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Abstract. Given a simple graph ),(= EVG  and a fixed positive integer k . In a graph 

G , a vertex is said to dominate itself and all of its neighbors. A set VD ⊆  is called a k
-tuple dominating set if every vertex in V  is dominated by at least k  vertices of D . The 
k -tuple domination problem is to find a minimum cardinality k -tuple dominating set. 
This problem is NP-complete for general graphs. In this paper, the same problem restricted 
to a class of graphs called circular-arc graphs are considered. In particular, we presented an 

)( 2nO -time algorithm to solve the 2-tuple domination problem on circular-arc graphs, one 
of the non-tree type graph classes. 
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2 -tuple domination. 
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1.Introduction 
Circular arc graphs are intersection graphs of arcs of a circle. These graphs have been 
reported since 1964 and they have been received considerable attention for a series of 
papers by Tucker in the year 1970. Various subclasses of circular-arc graphs have been 
also studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, 
Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations 
and recognition algorithms have been formulated for circular-arc graphs and its subclasses. 
In particular, it should be mentioned that linear time algorithms are known for all these 
classes of graphs. 

A graph ),(= EVG  is called an intersection graph for a finite family F  of non 

empty sets if there is a one-to-one correspondence between F  and V  such that two sets 
in F  have a non empty intersection if and only if their corresponding vertices in V  are 
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adjacent to each other. F  is called an intersection model of G  and G  is called the 
intersection graph of F . If F  is a family of arcs around a circle then G  is called a 
circular-arc graph. If F  is a family of line segments on the real line, then G  is called an 
interval graph. An interval graph is a special case of circular-arc graphs; it is a circular-arc 
graph that can be represented by arcs that do not cover the entire circle. Some circular-arc 
graphs do not have such a representation, so the class of interval graphs is a proper subclass 
of the class of circular-arc graphs. 

In general, problems for circular-arc graphs tend to be more difficult than for 
interval graphs. One of the reasons is that intervals of a real line satisfy the Helly property, 
while arcs of a circle do not necessarily satisfy it. This implies that the maximal cliques of 
an interval graph can be associated to chosen points of the line. The latter means that an 
interval graph can have no more maximal cliques than vertices. In contrast, circular-arc 
graphs may contain maximal cliques which do not correspond to points of the circle. 

The domination in graph theory is a natural model for many location problems in 
operations research. In a graph G , a vertex is said to dominate itself and all of its 
neighbors. A dominating set of ),(= EVG  is a subset D  of V  such that every vertex 

in V  is dominated by at least one vertex in D . The domination number )(Gγ  is the 

minimum cardinality dominating set of G . 
For a fixed positive integer k , a k -tuple dominating set of a graph ),(= EVG  

is a subset VD ⊆  such that every vertex in V  is dominated by at least k  vertex in D
. The k -tuple domination number )(Gk×γ  is the minimum cardinality of a k -tuple 

dominating set of G . The special case when 1=k  is the usual domination. The case 
when 2=k  was called double domination or 2-tuple domination in [12]. A 2-tuple 
dominating set D  is said to be minimal, if there does not exist any DS ⊂  such that S  
is a 2-tuple dominating set of G . A 2-tuple dominating set D , denoted by )(2 G×γ , is 
said to be minimum, if it is minimal as well as it gives 2-tuple domination number. Since 
every vertex in V  is dominated by at least 2 vertices in D , therefore D  contains at least 
two members, i.e., 2|| ≥D . The case when 3=k  was called triple domination in [16]. 
This problem is NP-hard for general graphs. There exist polynomial time algorithms to 
solve 2-tuple domination problem for some special classes of graphs [1, 13, 15, 17]. 

 
1.1.Review of previous work 
Eschen and Spinrad [6] presented an )( 2nO -time algorithm for recognizing a circular-arc 
graph and constructing a circular-arc model. There are several results on the circular-arc 
graphs. We only mention results relevant to the class of domination problems studied in 
this paper. Domination and its variations have been extensively studied in the literature, see 
[3, 9, 10]. Chang [3] presented a unified approach to design efficient )(nO  or 

)loglog( nnO  algorithms for the weighted domination problem and the weighted 
independent, connected, and total domination problems on interval graphs, and extended 
the algorithms to solve the same problems on circular-arc graphs in )( mnO +  time. 

