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Abstract. An approximate analytical technique has been extended for solving second 
order strongly nonlinear differential systems with high (nine) order nonlinearity in 
presence of small damping based on the He’s homotopy perturbation and the extended 
form of the Krylov-Bogoliubov-Mitropolskii (KBM) methods. In general, it is too much 
difficult to solve the strongly nonlinear differential systems with high order nonlinearity 
in presence of small damping. The advantage of the presented method is that, it is capable 
to tackle both strongly and weakly nonlinear differential systems with high order 
nonlinearity in presence of small damping but the classical perturbation methods are 
failed to handle in that situations. The method has been justified by an example. 
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1. Introduction 
Most of the phenomena in the real world are essentially nonlinear and described by 
nonlinear differential systems. So, the study of nonlinear differential systems is very 
important in all areas of applied mathematics, physics, engineering, medical science, 
economics and other disciplines. In general, it is too much difficult to handle nonlinear 
problems and it is often very difficult to get an analytical solution than a numerical one. 
Common methods for constructing approximate analytical solutions to the nonlinear 
differential equations are the perturbation techniques. Some well known perturbation 
techniques are the Krylov-Bogoliubov-Mitropolskii (KBM)[1-3] method, the Lindstedt-
Poincare (LP) method [4, 5], and the method of multiple time scales [4]. Almost all 
perturbation methods are based on an assumption that the small parameters must exist in 
the equations, which is too strict to find wide range of application of the classical 
perturbation techniques. It determines not only the accuracy of the perturbation 
approximations, but also the validity of the perturbation methods itself. However, in 
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science and engineering, there exist many nonlinear differential systems which do not 
contain any small parameter, especially those appear in nature with strong and high order 
nonlinearity in presence of small damping. Therefore, many new techniques have been 
proposed to eliminate the “small parameter” assumption, such as the homotopy 
perturbation method (HPM) [6-8, 11, 18-21], variational iteration method [9-10], 
harmonic balance method [22], energy balance method [23], etc. In recent years, He [6] 
has developed some new approaches to Duffing equation with strongly and high order 
non-linearity without damping. In another paper, He [7] has obtained the approximate 
solution of nonlinear differential equation with convolution product nonlinearities. He [8] 
has presented a new interpretation of homotopy perturbation method. He [9-10] has 
presented variational iteration method for strongly nonlinear differential systems without 
damping. Belendez et al. [11] have presented the application of He’s homotopy 
perturbation method to Duffing harmonic oscillator without damping. Ganji et al. [12] 
have presented approximate solutions to van der Pol damped nonlinear oscillators by 
means of He’s energy balance method. Lim and Wu [13] have developed a new 
analytical approach to the Duffing- harmonic oscillator without damping. Alam et al. [14] 
have developed a general Struble’s technique for solving an nth  order weakly nonlinear 
differential system with small damping. Bojadziev [15] has presented an analytical 
method to damped nonlinear oscillations modeled by a 3-dimensional differential system. 
Arya and Bojadziev [16] have presented time depended oscillating systems with small 
damping, slowly varying parameters and delay. Sachs et al. [17] have presented a simple 
ODE models of tumor growth and anti-angiogenic or radiation treatment. Uddin et al. 
[18-20] have presented an approximate technique for solving strongly cubic and 
quadratic nonlinear differential systems with damping effects. Uddin et al. [21] have 
developed an approximate analytical technique for solving second order strongly 
nonlinear generalized Duffing equation with small damping. Ghadimi and Kaliji [22] 
have presented an application of the harmonic balance method on nonlinear equations. 
From our study, it has been seen that the most of the authors have studied nonlinear 
differential systems with cubic nonlinearity and without considering damping effects. But 
most of the physical and engineering problems occur in nature in the form of nonlinear 
differential systems with small damping. In this article, we are interested to present an 
approximate analytical technique for solving second order strongly nonlinear differential 
systems with high )9( th  order nonlinearity in presence of small damping based on the 
He’s homotopy perturbation and the extended form of the KBM methods. The presented 
method transforms a difficult problem under simplification, into a simple problem which 
is easy to solve, especially with high order nonlinearity. The advantage of the presented 
method is that the first approximate solutions show a good agreement with the 
corresponding numerical solutions for both strongly and weakly nonlinear differential 
systems with high order nonlinearity. 
2. The method. 

