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Abstract. In this paper, we prove that the property of bemgximinally additive in
Banach spaces is inherited by the spi¢g, G) in L’ (i, X) . Furthermore, and as an
extension of our main result in [1], we prove thelith this property assumed, the
subspace G is proximinal in the Banach space Xdfanly if, for1< p<oo, LP(u,G)

is proximinal inL?(x, X) if and only if L (&,G)is proximinal inl?(u, X) for every
modulus functiony and any finite measure spa€E, 1).
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1. Introduction
For the subset G of the normed linear spac# .(H(). We define, for x X, d (x , G) =

inf {|x—g|:geG}. If G is a subspace of X, an elementegG is called a best

approximant of x in G ifjx—g.| = d(x,G). We shall denote the set of all best

approximants of x in G as P(x,G). If for each X, the setP(x, G) #¢ then G is said to be
proximinal in X, and if P (x,G) is a singleton feach xeX an G is called a Chebychev
subspace.

An increasing functiof: [ 0 , ©)— [ 0, «) is said to be a modulus function if it
vanishes at zero, and is subadditive. This meaissix+ y) < ¢(X) + ¢( y) for all x and

y in [0, ). Examples of modulus functions aré; & < p<1, and In(1+x). Furthermore,

¢(X)
X

if ¢ is a modulus function, thep(x)= ————is again modulus.
1+¢(x)
It is also evident that the composition wfotmodulus functions is a modulus
function, [3.p.159].
Let X be a real Banach space and let (Thgqud finite measure space. For a modulus
functiong, we define the Orlicz spad# (u, X) as the set

{f :T — X suchthat j o(| f @) du(t) < oo} .
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The function d :L? (u, X) x L?(u,X) —[0,) given by:
d(f,9) = J'¢(|| f (t) — g(t)[)dec(t) turns L? (4, X) into a complete metric space [3].
T

For fel?(u,X), we write Hquj:jqu\f(t)H)du(t). In what follows, wheng is
T

mentioned, it is to be assumed a modulus functidmwould also like to mention that in
the literature, except for what we partly did i&j,[ we did not find conditions under
which the proximinality of G in X is equivalent tine proximinality ofL?(u,G) in

L?(u, X) and to the proximinality df”(u,G)in LP(u, X),1< p<ec. Here we show

that the condition of proximinal additivity, agamives the required equivalence. This, of
course makes an extension to our restricted deatsdh of the casp=1 which we got in

[1].

In the present time, researchers are working enetktensions of classical
results in which they consider Haar subspacesgdpraximating sets, For reference One
may consider [7]. Convenient tries can also bedon [5,8].

2. Proximinal additivity
Definition 2.1. A subspace G of a Banach space X is said to pinaily additive if G is

closed andz + z,e P( X+ %, GQwheneverz e P(x, GQandz e P(x%, G.

Example 2.2. Let X = R?, and let G (x,0):xe R}. Then G is proximinally additive

in X, with the Euclidean norm.
It turns out that proximinal additivity is trdosmed from G to the Orlicz space

L?(u,G). Specifically, we have the following:

Theorem 2.3. Let X be a Banach space in which G is a proxithiredditive subspace.
Then L’ (u,G) is proximinally additive inL?(x,G) L’ («, X) .

Theorem 2.3. Let X be a Banach space in which G is a proxithiredditive subspace.
Then L (u, G) is proximinally additiveL? (u, X).
Poof: Letg,e P(f, Y  G))andg,e P, L 4 G)
By[5.p.73 .9, ¢ P(f ().G)aet T (1)
Alsog, (t)e P(f,(t),G)aek T 2
Since G is proximinally additive, from (1) and (2)e get that:
(9,+9,)t)e P(f, + ,)(t),G)aeteT.
Henced (€, + f, )()G x| G+ f, )€ G+ g )t)
sol(fu+ £)0 = (9, + )] <[(f,+ F)(D-y|a.et andforalye G
In particular, one has
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||(fl +f,)t) (g, + gz)(t)” < (|| f,+ f,)(t) - h(t)||a.e.tandforallhe L’ (u,G)
Sinceg s strictly increasing,

O(|(F,+ 1)) = (9, + 8) O] < #(F, + £,)®) —h(®) [) aet and for all he L* («,G)
Integrating the last inequality yields:

|Cf,+ £,)— (g, + gz)||¢ <||(f,+ f,) - h||¢ for all he L?(u,G))

Henced((f, + f,),L”(1,G)) = |(f, + f,) = (9, + 8,)],

Thereforeg, + g, € P(f, + f,,L” (1,G)

Thus L? (1, G) is proximinallyadditive.

For the next result, we need the followingatem which was proved in [9]. Here, we
give a simpler proof.
For this, we need to recall from [11,p.279] that:

a closed subspace G of a Banach space X is @ailéd — summandl< g
if there is a bounded projecion E : X2 G which is onto and
IX° = (] +[ x= B3| for all xe X. We present the following resut.

