Journal of Mathematics and | nformatics
Vol. 7, 2017, 79-86

ISSN: 2349-0632 (P), 2349-0640 (online) Journal of ]
Published 16 May 2017 Mathema“cs and
WWW. T esear chmathsci.org -
DOI: htp://dx.doi.org/10.22457/jmi v7al0 Informatics

Testing the Dark Energy Model with Strong
Gravitational Lensviaa Markov Chain Monte Carlo
Approach

Jin-Jun Lu, Yu Pan and Xi-Ming Chen

College of Mathematics and Physics
Chongging University of Posts and Telecommunication
Nanan-400065, Chongging, P.R.China
E-mail: 1208874237@qg.com

Received 20 April 2017; accepted 13 April 2017

Abstract. We use the markov chain Monte-Carlo method to cammsthe dark energy
model parameters with 70 strong gravitational idsts(LENS), and combine with baryon
acoustic oscillation (BAO) , the Planck’'s cosmiccroivave background (CMB) and the
type la supernovae (SN), where the Strong Graeitati Lens model parametdr is

taken as a free parameter. The results of the twabmations ofSN + BAO + CMB
and LENs+ BAO + CMB show that the limit of dark energy is consisteithwhe result
of SN in the 20 error range. Compared the range of parameters nelotain both

SN + BAO+CMB and SN + LENs+ BAO + CMB, the strong gravitational lens data
can constrain the model parameters more restrichivaddition, we obtain the strong

gravitational lens model parametefs=1.0390%%0 (Ir Y292 (27 |, which indicate that

the singular isothermal spher8&IS) model is still an appropriate model for deghmith
strong gravitational lens samples.
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1. Introduction

In recent years, astronomical observations of sigyae have shown that the universe is
accelerating [1]. So we propose a dark negativespire to explain the phenomenon of
accelerated expansion of the universe. In 2015Ptheck satellite observations gave the
current dark energy accounting for 69% of the ursigebut we still do not know what
the dark energy is. In order to study its nature,usually use the combination of theory
and observation to discuss the dark energy modedné gravitational lens observation
becomes one of the important tools for studyingremegy after astronomers observed
the first of gravitational lens events in 1979 [Hravitational lens is a phenomenon
predicted by Einstein's general theory of relagiviks time and space in the vicinity of
large mass objects will be distorted, the lightlw#é curved when it passes through the
vicinity of the celestial body. If there is a largeass of foreground objects between the
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observer and the light source, two images willdrened on both sides of the light source.
The gravitational lens effect is defined as thatehis a lens placed between the observer
and the celestial body. The strong gravitationak leffect can magnify the observed
celestial bodies (quasars, supernovae, etc.) and hkean physical background, so it has
a great advantage in cosmological research. Wheelight is propagated in the universe,
it will be influenced by the material distribution the cosmology and the curvature of
the universe. Thus we can study the geometric tsfigicthe universe by applying strong
gravitational lens data. The data of the strongrvitgional lens is cleaner when the
problem of the Hubble constant is avoided in teofnsosmic parameter constraints. Thus,
compared with other observations, the strong gatiwital lens data is more reliable and
convincing in terms of the limitations of the cosnmodel, and the results are in good
agreement with other data [3,4,5].

The Markov chain Monte Carlo algorithm (MCMC) isetimost suitable numerical
method for the study of cosmology when the darkrggnemodel is observed with
astronomical observations. The Markov chain MonagldCalgorithm is initially applied
to computational physics [6], and Hasting's workkesit more general and widely used
in space physics, image analysis, and so on. Thbaglevas applied to the field of
cosmological observation and developed the COSMQGMIiGvare package for the study
of cosmology. The software has been used to doetheant work [3,5,8,9]. In this paper,
we use the software to achieve 70 sets of gramitatilens samples with the aim at
testing the SSLCPL dark energy model.

In this paper, we limit the dark energy dpmbining 70 strong gravitational lens
(LENSs) data [10], baryon acoustic oscillations (BARZ2], Planck cosmic microwave
background radiation (CMB) [13], and 580 la supgmdata (SN) [14]. Generally, we
use the singular isothermal sphere (SIS) modeled With gravitational lens samples
and take the parametér=1. However, taking into account the interrelatiopshivith

cosmological parameters, we take the gravitatideraé model parameter A as a free
parameter.

