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Abstract. An approximate analytical technique has been exgrfdr solving second
order strongly nonlinear differential systems whigh (nine) order nonlinearity in
presence of small damping based on the He's homgiepurbation and the extended
form of the Krylov-Bogoliubov-Mitropolskii (KBM) m#hods. In general, it is too much
difficult to solve the strongly nonlinear differdgait systems with high order nonlinearity
in presence of small damping. The advantage oftbesented method is that, it is capable
to tackle both strongly and weakly nonlinear difatial systems with high order
nonlinearity in presence of small damping but thessical perturbation methods are
failed to handle in that situations. The methodlteen justified by an example.
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1. Introduction

Most of the phenomena in the real world are esalgnthonlinear and described by
nonlinear differential systems. So, the study oflimear differential systems is very
important in all areas of applied mathematics, fsysengineering, medical science,
economics and other disciplines. In general, tos much difficult to handle nonlinear
problems and it is often very difficult to get amafytical solution than a numerical one.
Common methods for constructing approximate araitsolutions to the nonlinear
differential equations are the perturbation techegy Some well known perturbation
technigues are the Krylov-Bogoliubov-MitropolskKBM)[1-3] method, the Lindstedt-

Poincare (LP) method [4, 5], and the method of iplgttime scales [4]. Almost all

perturbation methods are based on an assumptibththamall parameters must exist in
the equations, which is too strict to find wide ganof application of the classical
perturbation techniques. It determines not only #weruracy of the perturbation
approximations, but also the validity of the pdation methods itself. However, in
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science and engineering, there exist many nonlidéarential systems which do not
contain any small parameter, especially those appeaeture with strong and high order
nonlinearity in presence of small damping. Therefanany new techniques have been
proposed to eliminate the “small parameter” assionptsuch as the homotopy
perturbation method (HPM) [6-8, 11, 18-21], vaoatl iteration method [9-10],
harmonic balance method [22], energy balance mef2@id etc. In recent years, He [6]
has developed some new approaches to Duffing emquatith strongly and high order
non-linearity without damping. In another paper, Hg has obtained the approximate
solution of nonlinear differential equation withremlution product nonlinearities. He [8]
has presented a new interpretation of homotopyugstion method. He [9-10] has
presented variational iteration method for stronghyplinear differential systems without
damping. Belendez et al. [11] have presented thglicaion of He's homotopy
perturbation method to Duffing harmonic oscillat@ithout damping. Ganiji et al. [12]
have presented approximate solutions to van derdBwiped nonlinear oscillators by
means of He’s energy balance method. Lim and W{ H&/e developed a new
analytical approach to the Duffing- harmonic ostdr without damping. Alam et al. [14]
have developed a general Struble’s technique fleingpan nth order weakly nonlinear
differential system with small damping. Bojadzie{5] has presented an analytical
method to damped nonlinear oscillations modeled Bydimensional differential system.
Arya and Bojadziev [16] have presented time depeérmiillating systems with small
damping, slowly varying parameters and delay. Satlas. [17] have presented a simple
ODE models of tumor growth and anti-angiogenic adiation treatment. Uddin et al.
[18-20] have presented an approximate technique sfilving strongly cubic and
guadratic nonlinear differential systems with damgpeffects. Uddin et al. [21] have
developed an approximate analytical technique folvirsg second order strongly
nonlinear generalized Duffing equation with smadintbing. Ghadimi and Kaliji [22]
have presented an application of the harmonic balanethod on nonlinear equations.
From our study, it has been seen that the moshefatthors have studied nonlinear
differential systems with cubic nonlinearity andhaiut considering damping effects. But
most of the physical and engineering problems oatumature in the form of nonlinear
differential systems with small damping. In thiside, we are interested to present an
approximate analytical technique for solving secordkr strongly nonlinear differential
systems with high(9th) order nonlinearity in presence of small dampingeshon the

He’'s homotopy perturbation and the extended forthefKBM methods. The presented
method transforms a difficult problem under simipéfion, into a simple problem which
is easy to solve, especially with high order nazdirity. The advantage of the presented
method is that the first approximate solutions shawgood agreement with the
corresponding numerical solutions for both stronghd weakly nonlinear differential
systems with high order nonlinearity.