Let us consider the nonlinear differential systems modeling with high order nonlinearity 
in presence of small damping in the following form: 

 ),,()(2 1
2 xxfxxkx &&&& ευτ −=++  (1) 
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where the over dots denote differentiations with respect to time υ,t  is a constant,1ε  is a 

parameter which is not necessarily )0.1( 1 =ε  small, kk 2,0≥ , is the linear damping 
coefficient, tετ = , is the slowly varying time, ε  is a small positive parameter and the 
coefficients in Eq.(1) are varying slowly in that their time derivatives are proportional to 
ε , ),( xxf &  is a given high order nonlinear function which satisfies the following 
condition: 
 .),(),( xxfxxf && −=−−  (2) 
We are going to use the following transformation to change the dependent variable 

 .)( tketyx −=  (3) 
Now differentiating Eq. (3) twice with respect to time t  and substituting the values of 

xx &&& ,  and x  into Eq. (1) and then simplifying we obtain 

 ).)(,()( 1
22 tktktk eykyeyfeyky −− −−=−+ &&& ευ  (4) 

According to the homotopy perturbation method [6-8, 18-21] Eq. (4) can be re-written as  

 ),)(,(1
2 tktktk eykyeyfeyyy −− −−=+ &&& ελω  (5) 

where  

 .222 λυω +−= k  (6) 
Here ω  is known as the angular frequency of the nonlinear differential systems and is a 
constant for undamped nonlinear oscillators. But for the damped nonlinear differential 
systems, ω  is a time dependent function and it varies slowly with time t  and λ  is an 
unknown function which can be evaluated by eliminating the secular terms. To handle 
this situation, we are interested to use the extended form of the KBM [1, 2] method by 
Mitropolskii [3]. According to this method, the solution of Eq. (5) can be chosen in the 
following form: 
 ,cosϕay =  (7) 
where a  and ϕ  vary slowly with time t . In physical problems, a  and ϕ  are known as 
the amplitude and phase variables respectively and they keep an important role to the 
nonlinear physical systems. The following first order differential equations are satisfied 
by amplitude a  and phase variable ϕ : 
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Now differentiating Eq.(7) twice with respect to time t  with the help of Eq. (8) and 
substituting the values of yyy ,, &&&  into Eq.(5) and then equating the coefficients of ϕsin  

and ϕcos ,we obtain 

 ,0),2/( 11 =′−= BaA ωω  (9) 
where prime denotes differentiation with respect to τ . Now inserting Eq. (7) into Eq. (3) 
and Eq. (9) into Eq. (8), we obtain the following equations: 

 ,cosϕtkeax −=  (10) 
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First approximate solution of Eq. (1) is given by Eq. (10) with help of Eq. (11) by the 
presented method. Usually the integration of Eq. (11) is performed by the well-known 
techniques of calculus [4-5], but sometimes they are calculated by a numerical procedure 
[14-21]. Thus, the first approximate solution of Eq. (1) is completed. 
 
3. Example 
As an example of the above procedure, let us consider the strongly nonlinear differential 
systems with high (th9 ) order [6, 7] nonlinearity in presence of small damping in the 
following form: 

 ,)(2 9
1

2 xxxkx ευτ −=++ &&&  (12) 

where 9),( xxxf =& . Now using the transformation Eq. (3) into Eq. (12) and then 
simplifying them, we obtained 

 .)( 89
1

22 tkeyyky −−=−+ ευ&&  (13) 
According to the homotopy perturbation [6-8, 18-21] technique, Eq. (13) can be written 
as 

 ,892 tkeyyyy −−=+ ελω&&  (14) 
where ω  is calculated from Eq. (6). According to the extended form of the KBM [1-3] 
method, the solution of Eq. (14) is obtained from Eq. (7). 
From the trigonometric identity, we obtain 

 .256/)cos1263cos845cos367cos99(coscos9 ϕϕϕϕϕϕ ++++=  (15) 
For avoiding the secular terms in particular solution of Eq. (14), we need to impose that 
the coefficient of the ϕcos  term is zero. Setting this term to zero, we obtain, 

 ,0
256

126 89
1 =−

− tkea
a

ελ  (16) 

which leads to 

 .
128

63 88
1

tkea −

= ελ  (17) 

Putting the value of λ  from Eq. (17) into Eq. (6), we obtain the following frequency 
equation: 

 .
128

63 88
1222

tkea
k

−

+−= ευω  (18) 

From Eq. (18), it is clear that the frequency of the damped nonlinear physical systems 
depends on both amplitude a  and time t . When 0→t  then Eq. (18) yields 

 ,
128

63
)0(

8
0122

0

a
k

ευωω +−==  (19) 

where 0a  is known as the initial amplitude and 0ω  represents the initial frequency of the 

nonlinear physical systems. 
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Integrating the first equation of Eq. (11), we get 

 ,0
0 ω

ω
aa =  (20) 

where 0a  is a constant of integration and known as the initial amplitude in literature.  