Among the variations of domination, the k -tuple domination was introduced in [12], also 
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see [9]. While determining the exact value of )(Gk×γ  for a graph G  is not easy, many 

studies focus on its upper bounds. Gagarin and Zverovich presented an upper bound for 
general graphs in [7], and later Chang [5] improved it. In [15], Pramanik, Mondal and Pal 

solved 2-tuple domination problem on interval graphs using )( 2nO  time. Recently, 
Barman, Mondal and Pal [1] solved 2-tuple domination problem on permutation graphs in 

)( 2nO  time. 
 

1.2.Application 
A circular-arc graph is a general form of interval graph and it is one of the most useful 
discrete mathematical structures for modeling problems arising in the real world. 
Circular-arc graphs arise in genetics, traffic control, computer compiler design, scheduling 
problems and other combinatorial problems. 

Domination in graphs has many applications in several fields. Domination arises in 
facility location problems, where the number of facilities (e.g., hospitals, fire stations etc.) 
is fixed and one attempts to minimize the distance that a person needs to travel to get to the 
closest facility. A similar problem occurs when the maximum distance to a facility is fixed 
and one attempts to minimize the number of facilities necessary so that everyone is 
serviced. Concepts from domination also appear in problems involving finding sets of 
representatives, in monitoring communication or electrical networks, and in land surveying 
(e.g., minimizing the number of places a surveyor must stand in order to take height 
measurements for an entire region). An important application for network purposes of k
-tuple domination is for fault tolerance or mobility. 

 
1.3.Main result 
Given the sorted array of end points of the arcs in the intersection model of the circular-arc 
graph. An algorithm is designed to solve the 2-tuple domination problem on the 

circular-arc graph with running time )( 2nO , where n  is the number of arcs. 
 

1.4.Organization of the paper 
The remainder of this paper is organized as follows. In Section 2 we introduce the notations 
and definitions used throughout the paper. In Section 3 we study the approaches towards 
solving 2-tuple domination problem for Circular arc graphs and present some intermediate 

results for the same. In Section 4, we present an )( 2nO  time algorithm for the 2-tuple 
domination problem in circular-arc graphs. Section 5 contains some concluding remarks. 

 
2.Notations and preliminaries 
Let },...,,{= 21 nAAAA  be the circular arc family of circular-arc graph ),(= EVG . The 

family of circular-arcs are located around a circle C . While going in a clockwise 
direction, the point at which we first encounter the arc iA  will be called the left point of 

the arc i  and is denoted by il . Similarly, the point at which we leave the arc iA  will be 

called the right point of the arc i  and is denoted by ir . Every arc can be represented by 

their two endpoints, e.g., iA  can be represented as ],[ ii rl  where il  is the left point and 
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ir  is the right point of the arc iA  on the circle C . A ray is a straight line from the centre 

of the circle C  passing through the right end point of any arbitrary chosen arc. We label 
this arc by n , then start anticlockwise traversal from the ray. We label 1−n  to the arc 
with next successive right end point. In this process, we label all the remaining arcs. 

 
 

Figure 1: A circular-arc graph and its circular-arc representation 
 

 
Without loss of generality, we assume the following :   
1. An arc contains both its end points and that no two arcs share a common end point.  
2. The graph G  is connected and the list of sorted endpoints is given.  
3. No single arc in A  cover the entire circle C .  
4. Arcs and vertices of a circular-arc graph are same.  
5. The endpoints of the arcs in A  are sorted according to the order in which they are 

visited during the anticlockwise traversal along circle by starting at an arbitrary arc 
called nA .  

6. The arcs are sorted in increasing values of ir  i.e., ji rr <  for ji < .  

7. CAi

n

i

=
1=
∪  (otherwise, the problem becomes one on interval graph).  

 
We henceforth assume that the arcs are given sorted by their right endpoints. In 

this paper, we consider only finite, undirected, connected graphs without self loops or 
multiple edges. From now on, when there is no ambiguity we use the term "arcs" and 
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"vertices" interchangeably. We use the same labels to refer to the vertices in a circular-arc 
graph as well as the corresponding arcs in its circular-arc representation that is being 
considered. 

The family of arcs A  is said to be canonical, if il  and ir  for all ni 1,2,...,=  

are distinct integers between 1 to n2 . 
If A  is not canonical, using sorting one can construct a canonical family of arcs 

using )log( nnO  time. 
An arc i  is contained in arc j , if every point of the arc i  is in the arc j . Let 

)(iN  be the set of arcs intersecting the arc i  and }{)(=][ iiNiN ∪ . 