Lemma 24. If G is an P — summandof a Banach space X, then G is proximinal
(1< p< o).
Proof: Let X€ X .Foreachg e G, wehave:

[x=gl” =|E(x-9)|" +|x- g - E(x-g)|"
_[EC)-E(@)]" +[x-EX)|”
>[x—E(x)|"

Theorem 2.5. Let G be any closed subspace of a Hilbert spage>)x then G is
Chebyshev.

Proof: By [10,p.96] , X =G ® G* whereG" ={ze X: zL G.
Hence, for everyxe X, there is a unique representation x = g+z where

geGandz G .

Now, we define the projection E on X as E (x) =g.
Clearly E is onto and bounded.

Also, if x =g +z andz L g then

2+ o =[4"+] 4", s¢

Thus G is an* —summand of ).
Now, forxe X, suppose g, and gare best approximates of x in G .

1 1
By the parallelogram law (applied TE(X— 9) andE(X— 9%)-
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One gets:
2

+

2

+2

2

-1
7(91 - gz)

2
1
= ZHE (X_ gl)

1 1 1
E(X_g1)+§(x_g2) E(X_QZ)

which gives that:
2

<d(x,G)

1 1 1 1
X=2(0:+,) <5W—gm?+jV—gmz=kﬂxen€ﬂm{x—5«h+ga

This contradicts the definition of d (X,G) , unless @
Hence G is Chebyshev.

Corollary 2.6. Any closed subspace gt", or of C'is Chebyshev.

3. Main results
Theorem 3.1. Let G be a closed subspace of a Hilbert space hen1?(u,G) is
proximinal in L (u, X).
Proof : By[[1], proposition 2.8 ], G is proximinally addit.
By theorem (2.5) G is Chebyshev, and in particuitlais proximinal in X. By [[1],
theorem (3.7)] LY (1, G) is proximinal inl? (u, X).

The following theorem is essential for our next m&sult. To prove we need the
following lemma.

Lemma3.2. Let G be a subspace of a normed space X.
Forx € X:
i) ifze P(x G),thene 2 BRx x Gfor all scalarsy
i) ifze P(xG),thenz g x g¥ forallg
Proof: For (i); if ze P(x G, andx # Ois a scalar, then

2|of|x~g| = |ox~ oz

Jox—g|=lef|x-~ g
(04

soaze Plax G

For (ii): If g. € G, we have
[x+9-9g.|2[x-g|=[x+g-(z+0)

Soz+ge p(x+ g Q.

Theorem 3.3. Suppose G is a semi-Chebyshev hyperplane in adBaspace X which
passes through the origin. Then G is proximinadigitive.
Proof: Case (1): G is proximinal.

Let f e X" besothat G #xe X: f(X) =0}

Fix ze x\'G, so f( 2= 0.

Puty. = x—(f(X)/ f(2) z wherexe X.

So, f (¥) =0, whencey. € G.
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ConsequentlyX = G®W whereW={ w=« zaisascalaf (1)
Now, letz € P(%, G, ze R X, G.It will be shown thatz + ze R x+ %, G. By
(*) , every X, X, € X can be written uniquely a%, = ¢, + ¢,z and X, = ¢, + &,z
where g, @ € G ande, ,a, scalars (2)
Now, assume thag). € P(x + %, G.Then by (2)g.€ P((g + @) + (o, +@,)Z, G).
By lemma (3.2)g. = ((g, + 9,) + (o, + &r,) wherewe P(z G).

Sog= g, +owW+ g,+a,W which,

Again lemma (3.2) implies that :

g +awe M(g+,2 G= R ¥ Gandg, +o,we Mg +a,2G= R x G.
Hence,g, + o,W= z,and g,+a,W= Z,SC g=z+2,

Therefore,z + ze R %+ %, Q.

Case (2): G is not proximinal.

By [6, p.93], P(x,G)=¢ Vxe X\ G.
Thus G is vacuously proximinally additive.

Now, we will introduce, with proofs, a sequencepafpositions which will lead
to our proposed extension result.

Theorem 3.4. Let G be a Chebyshev hyperplane in a Banach siaatich passes
through the origin theh? (¢, G) is proximinal inL? (x, X).

Proof: By theorem (3.3), G is proximinally additive.

By [(3.7) of [1]], L”(u,G) is proximinal inL?(, X).

Lemma 3.5. Let G be a closed subspace of a Banach spacelX(}f,G) is proximinal
in L™ (u«, X), then G is proximinal in X. (T, &) is a finite measure space).

Proof: Consider, forxe X the constant function f(t)= x , defined on T. Then

f e L (u, X). Hence , by assumption , therege L (1, G) such that:

|f —g|_=d(f,L"(«G)-By[10,p.36], One hagf —g|_ =supd(f(t),G). Thus,
T

If-9|. = SLTde(X,G)= d(x,G) = sgpmx— g||(t)}.