Now putting Eq. (20) into Eq. (18), we obtain a six degree polynomial in ω  in the 
following form: 

 ,026 =++ rpωω  (21) 
where 

 .
128

63
,

84
0

8
022

tkea
rkp

−

−=−= ωευ  (22) 

Finaly, the first order analytical approximate solution of Eq. (12) is obtained as follows: 

 ϕcostkeax −=  (23) 

 

,)(

0
0

τωϕ
ω
ω

=

=

&

aa
 (24) 

where 0ω  is obtained by Eq. (19) ;ω  is calculated from Eq. (21) by using the well-

known Newton–Raphson method and a  and ϕ  are given by Eq. (24). 
 
4. Results and discussions 
In this paper, we have extended He’s homotopy perturbation method for solving second 
order typical [6, 7] strongly nonlinear problems with high order nonlinearity in presence 
of small damping. It is almost impossible to solve the strongly nonlinear physical 
problems, especially with high order nonlinearity in presence of damping by the classical 
perturbation methods [1-5, 14-17]. But the suggested method has been successfully 
applied to solve strongly nonlinear differential systems with high (th9 ) order 
nonlinearity in presence of small damping. The first order approximate solutions of Eq. 
(12) is computed with high order nonlinearity in presence of small damping by Eq. (23) 
and the corresponding numerical solutions are obtained by using fourth order Runge-
Kutta method. The variational equations of the amplitude and phase variables appeared 
in a set of first order differential equations. The integration of these variational equations 
is performed by the well-known techniques of calculus [4, 5]. In the lack of analytical 
solutions, numerical procedure [10-21] is applied to solve them. The amplitude and phase 
variables change slowly with time t . The behavior of amplitude and phase variables 
characterizes the oscillating processes and amplitude tends to zero in presence of small 
damping as ∞→t . Presented technique can take full advantage of the classical 
perturbation method. It is also noticed that the presented method is also capable to handle 
the typical second order weakly )1.0( 1 =ε  nonlinear differential systems with high order 
nonlinearity in presence of small damping. Comparison is made between the solutions 
obtained by the presented technique and those obtained by the numerical procedure in 
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Figs. 1-2 for both strongly )0.1( 1 =ε  and weakly )1.0( 1 =ε  nonlinear differential 
systems with high order nonlinearity. In Figs.1-2, it is seen that the solutions obtained by 
the presented method show a good agreement with those solution obtained by the 
numerical procedure with several small damping effects. 
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Figure 1(a): First approximate solution of Eq. (12) is denoted by dotted lines )( −•−  by 

the presented analytical technique with the initial conditions 0,5.0 00 == ϕa  or 

]07853.0)0(,5.0)0([ −== xx &  with 1.0,0.1,15.0,0.1 1 ==== εεν k  and 9xf =  

and the corresponding numerical solution is denoted by solid line )(− . 
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Figure 1(b): First approximate solution of Eq. (12) is denoted by dotted lines )( −•−  by 

the presented analytical technique with the initial conditions 0,5.0 00 == ϕa  or 

]07535.0)0(,5.0)0([ −== xx &  with 1.0,1.0,15.0,0.1 1 ==== εεν k  and 9xf =  

and the corresponding numerical solution is denoted by solid line )(− . 
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Figure 2(a): First approximate solution of Eq. (12) is denoted by  dotted lines )( −•−  by 

the presented analytical technique with the initial conditions 0,5.0 00 == ϕa  or 

]10360.0)0(,5.0)0([ −== xx &  with 1.0,0.1,2.0,0.1 1 ==== εεν k  and 9xf =  

and the corresponding numerical solution is denoted by solid line )(− . 
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Figure 2(b): First approximate solution of Eq. (12) is denoted by  dotted lines )( −•−  by 

the presented analytical technique with the initial conditions 0,5.0 00 == ϕa  or 

]10036.0)0(,5.0)0([ −== xx &  with 1.0,1.0,2.0,0.1 1 ==== εεν k  and 9xf =  

and the corresponding numerical solution is denoted by solid line )(− . 
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5. Conclusion 
The presented method does not require a small parameter in the equation like the classical 
one. The method has been successfully implemented to illustrate the effectiveness and 
convenience of the suggested procedure and it is noticed that the first approximate 
solutions show a good agreement with those solutions obtained by the numerical 
procedure with high order nonlinearity in presence of small damping for both strongly 

)0.1( 1 =ε  and weakly )1.0( 1 =ε  nonlinearity. 