A vertex u  is 1-dominated by itself and all its neighbors. Unless stated, we use 
the vertex u  dominate the vertex v  to mean u  1-dominate the vertex v . A vertex is 
said to be 2-dominated if it is dominated by at least two vertices. 

The span of a vertex u  is defined to be the highest arc which is dominated by the 
vertex u  and is denoted by span )(u . 

That is, span { }][ : =)( uNxxmaxu ∈ . 

The continuous part of the circle that starts at the point l  and terminates at the 
point r  is denoted by seg l( , )r . 

A point x  on the circle is said to be in the arc iA  if it lies within the interior of 

the seg il( , )ir . 

For each i , define )(1 inext  to be the arc in ][iN  whose right end point is last 

encountered in a clockwise traversal from )(il . 

The array )(2 inext  to be the arc in ][iN  whose right end point is first 

encountered in anticlockwise traversing from the point ))(( 1 inextr . From this definition, 

it follows that ))((>))(( 21 inextrinextr . 
 

3.Some results 
Instead of presenting the algorithm on the circular-arc graph G , we will be working with 
the intersection model of G . Observe that, the vertex )(1 inext  dominates the arc i  and 

all arcs which overlap with the arc )(1 inext . Also the vertex )(2 inext  dominates the arc 

i  and all arcs which overlap with the arc )(2 inext . 
 

Lemma 1.The vertex )(1 inext  has maximum span 1-dominating the vertex i . 

Proof: From definition of )(1 inext , it follows that the vertex )(1 inext , 1-dominates the 

vertex i . Also the vertex )(1 inext  has maximum right end point among the vertices of 

][iN , that is, )(1 inext  dominates the highest arc. Hence the result.           

It is easy to see that, the vertex )(2 inext  has next to maximum span 1-dominating 
the vertex i .  
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Figure 2: A part of circular-arc representation 
 

  The following lemma plays an important role for the development of the 
algorithm. 

 
Lemma 2.Let ))}(()),(({=)( 21 inextlinextlmaxim . The vertices )(1 inext  and 

)(2 inext  2-dominates all arcs in ))((),(( 2 inextrimseg .  

Proof: Let j  be any arc which overlaps with ))((),(( 2 inextrimseg . Then there must be 

a point x  of the arc j  such that ))((<<))(( 11 inextrxinextl  and  

))((<<))(( 22 inextrxinextl . Since ))}(()),(({=)( 21 inextlinextlmaxim  and  

))((<))(( 12 inextrinextr , therefore ))((<<)( 2 inextrxim . Then the point x  is 

common to both )(1 inext  and )(2 inext . This implies every point of 

))((),(( 2 inextrimseg  overlap with both the arcs )(1 inext  and )(2 inext .i.e., the arc j  

is 2-dominated by both )(1 inext  and )(2 inext .           

Let D  be the 2-tuple dominating set. Initially, ∅=D  and 1=i . Firstly 
)(1 inext  and )(2 inext  selected as members of D . Then we select vertex p  whose 

right end point is first encountered in clockwise traversal from ))(( 2 inextr  such that 

))((>)( 2 inextrpl . Two cases may arise: p  intersect )(1 inext  or p  does not 

intersect )(1 inext . 

If p  intersect )(1 inext  then the vertex p  is 1-dominated by )(1 inext . Since 

)(1 pnext  has a maximum span among all vertices which dominates the vertex p , 

)(1 pnext  will be selected as the next member of dominating set. There are two sub cases: 

))(()( 11 inextNpnext ∈  or ))(()( 11 inextNpnext ∉ . 

For the first sub case among the vertices )(1 inext  and )(1 pnext , select the 

vertex whose right end point is minimum and replace that vertex by )(2 inext . If 

))(()( 11 inextNpnext ∉ , )(2 pnext  will be selected as a member of D  to 2-dominate 
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the arc p  and replace )(2 inext  by )(2 pnext . 

If p  does not intersect )(1 inext , then i  is replaced by p  and the above 
process is repeated. 

This procedure is continued until ninext =)(1  or np = . 

Note that, ))((>))(( 21 inextrinextr  for every vertex i . Therefore 

ninext ≠)(2  for any Vi ∈ . 
 

