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Abstract. This paper presents a new steady periodic gait in the compass model. It is 
proved that the model has period-four gait and the new gait lead to chaos through period-
doubling bifurcation. This paper confirms the existence of the new gait and its bifurcation 
through the calculation by computer. 
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1. Introduction 
Many people have been interested in mechanical legged robots for several years. Beck et 
al. comes up with convincing evidence of such legged robots in [1]. The phenomenon 
that the swing process of humans’ movement is almost passive makes people be 
interested in studying passive walking. Researchers have studied on passive dynamic 
walking robots such as in [2]–[5]. The most watched problem about passive dynamic 
walking robots is the energy consumption. It is expected to improve energy efficiency 
and give better control of dynamic walking robots through the study of passive dynamic 
walking. Garcia et al. proposed that the simplest model exhibits period-doubling routes to 
chaos [6]. On this basis, Li et al. found new bifurcations and confirmed it [7,8]. Goswami 
et al. studied the compass model and firstly reported the occurrence of period-doubling 
bifurcation [9,10]. This paper will study the phenomenon about the locomotion of a 
compass-gait model, and it presents a new period gait which has not been discovered. We 
give computer proofs about the existence of the period gait to prove our founding. Since 
the compass-gait model is more human-like than the simplest walking model, it is 
meaningful to study the dynamics found in this compass model. The new bifurcation 
found in this paper should be of potential implication to dynamical walking studies. 

 
2. Period-four route to chaos in the compass model 
This section is mainly about the ingredient and the theory basis of the compass model. 
And we also give some charts to show the new bifurcation clearly. 

 
2.1. The compass robot 
As shown in Fig.1, the compass-gait model contains two perfectly equivalent legs with 
mass m , and a frictionless hip with mass Hm  which fitting the two legs together. In this 

model, the two legs are spring less and they has no knees and feet. The compass robot 
goes down the slope only by gravity as the power in an appropriate initial condition and a 
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corresponding slope ϕ .The support leg get away from the ground while the swing leg 
gets in touch with the ground, the impulsive translates. We assume the collision is 
perfectly nonelastic and foot and ground touch without sliding [11]. 
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Figure 1: Diagram of the compass model 
 

The compass model includes nonlinear differential equations of the swing phase and 
algebraic equations of the collision phase [11]. We make [ ]s

= nsδ θ θ the generalized 

vector of the compass model [12]. This model satisfies only one constraint ( ) 0h δ ≥ . It 

represents that the swing leg is above the ground. The motion process of the compass 
model can be described by the following Lagrangian system [13]: 
        ( ) ( ) ( ) ( ), hH GJ δδ δ δ δ δ δ λ+ + = ∇&& &&  ,                                                                     (1) 

( ) 00 h δδ λ⊥ ≥≤  ,                                                                                                   (2) 

Rδ δ+ −=  and Sδ δ+ −=& & .                                                                                            (3) 
Expression (1) represents the swing process of passive motion. In this equation J 

represents the inertia matrix , H consists of Coriolis and centrifugal terms , and G means 
gravity forces. The term ( )h δ∇ is defined by: 

( ) ( ) ( )( )cos cos{ : }
s nslh δ θ φ θ φδ = + − +Γ = ∈ℜ . 

The inequality (2) is indicated by the following extensions [13,14]: 
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The constraint ( ) 0h δ ≥ in (5) shows that there is no grazing situation. In addition, 

the inequality means that the collision force is unidirectional. It is called the 
complementarity condition when ( ) 0h δδ λ = [15,16]. It means that if ( ) 0h δ ≥ then 
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0δλ = , but a non-zero collision force ( ) 0h δ > is impossible without contact [13]. The 

equation (3) means it change the impulsive transition in the angular positions’ vector and 
in the angular velocities’ vector at the collision stage. In (3) the signs - and + express just 
before and just after the collision , respectively. 

Matrices in (1) and (3) are given by: 
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where l a b= +  and ( )1

2
s nsα θ θ= − . 

 
2.2.  New bifurcation in the compass model  
We can see interesting nonlinear phenomena in the following figure. Goswami et al. 
[17,18] and Thuilot et al. [19] first discovered the appearance of period-doubling 
bifurcations of the compass model. They changed the walking systems’ parameters such 
as mass and length of the legs and even slope angle, founding that the compass-gait robot 
exists perioddoubling bifurcations. Then Gritli et al. found that the model exhibits a 
period-3 stable gait in [12]. They emphasize that the existence of stable gaits only when 
slopes lower than 0.0908rad. When the angle is greater than this value, the compass 
model falls down and is not impossible to find stable gaits. Based on the above studies, 
we found a new bifurcation through a large number of attempt and calculation by 
computer aided. 

In Fig.2, the dynamical behavior of the compass model is well described. It is clear 
that the slope ranges becomes narrower and narrower when the period increases. To find 
new periodic gait and the corresponding period-doubling diagrams, we have to choose 
much smaller step size. We computed a step size of 4e-6 and found a new stable gait with 
period-four. We also found that the new gait can lead to higher periodic cycle and chaos 
via period-doubling .The system (1) is chaotic when ϕ =0.061945 as shown in the Fig.3, 
which shows the phase diagram of the compass model. 
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Figure 2: The bifurcation diagram for 0≤ ϕ  ≤ 0.091 

 
  Figure 3: Phase diagram of chaotic gaits 
As the ground slope ϕ  increases, the period-four gait goes through a gentle change 

of period doubling bifurcations, at the same time, the period of the attractor is doubled. 
With the period runs to infinity, a chaotic attractor appears, and is located in the 
bifurcation diagram of four independent bands. The stable period-4 gait becomes unstable 
at ϕ =0.06185 rad, where it becomes unstable and a steady period-8 gait emerges. This 
period-8 limit cycle becomes unstable at ϕ =0.0619 rad , where a period-16 stable gait 
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appears. As the slope increases, the period-doubling continues until the chaotic gait 
appears which is leaded by a infinite period limit cycle.  

