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1. Introduction

The study of fixed and common fixed points of magsi satisfying a certain metrical
contractive conditions attracted many researchees. (X,d) be a metric space. A
mappingT: X — Xis a contraction ifd(Tx, Ty) < kd(x,y), for all x,y eX, where0 <

k < 1. The Banach’'s contraction mapping principle appeéam explicit form in
Banach’s thesis in 1922 [3]. Since its simplicitydausefulness, it has become a very
popular tool in solving existence problems in mémngnches of mathematical analysis.
Banach contraction principle has been extendedanyndifferent directions; see [6-14].
The notion of modular spaces, as a generalizatianatric spaces, was introduced by
Nakano [14] and was intensively developed by Kestd Shimogaki [8] Yamamuro [20]
and others. The main idea behind this new concetitd physical interpretation of the
modular. Informally speaking whereas a metric ose& represent finite nonnegative
distances between two points of the set, a modhlaa set attributes a non negative
(possibly, infinite valued) ‘field of (generalizedglocities’: to each ‘timed > 0 (the
absolute value of), an average veloeity(x, y) is associated in such way that in order to
cover the ‘distance’ between pointsy €X, it takes timeld to move from x to y with
velocity w; (x, y). A lot of mathematicians are interested fixed poiof modular spaces.
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Further the most complete development of theserite@re due to Luxemburg [9],
Musielk and Orlicz [10], Mazur [13], Turpin [19] drthere collaborators.

In 2008, Chistyakov [4] introduced the notion of datar metric spaces generated by F-
modular and developed the theory of this space20h0 Chistyakov [5] defined the
notion of modular on an arbitrary set and develaptheory of metric spaces generated
by modular such that called the modular metric epa€histyakov [4, 6] introduced and
studied the concept ofmodular metric spaces andeprdixed point theorems for
contractive map in Modular spaces. It is relatedctmtracting rather “generalized
average velocities” than metric distances, andsihecessive approximations of fixed
points converge to the fixed points in a weakeseeas compared to metric convergence.
Recently, Mongkolkeha et al. [11,12] has introdusethe notions and established some
fixed point results in modular metric spaces. Ratuor et al. [16] established some fixed
point results in modular metric spaces for wealdynpatible mappings, Azadifar et al.
[2,11,12] proved some fixed point results in modufaetric spaces for compatible
mappings of integral type in Modular Spaces. Raaai Moradi [18] proved common
fixed point results of integral type in modular spa. Rashwan and Hammad [17],
proved common fixed point results for weak conitactof integral type in Modular
Spaces.

2. Experimental details, methods, materials, basic definitionsand preliminaries
We will start with a brief recollection of basicramepts and facts in modular spaces and
modular metric spaces (see [4, 5, 6]).

Definition 2.1. Let X be a vector space over R (or C). A funatiop : X — [0, ] is
called a modular if for arbitrary x and y, elemenfsX satisfying the following three
conditions:

(A.1) p(x) =0ifand only if x = 0.

(A.2) p(ax) = p(x)for all scalar a with | a |=1;

(A.3) plax + By) < p(x) + p(¥), whenever a, = 0,a + = 1.

If we replace (A.3) by

(Ad) plax + By) < a’p(x) + B5p(y), for a,B = 0,a® + B° = 1 with an se(0,1],

then the modulap is called s-convex modular, and if s 9plis called a convex modular.
If pis modular in X, then the set defined by

X, ={xeX: p(Ax) > 0as1— 0"} (2.1
is called a modular spaceX,is a vector subspace of X it can be equipped witla
norm defined by setting|x || ,= inf {1> 0 : p(%) <A} xeX,. (2.2)
In addition, ifp is convex, then the modular spa(;gcoincides with

X, = {xeX : 34 = A(x) > 0 such that p(dx) < oo} 2.3)

and the functional|x||,= inf {A>0: p(%) < 1} is an ordinary norm o, which is
equivalence tdix [ ,(see [13]).