Therefore,”x_ g(t)|| < d(x,G) for allte T,and hence G is proximinal in X.

Theorem 3.6. Let G be a closed subspace which is proximinatigitaive in a Banach
space X. Therl*(u,G) is proximinal inL*(x, X )if and only if L (,G) is proximinal
in L™ (u, X).
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Proof: If L'(u,G) is proximinal in*(x, X) then by [2,p.528]L~ (1,G) is proximinal
in L™ (u, X).
Conversely, ifL”(u,G)is proximinal in L™ («, X)then by lemma (3.5), G is proximinal
in X. By theorem (3.7 of [1])*(,G) is proximinal in*(x, X).
Now, this is our extension theorem:

Theorem 3.7. Let G be a subspace which is proximinally additimeX, then the
followings are equivalent for any finite measuracsp(T’ﬂ) :

(i) G is proximinal in X.

(i) L(u,G) is proximinal inLl? (u, X)-

(iii)y LP(u,G)is proximinal in L (u, X) for all 1< p< <.

Proof: We only need to recall from [4, p.297] the factttha

Forl< p<eo, LP(u,G)is proximinal in L?(u, X) if and only if L'(u,G)is
proximinal in L*(u, X).

We close this paper by an example, which shows bieatig proximinally
additive in X , the subspace G need not be proxamin

Example 3.8. Let X = ¢, the space of null sequences, equipped with thersarm. Let

GZ{XE C. :iZ‘”xn :O}
n=1

Clearly G is the hyperplane generated b{x) = iZ‘” X, and || f || =110, p32],s0in
n=1

particular G is closed. Let x #&(1,0,0,....),50X€ C | and

d(x,G) =%by [6.p.24].
Now, if there isge G such thafx— g| = %then:
1-g,< %and|gn| < % for alln>?2

Sinceiz-” g, = O,we get that :

n=1
>.27"g,

1 1
2529712

g helSpn L
sé(z |gn|)s2n2=;2 =

and this happens only ifg, | = %for all n.
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But this contradicts the assumption tlgee C.. Thus G could not have been proximinal
in X.

4. Sets approximated by zero
In what follows, if G is a subspace of a normadcspX, then we define the set

P;*(0) ={xe X :0e p(x,G)}. This set is referred to as the set approximayeztho.

Theorem 4.1. Let X be a Branch space, and G be a closed subsplaX. If G is
proximinally additive, then, up to sets of meastem ;

-1 o -1
P (0) =L"(u ,P57(0)).
L (u,G) ©
Proof : Let fe L?( u,R;* (0)). This means f(tg P.* (0) and tha11|f||¢ <o,
Now
f(t) & P5*(0); so, e P(f(t),G); henced( f(t),G)=| f(t)[.
Le. [ <[i)) ~g] ¥ ge G.
In particular,
|| f(t)|| < ||f(t) - h(t)|| Vhel’(u,G)
Since ¢ is strictly increasing, then
o(f®)]) < o(f®) -h®) )V he 2 (w,G)

Integrating both sides we get
Il <[ =i, v hel* (u.G)

Henced (f,L"( 1 ,G))=|f],

Therefore, GP(f,L(1, G))= fs P&} (0)

(u,G)
Thus

-1 1
P O R, 6 ©

Conversely , let & PL;l(ﬂ,G) (0).

So, the zero functio®e P(f,L? (u,Q)).
Hence, by [5.p.73De P(f(t),G)aete T.

So, f(t)e pg'(0) aeteT

f(ty if f(t)e ps (O

Now, define g(t) = i
f(t)—og, otherwise
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where gis the unique best approximant of f(t) in G.

By [7, Lemma 3.1 and Theorem 3.2], and since
(Vte T)f(t) = g, + (f (t) - g,), we conclude thag(t) e P;*(0)Vte T
Finally, by the very definition of g ; f= g a.&t T anc1|g||¢ <oo,80g € L?(u, P;'(0)).

4. A note on optimization theory

Optimization is a mathematical technique that come¢he finding of maxima or minima
of functions within some feasible region. A divéysdf optimization techniques fight for
the best solution. Particle Swarm Optimization (P$0Da comparatively new, current,
and dominant method of advanced optimization tepmmithat has been empirically
shown to perform well on many of these optimizatmwablems. It is lucidly and widely
used to find the global optimum solution in a comxpsearch space. This, in a sense, is
another face of best approximation theory, eadtsifield of application. The difference
is in the fact that, optimal solutions occur asuesl of functions while proximinal maps
have the basic problem of non-being linear. Thigant shortens the scope of invoking
such maps in the theory of best approximation.fewher development, we would like to
refer the reader to [13,14,15].
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