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Abstract. We use the markov chain Monte-Carlo method to constrain the dark energy 
model parameters with 70 strong gravitational lens data(LENs), and combine with baryon 
acoustic oscillation (BAO) , the Planck’s cosmic microwave background (CMB) and the 
type Ia supernovae (SN), where the Strong Gravitational Lens model parameter f  is 

taken as a free parameter. The results of the two combinations of CMBBAOSN ++  
and CMBBAOLENs ++  show that the limit of dark energy is consistent with the result 
of SN in the σ2 error range. Compared the range of parameters obtained in both 

CMBBAOSN ++  and CMBBAOLENsSN +++ , the strong gravitational lens data 
can constrain the model parameters more restrictive. In addition, we obtain the strong 

gravitational lens model parameters 0.030 0.042
0.026 0.0351.039 (1 ) (2 )f σ σ+ +

− −= , which indicate that 

the singular isothermal sphere (SIS) model is still an appropriate model for dealing with 
strong gravitational lens samples. 
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1. Introduction 
In recent years, astronomical observations of supernovae have shown that the universe is 
accelerating [1]. So we propose a dark negative pressure to explain the phenomenon of 
accelerated expansion of the universe. In 2015, the Planck satellite observations gave the 
current dark energy accounting for 69% of the universe, but we still do not know what 
the dark energy is. In order to study its nature, we usually use the combination of theory 
and observation to discuss the dark energy model. Strong gravitational lens observation 
becomes one of the important tools for studying cosmology after astronomers observed 
the first of gravitational lens events in 1979 [2]. Gravitational lens is a phenomenon 
predicted by Einstein's general theory of relativity. As time and space in the vicinity of 
large mass objects will be distorted, the light will be curved when it passes through the 
vicinity of the celestial body. If there is a large mass of foreground objects between the 
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observer and the light source, two images will be formed on both sides of the light source. 
The gravitational lens effect is defined as that there is a lens placed between the observer 
and the celestial body. The strong gravitational lens effect can magnify the observed 
celestial bodies (quasars, supernovae, etc.) and has a clean physical background, so it has 
a great advantage in cosmological research. When the light is propagated in the universe, 
it will be influenced by the material distribution in the cosmology and the curvature of 
the universe. Thus we can study the geometric effects of the universe by applying strong 
gravitational lens data. The data of the strong gravitational lens is cleaner when the 
problem of the Hubble constant is avoided in terms of cosmic parameter constraints. Thus, 
compared with other observations, the strong gravitational lens data is more reliable and 
convincing in terms of the limitations of the cosmic model, and the results are in good 
agreement with other data [3,4,5].  

The Markov chain Monte Carlo algorithm (MCMC) is the most suitable numerical 
method for the study of cosmology when the dark energy model is observed with 
astronomical observations. The Markov chain Monte Carlo algorithm is initially applied 
to computational physics [6], and Hasting's work makes it more general and widely used 
in space physics, image analysis, and so on. The method was applied to the field of 
cosmological observation and developed the COSMOMC software package for the study 
of cosmology. The software has been used to do the relevant work [3,5,8,9]. In this paper, 
we use the software to achieve 70 sets of gravitational lens samples with the aim at 
testing the SSLCPL dark energy model. 
        In this paper, we limit the dark energy by combining 70 strong gravitational lens 
(LENs) data [10], baryon acoustic oscillations (BAO) [12], Planck cosmic microwave 
background radiation (CMB) [13], and 580 Ia supernova data (SN) [14]. Generally, we 
use the singular isothermal sphere (SIS) model to deal with gravitational lens samples 
and take the parameter 1=f . However, taking into account the interrelationships with 
cosmological parameters, we take the gravitational lens model parameter A as a free 
parameter.  

In the second part, we introduce the strong gravitational lens data, the SSLCPL dark 
energy model and the MCMC algorithm. The third part introduces the limitation method 
and the result of the strong gravitational lens data on the SSLCPL model. The fourth part 
is the conclusion. 