Let X be a non empty sete (0, ) and due to the disparity of the arguments,
function w : (0,0) x X X X— [0,00] will be written asw;(x,y) = w(4,x,y) for all
A>0andx,y eX.

Definition 2.2. Let X be a non empty set. A functian: (0, ©) x X x X— [0, ] is said
to be a metric modular on X if it satisfies thedoaling three axioms:
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0] given x,y eX,w;(x,y) = 0 forall A > 0if and only if x = y;

(i) w3 (x,y) = w3(¥,x) forall A > 0and x,y €X;

(i) Wi+, (0, y) < wp(x,2) + w,(z,y)for all , u > 0 and x,y,z €X.
If instead of (i), we have only the condition
(i) wy(x,x) =0 forall A > 0 and xeX, thenw is said to be a (metric) pseudo modular
on X and ifw satisfies (i’) and
(is) given x, ¥ X, if there exists a numbdr> 0, possibly depending on x and y, such that
w;(x,y) = 0, then x =y, with this conditiow is called a strict modular on X.
A modular (pseudo modular, strict modular) w onsXsaid to be convex if, instead of
(iii) we replace the following condition :

(iv) forallA > 0,u>0and x, y, £X it satisfies the inequality

Wpu(x,y) = wy(x,z) + ﬁwﬂ(z, y) forall A, u > 0andx,y,z

A+
€ X.
Clearly, ifw is a strict modular, thed is a modular, which in turn implies is a pseudo
modular on X, and similar implications hold for eex w.
The essential property of a (pseudo) modulan a set X is a following given
x,y €X, the function0 < 1 - w;(x, y)€[0, ] is non increasing o0iG0, ). In fact, if
0 < u < 4, then (iii), (i") and (ii) imply
wr (%, ) < wr—uy (6, %) + wu(x,y) = w, (x,¥) (2.4)
It follows that at each poirt > 0 the right limitw;,(x,y) = limg_ ;¢ w34+.(x,y) and
the left limit wy_o(x,y) = lim,_ 4 wy_:(x,y) exist in [Opo] and the following two
inequalities hold:
W00, Y) < W (x,y) < wyo(x,¥) (2.5)
From [2.4, 2.5], we know that, if; € X, the set
X,={x€eX: /_{1_)1{)10 w;(x,x) = 0}
is a metric space, called a modular space, whosécrigegiven by
dd(x,y) =inf {1>0: wy(x,y) <A} forallx,y € X,.
Moreover, ifw is convex, the modular s&}, is equal to
X, ={x € X:31=A(x) > 0such thatw, (x, xy) < oo}
And metrizable byd},(x,y) = inf{fA > 0: w,(x,y) < 1} forallx,y € X;,.
We know that if X is a real linear spage; X — [0, ] and

w(x,y) = p (?)for allA>0and x,y €X, (2.6)

Thenp is modular (convex modular) on X in the sensefol) - (A.4) if and only ifw is
metric modular (convex metric modular, respectiyadp X. On the other hand,aif
satisfy the following two conditions:
® w; (px,0) = wy,,(x,0) forall ,p> 0and x € X,
(i) wy(x+2z,y+2z)=w;(xy) forallA> 0and x,y,z € X, if we set
p(x) = wq(x,0) with (2.6) holds, wherg € X, then
(@ X, =X, is a linear subspace of X and the functiolhallpzdg,(x, 0), xeX,, is
an F-norm orX,,;
(b) If w is convex,X; = X;,(0) = X, is a linear subspace of X and the functional
lIx || ,=dg,(x, 0), xeX;, is an norm oX;.
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Similar assertions hold if replace the word modddgrpseudo modular. Ifw is
metric modular in X, we called the s&}, is modular metric space.

