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Abstract.  A word, mathematically expressed, is a sequence of symbols in a finite set, 
called an alphabet. Parikh matrix is an ingenious tool providing information on certain 
subsequences of a word, referred to as subwords. On the other hand, based on subwords 
of a word, the notion of precedence matrix or p-matrix of a word has been introduced in 
studying a property, known as fair words. In this paper we consider p-matrix for words 
especially over binary and ternary alphabets and obtain several algebraic properties of the 
p-matrix. 
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1. Introduction 
The theory of formal languages [6] is one of the fundamental areas of the
computer science.   Combinatorics on words [2] is one of the topics of study and r
(see, for example, [3, 7]) in the theory of formal languages but is a comparativ
area of research in Discrete Mathematics, with applications in many fields. The c
of Parikh vector [6], which gives counts of the symbols in a word, has been an im
notion in the theory of formal languages. Extending this concept Mateescu e
introduced the notion of Parikh matrix of a word which gives numerical infor
about certain subwords of the word, including the information given by the Parikh
of the word. Cerny [1] introduced another notion called precedence matrix or p-m
a word which is motivated by the notion of a fair word. Here we consider p-matr
derive certain algebraic properties of binary and ternary words. 

2. Preliminaries 
A word is a finite sequence of symbols taken from a finite set called an alphab
example the word abaabb is over the binary alphabet {a, b}.  An ordered alphabe
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alphabet with an ordering on its elements, denoted by the symbol <. For example, the 
ternary alphabet {a, b, c} with an ordering a < b < c is an ordered alphabet, denoted as {a 
< b < c}. For a word w , the mirror image or reversal of ,1,121 ≥= − naaaaw nnL  is  the 

word ( ) 121 aaaawmi nn L−=  where each ai is a symbol in an alphabet.  A subword 

u of a given word w is a subsequence of w.  We denote the number of such subwords u in 
a given word w by |w|u.  For example,  if the word is w = abaabb over {a < b} ,  the 
number of subwords  ab in w is |w|ab = 7. The Parikh vector [6] of a word w gives the 
number of occurrences of each of the symbols in the word. For example, (3,4,2) is the 
Parikh vector of the word babcbaacb over the ternary alphabet {a ,b, c}. An extension of 
the notion of Parikh vector is the Parikh matrix [5] of a word. For a word w over an 
ordered alphabet Σ, the Parikh matrix M(w) of w is a triangular matrix, with 1′s on the 
main diagonal and 0′s below it but the entries above the main diagonal provide 
information on the number of certain subwords in w. For a binary word u  over the 
ordered binary alphabet {a < b}, the Parikh matrix is 

                                             .
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The notion of precedence matrix or p-matrix of a word over an alphabet has been 
introduced in [1]. Given the square matrices A, B of the same order and with integer 
entries, the matrix BAo  is defined as follows: the (i, j)th  entry of BAo  is given by 

                                        ( )




≠++
=+

=
jiifBABA

jiifBA
BA

jjiiijij

iiii

ijo ,  

where Aij, Bij are the (i, j)th entries of A, B respectively. 
 
Definition 2.1. [1] Let { }kaaa ,,, 21 L=Σ be an alphabet.  For a symbol Σ∈sa for 1 ≤ s 

≤ k, let Eas be the k×k matrix defined as ( ) sjiE
jias

=== if,1
,

 and ( ) ,0
,

=
jias

E  

otherwise. The precedence morphism or p-morphism on Ʃ is the morphism φk given by  
φk(as) = Eas .  For a word w = ai1ai2 … aim,  aij ε Ʃ for 1 ≤ j ≤ m, we have φk(w) = φk(ai1)  ͦ  
φk(ai2)  ͦ …  ͦ φk(aim). In other words φk(w) is computed by the operation  ͦ  on matrices as 
defined earlier. The resulting matrix  φk(w) is called the precedence matrix or p-matrix of 
w. 
 
As an illustration, let { }cba ,,=Σ  with a<b<c, so that k = 3. Then 
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In fact the p-matrix φ3 for a ternary word w over {a, b, c }  is  given by  
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while the p-matrix ( )w2ϕ   for a binary word  over {a, b}  is  given by  

( ) .
||||

||||
2 








=

bba

aba

ww

ww
wϕ  

 
3. Properties precedence matrices of binary and ternary words 
We mainly consider only binary and ternary words and derive properties of p-matrices of 
these words. 

For a binary word w over {a < b}, using the well-known identity [4], namely, 
,|||||||| babaab wwww ×=+  we note that the p-matrix of w can be formed, if the 

Parikh matrix of w  is known. This remark cannot be extended to ternary words.  
Analogous to the notion of M-ambiguity [7] of a word defined in terms of Parikh 

matrix, we can define p-matrix ambiguity of a word. 
 
Definition 3.1. Let { }cba ,,=Σ . A ternary word w over Σ  is said to be p-matrix 

ambiguous if there exists another ternary word v over Σ  such that ( ) ( ).33 wv ϕϕ =  

Otherwise, w is said to be p-matrix unambiguous. 
               For a binary word, p-matrix ambiguity can be similarly defined. 
 