In the second part, we introduce the strong gréweital lens data, the SSLCPL dark
energy model and the MCMC algorithm. The third paimoduces the limitation method
and the result of the strong gravitational lensdat the SSLCPL model. The fourth part
is the conclusion.

2. Data model and method
2.1. Strong gravitational lens data
Geometrically, the gravitational lens phenomenoddtermined by the position of the
light source, the lens body, and the observer [15].
Ois the observergis the light source, the angular distance of tis lzody from the

observer i, the angular distance of the lens body from thktlsource i®, and the
angular distance between the observer and thedaghte iD, . a is the deflection angle,

@is the angle when the ray is linearly propagatarglf is the angle of the source to the

observer. Since the diameter of the gravitatiomas$lis much smaller than three distances,
it can be approximated as a plane. Distance carb@eadded directly because of the
space-time bending effect.
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WhengB =0, that is the light source, the lens and the olesesve on the same line,

the observed image is ring-shaped, called the &msing. However, based on the
limitations of probability and observations, thermer of such samples in actual
observations is not large. Therefore, we used t&mum angular separation sample of
multi-image, and adopted the isothermal sphere) (8istical approximation model.

Figure 1. Gravitational lens geometric schematic diagram

The basic assumption of the SIS model is that tbhéam of stars and other matter
components in the galaxy is similar to that of tleal gas particles, and the spatial
distribution of the gravitational potential is spiltal symmetry. In the SIS model, the

2
o : ogs D . . .
Einstein ring radiué. = 47TLZSF‘15, Wherecis the speed of lightgygis the model
¢

dispersion velocity. The model parametds introduced to describe the relationship with

S

the observed velocity of the stellar veloaity, whereogs = fo,. The range off is

defined as(0.8)"? < f < (1.2)V*[16].
In this paper, we use the 70 sets of distance alattiined in [10] to limit the dark
energy model parameters. The theoretical expresdithe distance ratio is:
z dz

D"(2,:2; p)=%=—z 5z (1)
L E(Z;p)

WhereE(z’, p) is the parametric dark energy modplis the cosmological parameters,

Z is the source redshifiz, is the redshift of the lens object and the corradpw
c’6.

distance ratio i°s = .
4ol f?

2.2. Dark energy model
In the dark energy model, the dark energy statatouw usually has two formsvis
a constant owevolves with redshift. If we consider that the damkergy equation
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changes with the redshift, we must choose the fancbfW(Z) to determine the
parameter change. CPL (Chevallier-Polarski-Lindggfyametric model is the most

popular dark energy model, whew(az):wo+wa1TZ. The parameterized Fredman
Z

equation is

1+z
whereQ is material density parameters dndQ  is dark energy density parameter.
Gong studied the association of A and B, and gotétationship between them [11]:

(93" -DIYQ, -~ tanh™(/Q,)] -

Q;"% - (Q;' -Dtanh*jQ,
whereQis the current dark energy density parameter. Tiheldfied dark energy
model is called the SSLCPL model.

E2(z p)=Q, (1+2)°+(1-Q, )1+ 2)%*W™) exp{— 3wazj : (2)

Wa = 6(1+ WO)

2.3. MCMC algorithm

Before the emergence of the MCMC algorithm, sclolgenerally used the Bayesian
method to analyze the data [17]. With the develapn@ science and technology,
scholars need to deal with more data. The reldtipnsetween these data is not just a
specific function of high-dimensional integral, botore complex high-dimensional
integral, and the operation is very difficult toatlavith. In this context, the MCMC
algorithm based on the Bayesian method was intexiby the scholars in the mid-20th
century. On the basis of the Bayesian algorithra, MCMC algorithm introduces the
data into the Monte Carlo algorithm for dynamic lgsia through the Markov chain. In
this way, it is possible to avoid the shortcomiofghe Monte Carlo algorithm that can
only be subjected to static analysis, and it cagranme the difficulties of dealing with
high-dimensional integrals that can only deal wgiplecific functions.