Lemma 3.If ninext =)(1  for some Vi ∈  then }),({= 2 ninextDD ∪ . Moreover, if 

there is no vertex k  such that (1))((1),( 2nextrrsegk ∈  then (1)2next  is deleted 

from D . 
Proof: Recall that, initially the vertices (1)1next  and (1)2next  selected as a member of 

D  to 2-dominate the vertex 1. Now, the vertices 1 and n  are adjacent. Since the vertex 
ninext =)(1  is a member of D , the vertex 1 is 2-dominated by (1)1next  and n . If 

there is no vertex k  such that (1))((1),( 2nextrrsegk ∈  then (1)2next  does not 

dominate any vertex other than 1 . The deletion of (1)2next  from D  reduces the 

cardinality of D  as well as resulting set D  is a 2-tuple dominating set. Since our aim is 
to compute minimum cardinality 2-tuple dominating set, (1)2next  is deleted from D . 
Hence the lemma.           

 
Lemma 4.If np =  then the dominating set may be changed or unaltered. 
Proof: If np =  then there are four cases may arise. 

Case 1: (1))( 1nextNp ∈  and (1))( 2nextNp ∈ . 

In this case the vertex p  is 2-dominated (1))( 1nextN  and (1))( 2nextN  and 

D  remains unaltered. 
 Case 2: (1))( 1nextNp ∈  or (1))( 2nextNp ∈  and )(qNp ∈  for any  

(1)}(1),{\ 21 nextnextDq ∈ . 
In this case also all the arcs are covered and D  remains unaltered. 

 Case 3: (1))( 1nextNp∈  or (1))( 2nextNp ∈  or )(qNp ∈  for some  

(1)}(1),{\ 21 nextnextDq ∈ . 

In this case p  is 1-dominated by (1)1next  or (1)2next  or q  for some 

(1)}(1),{\ 21 nextnextDq ∈ . To 2-dominate the vertex p , )(1 pnext  is selected as a 

member of D . Then the vertex 1 is adjacent to )(1 pnext . The vertex 1 is 2-dominated 

by (1)1next  and )(1 pnext . If there is no vertex k  such that  

(1))((1),( 2nextrrsegk ∈  

then (1)2next  does not dominate any vertex other than 1. Hence, in this case (1)2next  

will be deleted from D . Otherwise, D  remains unaltered. 
 Case 4: (1))( 1nextNp ∉  or (1))( 2nextNp ∉  or )(qNp ∉  for some 
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(1)}(1),{\ 21 nextnextDq∈ . 

In this case to 2-dominate the vertex p , )(1 pnext  and )(2 pnext  is selected as 

member a of D . Then the vertex 1  is adjacent to )(1 pnext . The vertex 1  is 

2-dominated by (1)1next  and )(1 pnext . If there is no vertex k  such that 

(1))()),((( 21 nextrpnextrsegk ∈  then (1)2next  does not dominate any vertex other 

than 1. Hence (1)2next  will be deleted from D  if (1))()),((( 21 nextrpnextrsegk ∉ . 

Otherwise, D  remains same. 
Hence the lemma follows.           
 

4.The algorithm 
Based on the above results and discussion a formal description of the algorithm is given 
below. 
 
Algorithm 2TDP 
Input: A set of sorted arcs of a circular-arc graph ),(= EVG . 

Output: A minimum cardinality 2-tuple dominating set of G . 
    Initially Φ=D  (empty set). 

Step 1: Compute ][iN , )(1 inext  and )(2 inext  for each vertex Vi ∈ . 

Step 2: Initialize 1=i . )}(),({= 21 inextinextDD ∪ . 
Step 3: Select the arc whose right end point is first encountered in clockwise 

traversal starting from ))(( 2 inextr . Let it be p . 

Step 4: If ))(( 1 qnextNp ∈  for some Dq ∈  then )}({= 1 pnextDD ∪ . 

If ))(()( 11 inextNpnext ∈  then among the arcs )(1 inext  and )(1 pnext , select  
the arc whose right end point is minimum, goto Step 3 and replace that vertex by  

)(2 inext . 

else   [ ))(()( 11 inextNpnext ∉  then] 

    If ))((),(( 1 pnextrplsegi ∉  then 

)}({= 2
1 pnextDD ∪ , goto Step 3 and replace )(2 inext  by )(1 pnext .  

    else 
)}({= 2 pnextDD ∪ , goto Step 3 and replace i  by p . 

    endif 
endif 

Step 5: If ))(( 1 qnextNp ∉  for any Dq ∈ , replace i  by p  and goto Step 2. 
Step 6: If np =  then 