2. The method.

Let us consider the nonlinear differential systenwaleling with high order nonlinearity
in presence of small damping in the following form:

X+ 2K(T) X+ 0°x = —¢, f (X, X), (1)
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where the over dots denote differentiations witspeet to timet,v is a constang, is a

parameter which is not necessar{lg, = 1.0) small, k>0, 2k, is the linear damping
coefficient, 7 = £t is the slowly varying timeg is a small positive parameter and the
coefficients in Eq.(1) are varying slowly in thaetr time derivatives are proportional to
g, f(x,X) is a given high order nonlinear function whichisfas the following
condition:

f(=x,—X) =—f (X, X). 2
We are going to use the following transformatiorchange the dependent variable
x = y(t)e™". 3)

Now differentiating Eq. (3) twice with respect imé t and substituting the values of
X, X and x into Eq. (1) and then simplifying we obtain

y+ (' -k)y=-g€e"f (ye ' (y-ky)e™). @)
According to the homotopy perturbation method [@-8,21] Eq. (4) can be re-written as

y+rafy=Ay-ge' f(ye ', (y-ky)e™), (5)
where

o =U*-K*+ A (6)

Here & is known as the angular frequency of the nonlimkfierential systems and is a
constant for undamped nonlinear oscillators. Buttfe damped nonlinear differential
systems,a is a time dependent function and it varies slowith time t and A is an
unknown function which can be evaluated by elimipathe secular terms. To handle
this situation, we are interested to use the exerfdrm of the KBM [1, 2] method by
Mitropolskii [3]. According to this method, the sibn of Eqg. (5) can be chosen in the
following form:

y = acos<g, @)
wherea and ¢ vary slowly with timet. In physical problemsa and ¢ are known as
the amplitude and phase variables respectivelytheyg keep an important role to the
nonlinear physical systems. The following first erdlifferential equations are satisfied
by amplitudea and phase variablg :

a=eA@rn)+eA Q1)+, @

p=w(r)+eB (a,r)+£°B,(a,7)+.
Now differentiating Eq.(7) twice with respect tong t with the help of Eqg. (8) and
substituting the values df, y, y into Eq.(5) and then equating the coefficientswfg
and cos¢ ,we obtain

A =-adl(2w), B =0, 9)

where prime denotes differentiation with respect toNow inserting Eq. (7) into Eq. (3)
and Eg. (9) into Eq. (8), we obtain the followinguations:

x =ae ' cosg, (10)
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a=-¢d' al2c,

¢ = (7).
First approximate solution of Eq. (1) is given bg.E10) with help of Eq. (11) by the
presented method. Usually the integration of EQ) (& performed by the well-known
techniques of calculus [4-5], but sometimes theyaaiculated by a numerical procedure
[14-21]. Thus, the first approximate solution of. Et) is completed.

(11)

3. Example
As an example of the above procedure, let us cendliet strongly nonlinear differential

systems with high §th) order [6, 7] nonlinearity in presence of smalhgéng in the
following form:

X+ 2K(T) X+ 0*x=—£,%, (12)
where f(x,X) =x°. Now using the transformation Eq. (3) into Eq.)(khd then
simplifying them, we obtained

y+°-k)y=-¢y e’ . (13)
According to the homotopy perturbation [6-8, 18-Bddhnique, Eq. (13) can be written
as

yrary=Ay-ey’e®™, (14)
where « is calculated from Eq. (6). According to the exted form of the KBM [1-3]

method, the solution of Eq. (14) is obtained from &).
From the trigonometric identity, we obtain

coS ¢ = (cos9g + 9cos7¢g + 36c0s5g + 84cos3p +126c0sp)/ 256 (15)

For avoiding the secular terms in particular soltof Eqg. (14), we need to impose that
the coefficient of theco<g term is zero. Setting this term to zero, we ohtain

1262’

Aa T =0, (16)
which leads to
8 -8kt
A= —635118;: . (17)

Putting the value ofd from Eq. (17) into Eq. (6), we obtain the followirirequency
equation:

8 o8kt
a)Z:UZ—k2+63£1L_ (18)
12¢
From Eg. (18), it is clear that the frequency of ttaemped nonlinear physical systems

depends on both amplitude and timet . Whent — O then Eq. (18) yields
63¢,a
=w(0) =,|0* K> +—22
“ © \/ 128
where a, is known as the initial amplitude ared, represents the initial frequency of the
nonlinear physical systems.