When taking the MCMC algorithm to process the daggfirst construct a Markov
chain, and then use the Markov chain to achieveables distribution of the effective
samples generated Monte Carlo integral [18]. Thestmimportant thing for MCMC
algorithm is to build the Markov chain, and the triagportant thing for Markov chain is
to construct a suitable transfer nucleus. Accordintpe different transfer kernel, MCMC
algorithm will be divided into different types, atide most commonly used are Gibbs
sampling [19] and Metropolis-Hastings [20] algonith

3. Analysis
In this paper, we use the¢ minimum method to do the observation of SSLCPL dark

energy model parameters, and the expression gfthgnimum method is
Dith _ DiObS 2
XLENSZ(p) :Z( (p)2 ) .
i Op,

Taking into account the correlation between the ehpérameters and reduce the error,
we combined 70 strong gravitational lens, baryowmillasions, cosmic microwave

(4)
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background radiation and la supernova data:
X* = Xiens + Xeve + Xono + Xen - (5)
We used MCMC algorithm to limit the dark energy ralcand got the corresponding

parameters of the best fitting value and the cpoeding error. The results are showed in
Fig. 2.
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Figure2: The two-dimensional contours of the parametereud+ LENs+ BAO+CMB
We can see thatf , Q_, w, and H, are interrelated in Fig. 2. We use
SN+ LENs+BAO+CMB to get the2o error range of the parameters. The results were:

Q, =0.30533% (b ¥3%2(2r ((Dark matter density parameter);

H, =68.5601% (T }1%3 (27 (Hubble constant);

w, =-1.088 357 .(10):21%(20) (Dark energy state equation parameters);

f =1.039%5% (b Y2022 (2r (SIS model parameters).

In order to study the ability of strong gravitatadriens data to limit the SSLCPL
dark energy model, th€ MB+BAO data are taken as priors and compak&tNs
and SN. Thus, we can get three formsSN +LENs+BAO+CMB ,
SN + BAO +CMB, andLENs+ BAO + CMB . The combination of the different data

gives the parameters within the A error range asvshin Table 1.
Table 1: The best fitting parameters and errors of thraa dambinations

Pararr;(:t SN+ LENs+ BAO+ CMB SN+BAO+CMB LENs+BAO+CMB

Q. |0.305950500) 3313 (20) 02903913 (10) 505 (20) | 0.319: 055, (10) 5550 (20)

B +007 +0.137
wp  [LO8E8n 10 0142(2) |1 05290800y 515 00) | -073798200) 815 20)

68,5607 155 (10) T601(20) 98215135 (10) 5735 (20) BE.363 153 (10) 13653 (20)

We have the following results by analyzing the datthe table: First, in thBo error
range, the constraints of the three data combinatom SSLCPL satisfy the dark state
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equation parameters. Second, with the LENs dat,prameters are more closely
restricted and the error range is reduced. Third,addition of the LENs data breaks

the degeneracy betwe®f andQ . Figures 3-5, the contour lines of the parameters.
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Figure 3: Two-dimensional equal distribution of material digy parameter and dark
energy state equation
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Figure 4. Two-dimensional contour distribution of materiandity parameters and
Hubble constant
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Figure5: Two-dimensional contour distribution of dark engsgate equation
parameters and Hubble constant

4. Conclusion
In this paper, we mainly take 70 sets LENs andutbe of Markov chain Monte Carlo
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algorithm to limit the SSLCPL dark energy model. \Glgtain the2o error range of
the parameters. The results are as follows:

Q,, =0.308; 050 (" J 5002 (&, Hy = 68.5607 ¢ (I 1‘2?&(2 )
00 0.137
Wo = ~1.088007,(10 )*0142(20) f =1.03950% (U )50 (@
In order to illustrate the impact of LENsitd, we use three different data
combinations to limit the SSLCPL dark energy moddle find that: First, in
the20 error range, the constraints of the three data comtions on SSLCPL satisfy

the dark state equation parameters. Second, witlLENs data, the parameters are
more closely restricted and the error range isceduThird, the addition of the LENs

data breaks the degeneracy betwégmandQ,,. Fourth, The SIS model parametér

in the 20 error range is consistent with the reference [16].
Based on the above results, we can find that ifessible to use MCMC

algorithm andy”?minimum method to limit the dark energy model ofLEPL by

astronomical observation data. On the other hamel,strong gravitational lens data
has some limiting effect on the dark energy model the SIS model is still the ideal
model for dealing with strong gravitational lensngdes.
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