carrying capacity in the absence of predation
ii) EZ(XD, y") is the positive equilibrium point exists in theerior of the first quadrant

where XD = [d_C— Vz(d_e)] and yD = ,EXD
e

5. Local Stability analysisin absence of delay
In order to check the stability of the model (2je tvariational matrix corresponding to
each equilibrium point is calculated.

The variational matrix of equilibrium point &, (1, O)is
E = -1 -c
0 d-e

The eigenvalues o, are =1 and d —e .Therefore the model system (2) is stable

-e)=0

aroundE; ford < e for which, x— yplane is the stable. On the other hand the system i

always unstable arouncE1 if d >e which is, infact , a saddle point and whose stable

manifold in x-direction and unstable in y directidor d >e Hence we state the
following theorem.

Theorem 3. The equilibrium poinE; is stable ifd <e.

6. Analysis of delayed model

Ideally, a real system is modeled with time-delaing differential equation. Time -delay
occurs in any manmade or natural phenomenon. lergerdelay differential equation
exhibit much more complicated dynamics than ordirfferential equation since a time
delay can cause stable equalibrium to become uestatdl then population fluctuate.
Ignorance of time delay is ignorance of realityeTignificance and application of time-
delay in realistic models is elaborated in booksGapalsamy[7], Kuang[12].more
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realistic and importance models of population egglshould be taken into account with
the time delay and the stability of an ecologicgdtems with time delays has been
studied by many authors[13-16,18-19]

In this section we analyze the model system (2 wli¢lay 7 (discrete time delay in
predator response function).then the model sys@rakes the following form

ax o’y
e X(1- (%)) _W
dy _ dC(t-1)y(t-71) e
d  V(t-1)+X(t-1)
With the initial densities
%(0)=@(6)>0,y,0)=9,0)> 04 UC(-7,0]- R, )00 7,07 > C

()

(6)
Boundedness of the system with T>0
Theorem 4. All solution of the system (5) are uniformly bowadwith an ultimate
bound.
Proof: Define the function

c
at) = X(t-7)+ 4 y(t)
which on differentiation with respect to t
da &y, Cdy
dt dt d dt

N OG- Y(t-T) e dX(t-T)y(t-7) _
x(t-1)A-x(t-7) x2(t—r)+y2(t—r)+d[x2(t—r)+y2(t—r) ey(t)}

< —w+(1+(1_e)2J
4d

1-o°

which yields
limsupmt) < 1+

t o0

= M
Then there exists positive constant M>0 suchdifgt< M for large t.

Local stability analysisin presence of delay

Now we direct our attention due to discuss of ditgtof system at £
The variational matrix of the system attgkes the form
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B -1 -c

= - { 0 de’"- e}
The characteristic equation of B of the form

(A+1) (A +e-de"")=0
HereA=-1 is a negative eigenvalue we now consider thgon

A = de’” -e )
If =0, and d<e, the equilibrium,&s locally asymptotically stable. If substitiXeip in
(7) and equating real and imaginary parts, we optai

7 = —dsinur

e = dcosur (8)
Eliminatingt from (8) we obtain

qu - d? -e? (9)

We know that (9) has positive rooet is d>e. Hence there is positive constarguch that
>1,, E; becomes unstable.

The main purpose of this section to study the Btadiehavior of EZ(XD, y?) in the
presence of discrete delay £ 0). Now to prove the stability behaviorEg(xD, y) for
the system (5), First we linearize the system K$)using following transformation
u'(t) =a,u(t) +ayv(t)

V(t) =cu(t-71)+c,vt-1)

where
a8, =X+ oxy(x" -y") 0 = —ox” (X7 -y”)
1 Ty T Ty
_ o 2dxye _=2dxFy® 3
21~ OC +y7)? G0 = O +y7)? 8,="€
The characteristic equation (A, 7) = ()l2 + A+ IZ) +(1A+1,)e" =0 (10)
where

L, =-a,-a,l,=aa,nl ~=—C,l /Cc 3. ra g .

If 7 =0 in (10) the characteristic equation becomes

A2+ +1)A+(1,+1,)=0 11§

The root of (11) is

— _(|1+|3)i\/|1+|3)2 =4 2+| 4)
2

A

(12)

From (12), we havel has negative real parts if and only if
l,+1,>0,l,+1,>0 (23)
Now for 7 # 0,Put A =iw in equation in (10), we get
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(—W +il,w+1,) + (ilw+1,)(coswr —i sinwr )= (

Equating real, imaginary parts we get

W =1, =1, coswr + | w sinwr

-l,w=1,wcoswr -1, sinnr

Squaring and adding we get (14)
w' +W2(|12 _|32_2|2)+ (|22_|42) =0

We get the roots of (14) is

o 02122+ 0212 -2) - 41 s
2

It follows

(2-17-21,)>0 and(l,?-1,%)>0 (16)

are satisfied .Hence the equation does not haveasitive solutions.
We conclude the following theorem

Theorem 4. If the conditions (13) and (16) are satisfied ,thénhe roots of the equation
(10) have negative real parts for @l 0.Then the equilibriumEz(xD, y")is stable
forr =2 0.