 
2. Data model and method 
2.1. Strong gravitational lens data 
Geometrically, the gravitational lens phenomenon is determined by the position of the 
light source, the lens body, and the observer [15]. 

      o is the observer, s is the light source, the angular distance of the lens body from the 
observer is dD , the angular distance of the lens body from the light source is dsD , and the 

angular distance between the observer and the light source is sD .α̂ is the deflection angle, 

θ is the angle when the ray is linearly propagating, andβ is the angle of the source to the 
observer. Since the diameter of the gravitational lens is much smaller than three distances, 
it can be approximated as a plane. Distance can not be added directly because of the 
space-time bending effect.  
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      When 0=β , that is the light source, the lens and the observer are on the same line, 
the observed image is ring-shaped, called the Einstein ring. However, based on the 
limitations of probability and observations, the number of such samples in actual 
observations is not large. Therefore, we used the maximum angular separation sample of 
multi-image, and adopted the isothermal sphere (SIS) statistical approximation model. 

 
Figure 1: Gravitational lens geometric schematic diagram 

 
The basic assumption of the SIS model is that the motion of stars and other matter 

components in the galaxy is similar to that of the ideal gas particles, and the spatial 
distribution of the gravitational potential is spherical symmetry. In the SIS model, the 

Einstein ring radius
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dispersion velocity. The model parameterf is introduced to describe the relationship with 

the observed velocity of the stellar velocity0σ , where 0σσ fSIS = . The range of f  is 

defined as 2/12/1 )2.1()8.0( << f [16]. 
In this paper, we use the 70 sets of distance data obtained in [10] to limit the dark 

energy model parameters. The theoretical expression of the distance ratio is: 
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where ( )pzE ,′  is the parametric dark energy model, p is the cosmological parameters, 

sz is the source redshift, dz is the redshift of the lens object and the corresponding 

distance ratio is 
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2.2. Dark energy model 
In the dark energy model, the dark energy state equationw usually has two forms:w is 
a constant orw evolves with redshift. If we consider that the dark energy equation 
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changes with the redshift, we must choose the function of ( )zw to determine the 
parameter change. CPL (Chevallier-Polarski-Linder) parametric model is the most 

popular dark energy model, where( )
z

z
wwzw a +

+=
10 . The parameterized Fredman 

equation is 
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where mΩ is material density parameters and mΩ−1 is dark energy density parameter. 

Gong studied the association of A and B, and got the relationship between them [11]: 
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where 0Ω is the current dark energy density parameter. The simplified dark energy 

model is called the SSLCPL model. 
 
2.3. MCMC algorithm 
Before the emergence of the MCMC algorithm, scholars generally used the Bayesian 
method to analyze the data [17]. With the development of science and technology, 
scholars need to deal with more data. The relationship between these data is not just a 
specific function of high-dimensional integral, but more complex high-dimensional 
integral, and the operation is very difficult to deal with. In this context, the MCMC 
algorithm based on the Bayesian method was introduced by the scholars in the mid-20th 
century. On the basis of the Bayesian algorithm, the MCMC algorithm introduces the 
data into the Monte Carlo algorithm for dynamic analysis through the Markov chain. In 
this way, it is possible to avoid the shortcomings of the Monte Carlo algorithm that can 
only be subjected to static analysis, and it can overcome the difficulties of dealing with 
high-dimensional integrals that can only deal with specific functions. 

When taking the MCMC algorithm to process the data, we first construct a Markov 
chain, and then use the Markov chain to achieve a stable distribution of the effective 
samples generated Monte Carlo integral [18]. The most important thing for MCMC 
algorithm is to build the Markov chain, and the most important thing for Markov chain is 
to construct a suitable transfer nucleus. According to the different transfer kernel, MCMC 
algorithm will be divided into different types, and the most commonly used are Gibbs 
sampling [19] and Metropolis-Hastings [20] algorithm. 
 