By the idea of property in metric spaces and madsfaaces, we defined the
following:

Definition 2.3. [14] Let X, be a modular metric space.
(1) The sequenceéx,) nen in X, is said to be convergent tce X, if
W3 (xp,x) > 0asn - woforall A > 0.
(2) The sequencéx,) nen in X, is said to be Cauchy if
w3 (X, %) = 0asm,n — o for all A > 0.
(3) A subset C of, is said to be closed if the limit of the convergsequence of C
always belong to C.
(4) A subset C ofX, is said to be complete if any Cauchy sequence iis @
convergent sequence and its limit in C.
(5) A subset C of, is said to be bounded if for all
A > 08,(C) = sup{w;(x,y); x,yeC} < oo.
We recall the following definitions in metric space

Definition 2.4. Let X be a seff, g self maps of X. A point x in X is called a coineitte
point of f and g ifffx= gx. We shall callv = fx= gx, a point of coincidence dfandg.

Definition 2.5. Two maps S and T are said to be weakly compatititeey commute at
coincidence points.

Al-Thagafi and Shahzad [1] gave a proper genefidizaof nontrivial weakly
compatible maps which have a coincidence point.

Definition 2.6. [1] Two self maps f and g of a set X are occasignakakly compatible
(owc) iff there is a point x in X which is a coideince point of f and g at which f and g
commute.

We shall also need the following lemma from Jungell Rhoades [7].

Lemma 2.1. Let X be a set, f, g owc self maps of X. If f andhave a unique point of
coincidence, w : =fx= gx, then w is a unique comrfired point of f and g.
Thus we define the above definitions in modularrinetpaces as follows.

Definition 2.7. Let X, be a modular metric space. Let f, g self map& ofA point x in
X, is called a coincidence point of f and g iff fxx. §Ve shall call w = fx= gx a point of
coincidence of f and g.

Definition 2.8. Let X, be a modular metric space. Two maps fand ¥ fre said to be
weakly compatible if they commute at coincidencieim

Definition 2.9. Let X, be a modular metric space. Two self maps f and § pare

occasionally weakly compatible (owc) iff there ip@int x inX,, which is a coincidence
point of f and g at which f and g commute.
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Definition 2.10. [2] LetX,, be a modular metric space induced by metric moduldwo
self mapping f, g ok, arew-compatible ifw; (fgx,, gfx,) — 0, whenevefx, }; -, IS
a sequence i, such thagx, — z and Tx,, — z for some point € X,and for1d > 0.

Lemma 2.2. Let X, ,be a modular metric space and f, g owc self map§,ofif f and g
have a unique point of coincidence, w :=fx= gx,ntleeis a uniqgue common fixed point
of fand g.

3. Observations, results and discussion

Definition 3.1. [15] A function?:R"— R" is called a comparison function if it satisfies
the following conditions:

() ¥ is monotone increasing, (t) <t for some t >0,

(i) ¥ (0) =0,

(iii) lim n—o0 P"(t) = 0, Vt > 0.

Theorem 3.1. Let X, be a complete modular metric space ag$, T: X, —» X, be self

mapping of a complete modular metric spEgeinto itself satisfying the conditions

(3.1.1)S(X,) cJ(X,) andT(X,) c I(X,)

(3.1.2) for allx, yeX,, then there exist a non decreasing right continfwostiony € ¥
Y : RTY > R ,y(0) = 0 andy™(t) < t for everyt > 0 such that

wp(Sx,Ty) M(x,y)
f p(t)dt < wf p(t)dt
0 0

whereM (x,y) = max {wy(Ix ,Jy), 03,(5x, 1x), @, (T, Jy), 5 [@,(Sx.]y) + 05 (Ty, 1x)]
whereg : R* - R is a Lebesgue integrable mapping which is summaioie negative
and for

alle >0 ;fO‘S(p(t)dt > 0 anda > 0. If the pair (S, 1) is compatible and (T, J) isakby
compatible on X, one of S or | is continuous thel 5 T have a uniqgue common fixed
point inX,,.

Proof. Let x, be an arbitrary point i¥,,. Since S(X,,) < J(X,,), choose a point;in X,,
such thatSx, = Jx,. Also sinc&(X,) < I1(X,), let x, be a point inX, such that
Tx, = Ix,. Using this argument repeatedly, we constructcuesece §,,} in X, such
thatSx,, = Jxp.1 =¥, and Tx,,q = [Xp42 = Yp4q foralln > 0.