Put W = J then the equation (14) becomes

0° +5(I12 —I32 -21,)+ (I22—I42) =0

If (1,7 —1,%) <0 holds then (14) has unique positive rdpt then

J—af—132—212)+J(If—|;—22)2— M7-17)
9, = 5
The corresponding time delay is
— 2 —
£ =L oot (laHwe -1, 2
W, Low,™ +1, w,
Differentiate (10) with respect tp
(ouj‘l_ 2) +1, l, r
- = + -
dr A(l;A +I4)e"" A (I3)I +I4) A
:)IZ—IZ—(IS/I+I4)e‘“+ | A T
A2(LA +1,)e?" )IZ(I3/1+I4) A
S et P9 R SO 7 B 4
A2 A +1)e’ A2 /12(I3/] +I4) A

k=1012...
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_ (/]2 B |2) _ |4 _T
“A2 (A% +1A+1,) /]Z(I3/1 +I4) A
Taking A=iw, in above equation, we get

(ﬂj _ (iw,)? - N -, Lo
A7 ) —(iwo)z((iwo)z+I1(iW0)+I2) (i)’ (15(iwo) +1,) W

_ (w2 +1,) (Wi —=1,) +i(lwy)
wo?[(wg = 1,) =i (Iw,) (wg = 1,) +i(l,w,)

l, (1, —ilywy) Ti
2((' +|| Wo) (I, =il wy) Wo

_ (w -1.) (1,
e [(;j l_lwo_ vvz[(wg —I2)2 +(I1w0)1 ' wWill,* + 13wl

0

Thus we obtain Re( d/‘j >0
dr ), -
Therefore transversality condition holds and hemmef bifurcation occurs af =7, This
signifies that there exits at least or equal valith positive real part fof > 7,
Theorem 5. If E,exists with the condition (14) and = cq,z be positive root of (14),
then there exists =7, such that
() E, islocally asymptotically stable f@d<7 < TOD
(i) E, is unstable for >7,”
(iii) The system (5) undergoes a Hopf —bifui@magaroundE, at 7 = TOD
7,)=min h(«)
where

n(eq) =—-cos® (1 IL'S)WH mETI: <

O

k=012..

0
and the minimum taken over all positivg such that o = cq_)z is a solution of (14)

Analysis of Global Stability
In this section, we study the global asymptotibiditst of co-existence equilibrium point
E, of the system (2) by Bendixson- Dulac criterianabsence of delay.
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Theorem 6. The positive equilibrium point £of non-delayed model system (2) is
globally asymptotically stable.
Proof: Let us consider the function

1
H (X, ) = X_y

Clearly H (X, y) is positive for both x >0,y >0

- Cxy
Gl(X! y) - X(l_ X= X2 + yz)

ax*
XZ + y2

G, (%, y) = y( e)
Now
Axy) =2 G, H) + 2 (G, H)
’ ox = ay = -
-1 c 2c x? 2dxy

Y e eeyf feeyf

:—_1_C y>? - x* | 2dxy
y (Xz + y2)2 (Xz + yz)z
_ -1 | oy® - o + 20y
y x2+y2
<0

From the above equation, we note th&t, y) does not change sign and is not
identically zero in the interior of the positiveagirant we show that of x-y plane. In the
following theorem Eis globally asymptotically stable.

7. Numerical simulations
In this section, we present some numerical sinaratesult to validate our analytical
findings. Let us consider the parameter of theesys{2) as in appropriate units. In

Fig.1(a) and Figl(b),we taked =0.85e= 1.32¢ = 0.8,the Eigen values oE, are
A, =-1,A,=-0.47.In this caseE is locally asymptotically stable. From Fig 1(a) we
observe that the predator is driven to extinctinere as the prey approaches the
carrying capacity.Figl (b) phase portrait is aksods to the boundary equilibrium point
(1,0).In Fig 2(a) and Fig 2(b),we takk=1.55e=1.32¢= 2..
In this case it satisfy the condition ofdhem
l,+1,=1.3029]*-17- 2,= 0.90146 0,/-1,= 0.1634 .We conclude that

EZ(XD, y")is locally asymptotically stable. We observe thatFig 2(a) both prey and

predator converges to the positive equilibrium. Wage portrait also shows solution
tends to the positive equilibrium.From Fig3(a) arneig3(b) if we take

67



V.Madhusudanan and S.Vijaya

d =1.55e= 1.32¢= 0. the eigen values of delayed systemiljs- —1,A, = 0.2%.In
this casek is unstable and the value pfF 0.613.In this case time series and phase

portrait of the system in Fig 3(a) and 3(b).If ved&a d=1.55,e=1.32,c=2.5,in this case
prey and predator population shows periodic sohstisee Fig 4(a) and phase portrait as
shown in Fig 4(b).
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Figure 1(a): Time series Figure 1(b): Phase Portrait
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8. Conclusion

In this work, the local stability condition for weaus equilibrium points and the
boundedness of the system with ratio-dependefiiditional response is investigated in
the absence of gestational delay. And the stalibndition for the interior equilibrium
points is analyzed in the presence of discrete filay. It has been evident that the
system undergoes Hopf bifurcation while choosinigylas bifurcation parameter. Also
increasing the delay has caused bifurcation inteogie solution. Finally, numerical
simulations have substantiated the analytical figsli
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