If (1))((1))( 21 nextNnextNp ∩∈  or if )(qNp ∈  for some  

(1)}(1),{\ 21 nextnextDq ∈  and (1))((1))( 21 nextNnextNp ∪∈  then 

D  is unaltered 
elseif (1))( 1nextNp ∈  or if (1))( 2nextNp ∈  or if )(qNp ∈  for some 
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(1)}(1),{\ 21 nextnextDq∈  

)}({= 1 pnextDD ∪  

If ∃  some arc k  such that (1)))()),((( 21 nextrpnextrsegk ∈  then 

D  remains unaltered 
else 

(1)}{\= 2nextDD  
else 

)}(),({= 21 pnextpnextDD ∪  

If ∃  some arc k  such that (1)))()),((( 21 nextrpnextrsegk ∈  then 

D  remains unaltered 
else 

(1)}{\= 2nextDD  
endif 

Step 7: If ninext =)(1  then  

)}(),({= 21 inextinextDD ∪  

If ∃  any arc k  such that (1)))((1),( 2nextrrsegk ∈  then 
D  remains unaltered 
else 

(1)}{\= 2nextDD  
endif 

end 2TDP 
 
Lemma 5.The set D  is a minimum 2-tuple dominating set. 
Proof: It is easy to see that, the set D  obtained by the Algorithm 2TDP is a 2-tuple 
dominating set. Now we shall show that D  is the minimum 2-tuple set. For this purpose, 
we discuss those steps of the Algorithm 2TDP where we select the member(s) of the set D  
in the following: 
Step 2: In this step we include the elements (1)1next  and (1)2next  as member of D . 

Two members of D  are necessary to 2-dominate the vertex 1 . Also (1)1next  and 

(1)2next  has maximum span and next to maximum respectively dominating the vertex 1. 

Therefore (1)1next  and (1)2next  are the best selection to achieve a maximum span. 
Step 4: Let p  be the arc whose right end point is first encountered in clockwise traversal 

from (1)2next . Then p  is not dominated by (1)2next . If ))(( 1 qnextNp ∈  for some 

Dq ∈  then p  is dominated by q . To 2-dominate the vertex p , )}({ 1 pnext  is 

selected as a member of D , since it has a maximum span dominating the vertex p . 

If (1))()( 11 nextNpnext ∈  then the vertex )(1 pnext  is 2-dominated by 

(1)1next  and )(1 pnext . To 2-dominate the other vertices clockwise traversal is done 

from (1))( 1nextr , if ))((<(1))( 11 pnextrnextr . Otherwise, clockwise traversal is done 
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from ))(( 1 pnextr . 

If (1))()( 11 nextNpnext ∉  then the vertex )(1 pnext  is dominated by itself 
only. 

If there is no arc in ))((),(( 1 pnextrplseg  then the vertex )(2
1 pnext  is added to 

D  and clockwise traversal is done from ))(( 1 pnextr . Otherwise, the vertex )(2 pnext  

added to D  and clockwise traversal is taken from ))(( 2 pnextr . 

Finally, when np =  or ninext =)(1 , the dominating set is modified in Step 6 
and Step 7 (Lemma 3 and 4). 

In the Step 2 and Step 4 of the algorithm, the elements of D  are selected (or 
deleted) in such a way that maximum span is achieved as well as each arc of the graph G  
is 2-dominated by minimum number of vertices. Therefore D  is a minimum 2-tuple 
dominating set.  
 
Theorem 1.Algorithm 2TDP finds a 2-tuple dominating set on circular-arc graphs in 

)( 2nO  time.  
Proof: The time complexity of Algorithm 2TDP is caused mainly by the computation of 

)(iN . For each Vi ∈ , calculation of )(iN  requires )(nO  time where n  is the total 

number of arcs.This is repeated for n  times. Therefore total time to compute )(iN  is 

)( 2nO . The remaining part of the algorithm requires )(nO  steps Thus the overall time 

complexity is )(=)()( 22 nOnOnO + .            
 

5.Concluding remarks 
In this paper, we developed an efficient algorithm that solves the 2 -tuple domination 

problem on circular-arc graphs using )( 2nO  time. The same algorithm can be applied to a 
subset of circular-arc graphs known as interval graphs and the time complexity remains 
unchanged. A future study can investigate to design a polynomial time algorithm to solve 
k -tuple domination problem for 2>k . 
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