Now we takex = x,, ,y = x4 in (3.1.2), we get

waA(Sx,Ty) P(t)dt <1 fomax {w(Ix .]y),wx(sx,lx).wx(TyJY)%[wx(Sx.]y)+wzx(Ty.1x)]}(p(t)dt

P (t)dt

1
max{wy(Ixn,J Xn+1)WA(SXnIXn), 04 (TXp11,]Xn11) 5[0 (X0,  Xn 1) + W22 (TXp41,1X0) ]}
<y f
0

J‘ WA (Sxn,TXn+1)
0

p(t)dt
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01 (YnYn+1)
f e(t)dt
0

max {wl(J’n—1rYn)rwl(anYn—1)@1(J’n+1rYn)%[wl(anYn) +w22Vn+1.Yn-11}
<y f

0
0r(nYn+1)
f p(t)dt
0

max {w3(Vn-1.Yn) 01 (Vn¥Yn-1)01Vn+1.Yn)5 [wA(Yn+1 V) + 01 (Vnyn-11}
<y f

p(t)dt

p(t)dt

03 (YnYn+1) (t)dt < wl()’n)’n 1) (t)dt < wl()’n)’n 1) (t)dt
N @ @ @

So we obtain by contlnumg in a similar manner

J‘Owl(ynvyn+1) (p(t)dt < 1,[)2 J‘Owl(yn—lvyn—z) (p(t)dt < wn fowl(yo'yl) go(t)dt

Thus taking limit > o, and using the definition af € ¥,we get

Yn fow’l(y‘”yl) @(t)dt — 0. This shows thafty, } is a Cauchy sequenceXip.

By the completeness &f,, there exist some t ii, such that sequenég,,} and its sub
sequenc®, .1} and{y,,.} also converges to t iXi, .

Now assuming the continuity of I,

We getI%x, - It, ISx, — It.

Also in view of compatibility of(1, S), SIx, - It.

Now using (3.1.2), we have consider

WA (Sxn,TXn+1)
f e(t)dt
0

max{wa(12xn,]xn+1),wa(Slxn,lzxn),w,l(Txn+1,]xn+1),%[wa(Slxn,]xn+1)+w21(]xn+1,12xn)]}
<y f

p(t)dt

Lettingn — «, we get
w;(It,t) max{w; (It,t),w; It,It),w l(t,t)%[w 2t +w 1 (EID]}
| ewarsu |
0

p(t)dt
fwa(ltt) (t)dt < 1/)fmax{(u)t(ltt)oo [w,l(lt,t)+wn(t,1t) (t)dt fw,l(ltt)(p(t)dt <
l,l)fwl(ltt)@(t)dt < fwl(ltt)(p(t)dt,
So thatlt = t.
Again consider,
w2 (St,Txn+1)
f p(t)dt
0

e(t)dt

max{wl(It,]xn_,_1),wl(St,It),wl(Txn+1,]xn+1),%[w1(5t,]xn+1)+w21(]xn+1,1t)]}
<y f

0
lettingn — o, we get

wy (St,t) max{w; (663 (St,t),wz () lwa (St +wz2 (E8)]}
[ ey | POt
0
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max{0,w; (St,t),O,%[wA (St,t)+0]}

w) (St,t)
[ ewde<y o(O)dt
0

0
waA(St’t) (p(t)dt Slpf(;wA(St't) wj (St,t)

@(t)dt < | @(t)dt. HenceSt = t.

Now S(X,) c J(X,) and so their exist another point uXif:t = St = Ju.
Now we will show thaffu= t. For this consider

wy (t,Tu) wy (St,ju)
f (D)t = f (Ot
0 0

771.(19(7{(4)}L (It,]u),wa (SLL,ILL),(L)}L ('1 LL,]LL),—;[(L)}L (St,]u)+w2,1 (]u,It)]}
< 1!) f
0