As an illustration, the ternary word u = acbaabcc is p-matrix ambiguous since both the 

words u, v = aabccbac have the same p-matrix .
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Extending an observation in [4], we consider the following rules A, B, C, D, E, F 
and obtain conditions for p-matrix ambiguity of a ternary word. The rules A to F 
are given below: ;:)(:)( abbaBbaabA →→  ;:)(:)( bccbDcbbcC →→  

accaFcaacE →→ :)(:)(  
 
Theorem 3.1. Let  { }cba ,,=Σ  with a<b<c.  If any of the following sets (1) to (3) of 

rules is applicable to a ternary word w with the p-matrix M ,  then the application of 
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the rules in (1), (2) or (3) to the word w yields another ternary word with the same 
p-matrix M.  

;)3(

;)2(

;)1(

EbyfollowedForFbyfollowedERule

CbyfollowedDorDbyfollowedCRule

AbyfollowedBorBbyfollowedARule

 

As a consequence the word w is p-matrix ambiguous. 

Proof: If rule (A) is applied to the word w,  then in the resulting word, the number of  
subword ab  is decreased by 1 while if rule (B) is applied to the word w,  then the number 
of subword ab  is increased by 1 so that application of the rules as in (1), on yielding a 
new  word does not change the number of  subword  ab  and  also the number of subword 
ba. Similar arguments can be made for (2) and (3). 

A notion of weak-ratio property is considered in [8], which we recall here. 

Two ternary words u, v  over  { }cba ,,=Σ  are said to satisfy weak-ratio property and we 

write ,~ vu wr , if },,{for  ,|||| cbaxukv xx ∈= and for  some rational constant k > 0. 

In [3], conditions are derived for the equality of the Parikh matrices of  the words uv  and 
vu , where the words u, v  are over { }cba ,,=Σ  while in [8], given two words u, v  over 

{ }cba ,,=Σ , conditions are obtained for the equality of p-matrices of the words uv  and 

vu. The following Theorem 3.3 has been established in [8]. 

Theorem 3.2. Let { }cba ,,=Σ   and let w1, w2 be  ternary words over  Σ  such that 

.~ 21 ww wr Then ( ) ( ).123213 wwww ϕϕ =  

As a consequence of Theorem 3.3, we have the following result. 

Theorem 3.3.  Let { }cba ,,=Σ ,  

(i) For any ternary word w  over Σ , ( )( ) ( )( ).33 wwmiwmiw ϕϕ =  

(ii) For any two ternary words w1, w2 over Σ  having the same Parikh vector, 
( ) ( ).123213 wwww ϕϕ =  

Proof: Statements (i) and (ii) follow from Theorem 3.3, since  

( ) },,{,|||| cbaxwwmi xx ∈=  so that ( ) wwmi wr~  and },,{,|||| 21 cbaxww xx ∈= so 

that again .~ 21 ww wr  

Theorem 3.4. Let { }cba ,,=Σ   and let w1, w2 be ternary words over Σ  such that 

.~ 21 ww wr Then ( ) ( ).2112312213 γβαϕγβαϕ wwwwwwww =  

Proof:  We have by Theorem 3.3, ( ) ( ).123213 wwww ϕϕ =  Hence  
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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Motivated by Theorem 3.3, we obtain conditions for the equality of p-matrix of uv  and 
the transpose of the p-matrix of vu . 

Theorem 3.5. Let { }cba ,,=Σ   and let w1, w2 be ternary words over Σ  such that 

,||||||||)( 2121 babaabab wwwwi +=+  

cacaacac wwwwii ||||||||)( 2121 +=+ and  

.||||||||)( 2121 cbcbbcbc wwwwiii +=+  

Then ( ) ( )[ ]twwww 213213 ϕϕ =  where tM is the transpose of the matrix M.  

Proof: For i = 1,2, let ,||,||,|| iciibiiai rwqwpw ===  

,||,|| icaiiaci ywxw == .||,|| icbiibci kwhw ==   
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By hypothesis, .,, 212121212121 kkhhyyxxttss +=++=++=+ On using these 
relations, we have 

,||,|| ibaiiabi twsw ==
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( )..213

2121212121

2121212121

2121212121

2121212121

2121212121

2121212121

1212121212

1212121212

1212121212

123

ww

rrqrkkpryy

rqhhqqpqtt

rpxxqpsspp

rrqrhhprxx

rqkkqqpqss

rpyyqpttpp

rrqrkkpryy

rqhhqqpqtt

rpxxqpsspp

ww

t

t

ϕ

ϕ

=
















+++++
+++++
+++++

=

















+++++
+++++
+++++

=

















+++++
+++++
+++++

=

 

4. Conclusion 
Properties of precedence matrices of binary and ternary words have been studied in this 
paper. It will be interesting to make a study of such matrices in the context of picture 
arrays taking motivation from corresponding studies of Parikh matrices of picture arrays 
[11]. 
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