: (19)
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Integrating the first equation of Eq. (11), we get

a=a 2, (20)

where a, is a constant of integration and known as théairstmplitude in literature.

Now putting Eq. (20) into Eq. (18), we obtain a si@gree polynomial ince in the
following form:

o +paf+r =0, (21)
where
8 . 4 -8kt
p:kZ_Uz’r:—M (22)
12¢
Finaly, the first order analytical approximate simn of Eq. (12) is obtained as follows:
x =ae ' cosp (23)
_. @
a = —_—
2 w (24)
¢ =w(r),

where w, is obtained by Eq. (19)« is calculated from Eq. (21) by using the well-
knownNewton—Raphsonmethod anda and ¢ are given by Eq. (24).

4. Results and discussions

In this paper, we have extended He's homotopy geation method for solving second
order typical [6, 7] strongly nonlinear problemgtwhigh order nonlinearity in presence
of small damping. It is almost impossible to solle strongly nonlinear physical
problems, especially with high order nonlinearitypresence of damping by the classical
perturbation methods [1-5, 14-17]. But the suggksteethod has been successfully
applied to solve strongly nonlinear differential sms with high 9th) order
nonlinearity in presence of small damping. Thet finder approximate solutions of Eq.
(12) is computed with high order nonlinearity irepence of small damping by Eqg. (23)
and the corresponding numerical solutions are nbéthby using fourth ordéRunge-
Kutta method. The variational equations of the amplitude and phasiables appeared
in a set of first order differential equations. Tiheegration of these variational equations
is performed by the well-known techniques of calsul4, 5]. In the lack of analytical
solutions, numerical procedure [10-21] is applieddlve them. The amplitude and phase
variables change slowly with time. The behavior of amplitude and phase variables
characterizes the oscillating processes and ardplitends to zero in presence of small
damping ast - o . Presented technique can take full advantage ef dlassical
perturbation method. It is also noticed that thespnted method is also capable to handle
the typical second order weak(¥, = 0.1) nonlinear differential systems with high order
nonlinearity in presence of small damping. Compariss made between the solutions
obtained by the presented technique and thosenebttdiy the numerical procedure in
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Figs. 1-2for both strongly (¢, =1.0) and weakly (¢, = 0.1) nonlinear differential
systems with high order nonlinearity. fiigs.1-2,it is seen that the solutions obtained by
the presented method show a good agreement witke tlsolution obtained by the
numerical procedure with several small dampingot$te
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Figure 1(a): First approximate solution of Eq. (12) is dendgddotted lines(—+ =) by
the presented analytical technique with the initi@nditions a, = 05¢,=0 or
[x(0) = 05, x(0) =-0.07853 with v=10,k=015¢=10,6=01 and f =x°
and the corresponding numerical solution is denbgesblid line (=) .
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Figure 1(b): First approximate solution of Eq. (12) is dendbgddotted lineg(—+ =) by
the presented analytical technique with the init@inditions a, = 05, ¢, =0 or
[x(0) = 05, x(0) =-0.07539 with v =10,k =015 £ =01 =01 and f =x°
and the corresponding numerical solution is denbgesblid line (-) .
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Figure 2(a): First approximate solution of Eq. (12) is dendvgddotted lineg—+ —) by
the presented analytical technique with the initt@inditions a, = 05 ¢, =0 or
[x(0) = 05, x(0) =-0.1036Q with v=10,k=02 & =10,=01 and f =x°
and the corresponding numerical solution is denbgesblid line (=) .
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Figure 2(b): First approximate solution of Eq. (12) is dendbgddotted lineq—+ —) by
the presented analytical technique with the init@inditions a, = 05, ¢, =0 or
[x(0) = 05, x(0) =-0.1003§ with ¥ =10,k=02, &=0L£=01 and f =x°
and the corresponding numerical solution is denbgesblid line (=) .
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5. Conclusion

The presented method does not require a small g@eaim the equation like the classical
one. The method has been successfully implementdtustrate the effectiveness and
convenience of the suggested procedure and it tisedothat the first approximate
solutions show a good agreement with those solsitiobtained by the numerical
procedure with high order nonlinearity in presentesmall damping for both strongly

(&
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=1.0) and weakly(&, = 0.1) nonlinearity.
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