p(t)dt
wy (£Tw) max{w; (66w (60,03 (Twt) 5[0 (EH)+w22 ()]}
f p()dt < wf p(t)dt
0
w; (tTw) max{0,0,w3 (Tu,t);5[0+0]}
f p(D)dt < wf p(t)dt
0 0
[T o @yde < p [ pde < [T p(0)dt. So thatu = ¢.
Since (T, J) are weakly compatible ¥y andTu = Ju = t so thatTJu = JTu
Tt =TJu=JTu =]t
wy (t,JE) w; (St,Tt)
f p(D)dt < f p(t)dt
0 0
max{w; (It,Jt),w (St,Tt),w, (Tt,]t),%[w,l (St,Jt)+w,y (TLIt)]}
<y f p(t)dt
0
wy (t,Jt) max{w; (t,t),wa (L).wa (4] t)%[w/l (EJt) +wzz (1)1}
[ ewar<y | p(Ode
0 0

max{0,0,wz (£.Jt)5[w; (£J6)+0]}

wy (t,Jt)
f p)dt <y p(t)dt
0 0

wy (tJt) wy (t,]t) wy (tJt)
f p(t)dt Sl/)f p(t)dt < f p(t)dt
0 0 0

So thatt = Jt. Thus Jt = St =It= Tt = t, so that t is a commosed point of 1,J,S and T.
Uniqueness. To prove uniqueness, le¥t be another common fixed point of I, J, S and
T. Then by (3.1.2),

wy (Sz,Tt) max{wj; (Iz,Jt),w; (5z,Tz),w, (Tt?,]t),%[ou)L (Sz,Jt)+w, ) (Tt,12)]}
[ ewdr<u p(t)dt
0 0
max{w) (z,t),w, (z,2z),wy (t,t),%[wa (z,t)+wyy (t,2)]}

w) (z,t)
f p)dt <y p(t)dt
0 0

wy (zt) max{wy (2:£),0,05[wa (zt)+wa (2]}
f p(t)dt Swf p(t)dt
0 0
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wy (z,t) wy (z,t) w) (z,t)
f o(t)dt swf p(t)dt < f o(t)dt
0 0 0

This is a contradiction. Hence t is a unique comfiixed point of I, J,S and T.

Theorem.3.2. Let X, be a modular metric space and |, J, S, X[, » X, be self
mappings such tha&t(X,) < J(X,),andT (X,) < I(X,) and one ofl(X,) orJ(X,) be
a w-complete subspace &f,. Suppose there exists numlogb, ¢, de[0,1) with at least
one ofa, b, ¢ ,d> 0 such that the following assertion for@lteX,, andA>0 hold:
(B21)(a+b+c+2d)<1forall0<a,b,c,d<1

3.2.2f ) vyt < a [ g(tyde + b [ p()de +

(3.1.3w,;,(8x, Ty) <

Then S, T, | and J have a coincidence point. Ifghies (S, I) and (T, J) are occasionally
weakly compatible then S, T, | and J have a comfixedl point inX,,.

Proof: Since the pair (S, I) and (T, J) are occasionaligkly compatible then there exist
u,veX,,

Such thaSu = Iuandjv = Tv

Now we can assert th&t: = Tv,if not then by (3.2.2)

wy(Su,Tv)
f e(t)dt
0 wy(Iu,Jv) wy(Su,lu)
< af go(t)dt+bf p()dt
S)A(TVJV) °
+c f p(t)dt
0 wy(Su,Jv) w2 (Tv,Iu)
+d f go(t)dt+f (p(t)dt]
wy(Su,Tv) 0 0
f e(t)dt
0 wy(Iu,Jv) wy(Iu,lu)
< af P(t)dt +bf @ (t)dt
0 0
wr(Jv,Jv)
+ cf e(t)dt
0
wy(Iu,Jv) wz2(Jv.Iu)
+d U P(t)dt +f (p(t)dt]
w3 (Su,Tv) 0 0
f p(t)dt
0

wy(lu,Jv)
<a f e(t)dt

0
0 Jv) W22V, Iu)
+d U p(t)dt +f (p(t)dt]
0 0

14
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By definition of metric modular and the inequali/4) we get

w)(Su,Tv) wy(Iu,Jv) wo (v, Iu)
f p(t)dt < (a + d)f p(t)dt + df p(t)dt
0 0 0

w3 (Su,Tv)
f e(t)dt
0
wy(Iu,Jv)