REFERENCES 

1. N.N. Krylov and N.N. Bogoliubov, Introduction to nonlinear mechanics, Princeton 
University Press, New Jersey, 1947. 

2. N.N.Bogoliubov and Yu.A.Mitropolskii, Asymptotic methods in the theory of 
nonlinear oscillation, Gordan and Breach, New York, 1961. 

3. Yu. A.Mitropolskii, Problems on asymptotic methods of non-stationary oscillations 
(in Russian), Izdat, Nauka, Moscow, 1964. 

4. A.H.Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981. 
5. J.A.Murdock, Perturbations: Theory and Methods, Wiley, New York, 1991. 
6. J.H.He, Some new approaches to duffing equation with strongly and high order 

nonlinearity (I) linearized perturbation method, J. Communications in Nonlinear 
Science & Numerical Simulation, 4(1) (1999) 78-80. 

7. J.H.He, Approximate solution of nonlinear differential equations with convolution 
product nonlinearities, Journal of Computer Methods in Applied Mechanics and 
Engineering, 167 (1998) 69-73. 

8. J.H.He, New interpretation of homotopy perturbation method, International Journal 
of Modern Physics B, 20(18) (2006) 2561-2568.  

9. J.H.He, Variational iteration method: a kind of nonlinear analytical technique: some 
examples, Int. J. Nonlinear Mech., 34 (4) (1999) 699-704. 

10. J.H.He, Variational iteration method for autonomous ordinary differential systems, 
Appl. Math. Comput., 114 (2000) 115-123.  

11. A.Belendez, A.Hernandez, T.Belendez, F.Fernandez, M. L.Alvarez and C.Neipp, 
Application of He’s homotopy perturbation method to Duffing harmonic oscillator, 
International Journal of Nonlinear Science and Numerical Simulation, 8(1) (2007) 
78-88. 

12. D.D.Ganji, M.Esmaeilpour and S.Soleimani, Approximate solutions to van der Pol 
damped nonlinear oscillators by means of He’s energy balance method, International 
Journal of Computer Mathematics, 87(9) (2010) 2014–2023 

13. C.W.Lim and B.S.Wu, A new analytical approach to the Duffing- harmonic 
oscillator, Physics Letters A, 311(2003) 365-373. 

14. M.S.Alam, M.A.K.Azad and M.A.Hoque, A general Struble’s technique for solving 
an nth  order weakly nonlinear differential system with damping, International 
Journal of Nonlinear Mechanics, 41(2006) 905-918. 

15. G.N.Bojadziev, Damped nonlinear oscillations modeled by a 3-dimensional 
differential system, Acta Mech. 48 (1983) 193-201. 



An Approximate Technique for Solving Second Order Strongly Nonlinear Differential 
Systems with High Order Nonlinearity in Presence of Small Damping 

9 

 

9 

16. J.C.Arya and G.N.Bojadziev, Time depended oscillating systems with damping, 
slowly varying parameters and delay, Acta Mechanica, 41(1981) 109-119,. 

17. R.K.Sachs, L.R.Hlatky and P.Hahnfeldt, Simple ODE models of tumor growth and 
anti-angiogenic or radiation treatment, J. Mathematical and Computer Modeling, 33 
(2001)1297-1305. 

18. M.A.Uddin, M.A.Sattar and M.S.Alam, An approximate technique for solving 
strongly nonlinear differential systems with damping effects, Indian Journal of 
Mathematics,  53 (1) (2011) 83-98. 

19. M.A.Uddin and M.A.Sattar, an approximate technique to Duffing` equation with 
small damping and slowly varying coefficients, J. Mechanics of Continua and 
Mathematical Sciences, 5 (2) (2011) 627-642. 

20. M.A.Uddin and M.A.Sattar, An approximate technique for solving strongly nonlinear 
biological systems with small damping effects, J. of the Calcutta Mathematical 
Society, 7 (1) (2011) 51-62. 

21. M.A.Uddin, M.W.Ullah. and R.S.Bipasha, An approximate analytical technique for 
solving second order strongly nonlinear generalized Duffing equation with small 
damping, J. Bangladesh Academy of Sciences, 39 (1) (2015) 103-114.  

22. M.Ghadimi and H.D.Kaliji, Application of the harmonic balance method on 
nonlinear equations, World Applied Sciences Journal, 22 (4) (2013) 532-537. 

23. M.Pal, Numerical Analysis for Scientists and Engineers: theory and  C Programs, 
Alpha Science, Oxford, UK, 2007. 