3. Analysis 
In this paper, we use the2χ minimum method to do the observation of SSLCPL dark 

energy model parameters, and the expression of the2χ minimum method is 
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Taking into account the correlation between the model parameters and reduce the error, 
we combined 70 strong gravitational lens, baryon oscillations, cosmic microwave 
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background radiation and Ia supernova data: 

.22222
SNBAOCMBLENs χχχχχ +++=                    (5) 

We used MCMC algorithm to limit the dark energy model, and got the corresponding 
parameters of the best fitting value and the corresponding error. The results are showed in 
Fig. 2. 

 
Figure 2: The two-dimensional contours of the parameters under SN+LENs+BAO+CMB 
We can see that f , mΩ , 0w  and 0H  are interrelated in Fig. 2. We use 

SN+LENs+BAO+CMB to get the σ2  error range of the parameters. The results were: 

      +0.009 0.012
0.009 0.0120.305 (1 ) (2 )m σ σ+

− −Ω = (Dark matter density parameter); 

      1.186 1.631
0 1.186 1.64168.560 (1 ) (2 )H σ σ+ +

− −= (Hubble constant); 

      ( ) ( )σσ 21088.1 137.0
142.0

07.0
071.00

+
−

+
−−=w (Dark energy state equation parameters); 

      0.030 0.042
0.026 0.0351.039 (1 ) (2 )f σ σ+ +

− −= (SIS model parameters). 
    In order to study the ability of strong gravitational lens data to limit the SSLCPL 
dark energy model, the CMB+BAO data are taken as priors and compared LENs 
and SN. Thus, we can get three forms: CMBBAOLENsSN +++ , 

CMBBAOSN ++ , and CMBBAOLENs ++ . The combination of the different data 
gives the parameters within the A error range as shown in Table 1.   

Table 1: The best fitting parameters and errors of three data combinations 

We have the following results by analyzing the data in the table: First, in theσ2 error 
range, the constraints of the three data combinations on SSLCPL satisfy the dark state 
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−
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−  )2()1(319.0 186.0

090.0
135.0
074.0 σσ +

−
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equation parameters. Second, with the LENs data, the parameters are more closely 
restricted and the error range is reduced. Third, the addition of the LENs data breaks 

the degeneracy between0w and mΩ . Figures 3-5, the contour lines of the parameters.    

 
Figure 3: Two-dimensional equal distribution of material density parameter and dark 

energy state equation 
 

 
 

Figure 4: Two-dimensional contour distribution of material density parameters and 
Hubble constant 

 

 
Figure 5: Two-dimensional contour distribution of dark energy state equation 

parameters and Hubble constant 
 

4. Conclusion 
In this paper, we mainly take 70 sets LENs and the use of Markov chain Monte Carlo 
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algorithm to limit the SSLCPL dark energy model. We obtain the σ2 error range of 
the parameters. The results are as follows: 

      +0.009 0.012
0.009 0.0120.305 (1 ) (2 )m σ σ+

− −Ω = , 1.186 1.631
0 1.186 1.64168.560 (1 ) (2 )H σ σ+ +

− −= , 

      ( ) ( )σσ 21088.1 137.0
142.0

07.0
071.00

+
−

+
−−=w , 0.030 0.042

0.026 0.0351.039 (1 ) (2 )f σ σ+ +
− −= . 

        In order to illustrate the impact of LENs data, we use three different data 
combinations to limit the SSLCPL dark energy model. We find that: First, in 
the σ2 error range, the constraints of the three data combinations on SSLCPL satisfy 
the dark state equation parameters. Second, with the LENs data, the parameters are 
more closely restricted and the error range is reduced. Third, the addition of the LENs 

data breaks the degeneracy between0w and mΩ . Fourth, The SIS model parameter f  

in the σ2  error range is consistent with the reference [16]. 
Based on the above results, we can find that it is feasible to use MCMC 

algorithm and 2χ minimum method to limit the dark energy model of SSLCPL by 
astronomical observation data. On the other hand, the strong gravitational lens data 
has some limiting effect on the dark energy model, and the SIS model is still the ideal 
model for dealing with strong gravitational lens samples. 
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