 
3. Conclusion 
This paper is mainly about the new stable periodic gait of the four parameters exist in the 
compass model. We have found a period-doubling route to chaos when ϕ  increases. And 
this new bifurcation phenomenon has not been reported before. The new bifurcation 
found in this paper is potential significance for the study of passive dynamical walking. 
In our investigation, the application of this discovery in biped robot is very meaningful. 
Firstly, the robot walking is more practicality. The using of the compass model, which 
compared to the simplest model, increases the degree of freedom that made the robot 
much more anthropomorphic which has a realistic simulation in walking robot. 
Meanwhile, this paper we find the new stable periodic gaits walking style which is more 
energy saving, so that the robot can walk passively for longer time. This article confirmed 
the existence of the periodic orbits is a sequence, and find more saving energy cycle track 
in the future. 

REFERENCES 

1. L.Beck, Most famous robots, http://sites.google.com/site/luisbeck007/ humanoid, 
2009. 

2. T.Kai and T.Shintani, A gait generation method for the compass-type biped robot 
based on discrete mechanics. Proceedings of the 18th IFAC World Congress, Milano, 
Italy, 2011;pp.8101-8107. 

3. Y.Hu, G.Yan and Z.Lin, Gait generation and control for biped robots with 
underactution degree one, Automatica,  47(8) (2011) 1605-1616.  

4. L.B.Freidovich, U.Mettin, A.S.Shiriaev and M.W.Spong, A passive 2-DOF walker: 
Hunting for gaits using virtual holonomic constraints, IEEE Trans Robotic, 25(5) 
(2009) 1202-1208. 

5. J.S.Moon, M.W.Spong, Bifurcations and chaos in passive walking of a compass-gait 
biped with asymmetries. Proceedings of the IEEE International Conference on R- 
obotics and Automation, Anchorage Alaska USA, 2010; pp. 1721-1726. 

6. M.Garcia et al., The simplest walking model: Stability, complexity, and scaling, 
ASME J. Biomech. Eng., 120 (2) (1998) 281-288. 

7. Q.Li, S.Tang and X.-S.Yang, New bifurcations in the simplest passive walking 
model, Chaos 23 (2013) 043-110. 

8. Q.Li and X.S.Yang, New walking dynamics in the simplest passive bipedal walking 
model, Appl. Math. Model. 36(11) (2012) 5262-5271. 

9. A.Goswami, B.Espiau, A.Keramane, Limit cycles and their stability in a passive 
bipedal gait, Proceedings of the IEEE International Conference on Robotics and Au- 
tomation, Minneapolis, Minnesota, USA, 1996; pp. 246-251. 

10. B.Thuilot, A.Goswami and B.Espiau, Bifurcation and chaos in a simple passive 
bipedal gait, Proceedings of the IEEE International Conference on Robotics and 
Autom- ation, Albuquerque, New Mexico, 1997; pp. 792-798. 

11. A.Goswami, B.Thuilot and B.Espiau, A study of the passive gait of a compass-like 
biped robot: symmetry and chaos, Int J. Robotic Res.,  17(12) (1998) 1282-1301. 



Wen-ya Hu and Jian Diao and Ke-feng Zhao and Shi-qi Xiong 

38 
 

 

12. Hassne Gritli, Nahla Khraief and Safya Belghith, Period-three route to chaos induced 
by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped 
robot, Commun Nonlinear Sci Numer Simulat., 17 (2012) 4356-4372 

13. Y.Hurmuzlua, F.Gnot and B.Broliato, Modeling stability and control of biped robots-
a general framework, Automatica, 40 (2004) 1674-64. 

14. B.Broliato, Nonsmooth Impact Dynamics: Models, Dynamics and Control. London 
U.K.: Springer-Verlag ; 1996. 

15. B.Brogliato, Some perspectives on the analysis and control of complementarity 
systems, IEEE Trans. Autom. Control, 48(6) (2003) 918-935. 

16. J.M.Bourgeot, Contribution la commande de systmes mcaniques nonrguliers, Thesis, 
INRIA Rhone-Alpes (2004). 

17. A.Goswami, B.Espiau and A.Keramane, Limit cycles in a passive compass gait biped 
and passivity-mimicking control laws, Auton. Rob., 4(3) (1997) 273-286. 

18. A.Goswami, B.Thuilot and B.Espiau, A study of the passive gait of a compass-like 
biped robot: Symmetry and chaos, Int. J. Robot. Res., 17(12) (1998) 1282-1301. 

19. B.Thuilot, A.Goswami and B.Espiau, Bifurcation and chaos in a simple passive 
bipedal gait, Proceedings of the IEEE International Conference on Robotics and 
Automation, Albuquerque, New Mexico, 1997; pp.792-798. 

 