<(a+ d)f @(t)dt
wa(lu(,)lu) wz(Tu,Jv)

+d U o(t)dt +f (p(t)dt]
0 0

wy(Su,Tv) wy(Iu,Jv) wy(Iu,Jv)
f p(t)dt < (a+ d)f p(D)dt + df p(t)dt
0 0 0

wy(lu,Jv)

wy(Su,Tv)
f et)dt < (a+ 2d)f p(t)dt
0 0

wy(Su,Tv)

Or(1—a-2d) |, @(t)dt < 0, which is a contradiction.

Hence Su = Tv and thusSu = Iu = Tv = Jv(3.2.1.1)
Moreover, if there is another fixed point of coithence z such thatz = Iz, and using
condition (3.2.2)

w(Sz,Tv)
f e(t)dt
0

wy(Iz,Jv) w(Sz,1z) wy(Tv,Jv)
< af e(t)dt + bf p(t)dt + cf p(t)dt
0 0 0

w)(Sz,Jv) W, (Tv,1Z)
+d U p(D)dt +f (p(t)dt]
0 0

w3 (Sz,Tv)
f p(t)dt
0
w3 (Tv,Tv)

w (Sz,Jv) w(52,5z)
< af p(t)dt + bf e(t)dt + cf e(t)dt
0 0

w)(Sz,Tv) w4(82,Tv) 0
+d U p(t)dt +f (p(t)dt]
0 0

[ g0yt < (a+ 2d) [T p(t)dt, which is contradiction,
Hence,we geSz =1z =Tv = Jv (3.2.1.2)
Thus from equation (3.2.1.1) and (3.2.1.2) it fadothatSz = Su.This implieg = u.
Hencez = Su = Iu for somezeX,, is the coincidence point of S and I.

Then by Lemma 2.2, z is a unique common fixed paofr@ and |I.

HenceSz =1z=z

Similarly, there is a another common fixed paifit, : v = Tv = Jv

Supposev # z, then by (3.2.2) we have
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w(Sz,Tv)
f p(t)dt
0

wy(Iz,Jv) w)(Sz,1z) wy (Tv,Jv)
< af e(t)dt + bf e(t)dt + cf e(t)dt
0 0 0

wy(Sz,Jv) wo(Tv,1z)
+ d[f e(t)dt +f e(t)dt]
0 0

[ gyde < a [0 (ot + d[[E p@)dt + [0 g(0)dt),

we get[“2*” p(t)dt < (a + 2d) [V

0 o @(t)dt, which is contradiction. Hence

Z=".
Hence, z is a unigue common fixed point of S, dnd J.

Theorem 3.3. Let X, be a modular metric space and SX J= X, be self mappings
such thatT (X)) < S(X,,) and one ofS(X,)orT(X,) be aw-complete subspace of
X,.

Suppose there exists numhem, ¢, de[0,1) with at least one o#, b,c,d> 0
such that the following assertion foraalyeX,, andA>0 hold:
(B331)(a+b+c+2d)<1forall0<a,b,c,d<1

(33202 (et <

afowx(sx,Sy) (p(t)dt + bfowx(Sx,Tx)

(3.3.3)w;(Sx, Ty) < o

Then S, T have a coincidence point. Moreafghe pairs (S,T) is occasionally
weakly compatible then S, T have a common fixeapioiX .
Proof: If we put I=J =Ix, wherelx,, is an identity mapping ok, the result follows
from theorem 3.2.

e(©dt + ¢ [T pyde +

Remark 3.1. The theorem 3.2, theorem 3.3 remains true if wepgt) = 1, we get the
following corollaries:

Corollary 3.3.1. Let X, be a modular metric space and |, J, SX] = X, be self
mappings such th&(X,) < J(X,),and T(X,) € I(X,) and one ofI(X,) orJ(X,)
be aw-complete subspace df,. Suppose there exist numberb, ¢ ,de[0,1) with at
least one of, b, c,d> 0 such that the following assertion forslyeX, andA>0 hold:
(331.1)(a+b+c+2d)<1forallO<ab,cd<1
(3.3.1.2,(Sx, Ty) < aw)(Ix,]y) + bw, (Sx,Ix) + cw,(Ty,Jy) + d[w,(Sx,]y) +

W (Ty, Ix)]
(3.3.1.3)w,; (Sx, Ty) < o
Then S, T, | and J have a coincidence point. Ifghies (S, I) and (T, J) are occasionally
weakly compatible then S, T, | and J have a comfixed point inX,,.

Corollary 3.3.2. Let X, ,be a modular metric space and SX J - X, be self mapping
such thatT' (X,,) € S(X,) and $X,) be aw-complete subspace &f,. Suppose there
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exist numbem, b, ¢ ,de[0,1) with at least one of a, b, ¢, d > 0 such thatfdlewing
assertion for alk, yeX,, andA>0 hold
(3321)(a+b+c+2d)<1forallO<ab,cd<1
(3.3.2.2) w (Tx,Ty) < awy(Sx,Sy) + bw, (Sx,Tx) + cw, (Sy, Ty) + d[w;(Sx, Ty) +
w2 (Sy, Tx)]

(3.3.2.3)w; (Sx, Ty) < o

Then S and T have a coincidence point. Maged the pair (S, T) is occasionally
weakly compatible then S and T have a unique comfired point inX,,.

Remark 3.2. The theorem 3.2 remains true if the inequalit2.(B), (3.2.2) are replaced
by the following inequality-

M [ @t < a R gyde + b [ p(nyde +

CwaK(Tyv]y) (p(t)dt + d fow?\(sx:]y) (p(t)dt +ef0w27L(Tyv1x)(p(t)dt
with(a+b+c+d+e)<1lforall0<a,b,cde<l1
(”) fowl(svay) go(t)dt < afow}\(lxv]y)go(t)dt + bfowk(sxle)-"w}\(Tyr]y)(p(t)dt +

chM(Sx’]y)w”(Ty'lx) @ (t)dt with (a + 2b + 2¢) < 1forall 0 < a,b,c <1

(iii) If we putb =c =d =e =0, in inequality.@1), (3.2.2) we have

waA(Sx’Ty) p)dt <a fowx(lx ) p(t)dt, withforall0 <a< 1

(iv) If we put a=d=0, we get in inequality (3.2.1),22)

wx(Sx,Ty) W (Sx,1x) wA(Ty.Jy)
f p(t)dt < bf p(t)dt + cf p(t)dt
0 0 0

with (b +c¢) <1forall0 <b,c<1.
(v) If we put 1=J ==Ix,, in (3.2.2), wherdx,, is an identity mapping ok,

[ gyt < a [ p(oyde +b [ p@yde + ¢ [T p0)de +

d [l enEITOl 6 (e with (@ + b + ¢ +2d) < Lforall 0 < a,b,¢,d < 1.

Hence in a similar manner, if we put thiuga of a, b, ¢, d are zero respectively, we
get different integral type inequality for two mapgs. If we put forp(t) = 1, we get the
different type inequality for four and two mappings

4. Conclusion

Some common fixed point theorems satisfying intetype contractive condition for
compatible, weakly compatible and occasionally Meagompatible mappings in
modular metric space are proved. Our main resulbé@orem 3.1, is a generalization of
the results of Azadifar et al. [2], for a pair obrapatible and weakly compatible
mappings, theorem 3.3, is a generalization of éselts of Rahimpoor et al. [16], for a
pair of occasionally weakly compatible mappingsirdaégral type, corollary 3.3.2 is a
similar result due to Rahimpoor et al. [16], witlglstly different contractive condition as
mentioned in remark 3.2 condition (ii). Our reswdted corollaries are the real extension
and generalizations of the corresponding resul@Ghi$tyakov [6], Mongkolkeha [11,12],
and recent results in modular metric spaces.
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