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Abstract. For the first time the structural, elastic anddgap properties of 10 perovskite
crystalslAlIAR;(IA=K, Rb;11A=Be, Mg, Ca, Sr, Bayere calculated systematically using
the CRYSTALQ9 program. Several trends in the vemmbf these properties in relation
to the lonic radiu® of the alkaline-earth metals ions were found. artipular, the lattice
parameter of these compounds increases Rjitlvhereas the elastic constants and band
gap decrease. The Research of above propertiebevilery helpful in order to further
improve their performances on the high-technolqgyiaations.
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1. Introduction

Fluoroperovskites is a common name for a large mroti crystals with the general
chemical formuldAlIAF; where thdA are the univalent cations of the alkali-metals and
lIA are the divalent cations of the alkaline-earth teefsl chosen compounds crystallize
in theFm-3mstructure (Space Group No. 225). Those types wipownds have attracted
increasing attention recently because of its egoelphysical and chemical properties.
Also, its application covers the ferroelectric fi¢zoelectric [2], catalytic action [3],
colossal magnetoresistance [4] and iron [5, 6]estgnductor [7-9], battery electrode [10]
and other aspects. Moreover, perovskite crystatstre is one of the most common type
of structure of inorganic solid state chemistryg amost of the perovskite compounds are
oxide and fluoride, so it's easy to synthesis ia tAboratory. Based on these special
properties, perovskite halide has great potentiakiw materials application fields.

In fact, those types of compounds have been partedearched before, but never at
such scale. In the early 80s, Brauch and Durr mtdkat the KMgg: Cr** and CsCaf
V% crystal could be used as a near infrared speeimin of tunable laser active element
in Ref. [12].The pressure effects on the elastlecteonic and optical properties of
KCaF3 were studied in RgfL3] using the WIEN2K code. The KCaknd RbCak
perovskites were considered in Refs. [14, IHje structural, electronic and optical
properties of KCafand KCaCJ were calculated in RgfL6]. Finally, various approaches
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to study CsCaf-at ambient pressure were employed in Refs. [17-R04lso can be
noticed that the spectroscopic properties of varioupurities in these perovskites were
studied, for example, Rli [21] and Gd" [22] in RbCak, V** [23] and Cf [24] in
CsCak, Pr* and C&"in KCaF; [25].

With the development of technology and economlyag been gradually become an
urgent work to seek new cubic perovskite materi#ks.unrealistic to synthesize all of
them because of enormous workloadssyothesize all of them, which restricted the
perovskite compounds application prospect in thkl fof new materials. However, with
the developing of CPU performance and the declfreost, it's fortunate to know that it
is gradually possible to use theoretical softwatgh as CRYSTALO9 based on first-
principles calculation, to compute and design neatemals. This method has been
gradually become a popular way to study the newpmamds. Thus, in the present work,
the CRYSTALO9 software was used to calculate artdrdeéne the reality structure of
cubic perovskite crystals from two possible struesu Also, the properties of elastic and
electronic were considered. This work could provideeference to the experiment to
some extent.

The structure of the paper is as follows: the method details of calculations are
described in Section 2. All calculated results glovith corresponding discussions are
collected in Section 3 (which is divided into sealesubsections for easier reading).
Section 4 contains the main conclusions of theguresl calculations.

2. Details of calculations

For the geometry optimization calculation: The cengence criteria on the root-mean-
square (RMS) of the gradient and the nuclear disphent (TOLDEG and TOLDEX)
were set to 0.00006 Hartree/Bohr and 0.00012 Bekpectively. The energy calculation
precision setting was chosen as follows: the hylxdhange-correlation functional
WC1PBE consisting of a PBE correlation part and a-@dhen exchange part with a
fractional mixing (16%) of the nonlocal Hartree-kd&lF) exchange was adopted in this
study. An “extra extra large” pruned DFT integratigrid (XXLGRID) was adopted. The
Monkhorst—Packschem for 14x14xJ1dpoint mesh in the Brillouin zone (BZ) was
applied; the truncation criteria for bielectronittdgrals (Coulomb and HF exchange
series) were setto 9, 9, 9, 9 and 18; Bipolar Bsisa approximation control was set as
follows: 27 for Coulomb and 21 for exchange. Theximaim cycle number was set to
900. The tolerance of the energy convergence ogdlieonsistent field (SCF) iterations
(TOLDEE) was set to I¥Hartree. For the elastic constant calculation.

The Gaussian-type basis sets were employed asvillg_pob_TZVP_2012 was
used for K. Rb_SC_schoenes_ 2008 was used for Rtb-BEG_lichanot 1992 [26] was
used for Be.Mg_8-511d1G_valenzano_2006 [27] wagl dee Mg. Ca_86-511d21G-
valenzano_2006 [28] was used for Ca. Sr_ HAYWSC-BALG_piskunov_2004 [29]
was used for Sr. Ba_ HAYWSC-311(1d) G_piskunov_2{B®} was used for Ba. F_7-
311G_nada_ 1993 was used for F [31].

After the crystal structures were optimized witte thbove-given computational
settings, the electronic, elastic properties weldeuwated, all these results are presented
below.

48



First-principles Study of the Correlation BetweemsHHComponents and Properties of
IAIIAF; Cubic Perovskite Compounds

3. Results of calculations
3.1. Sructural properties
All 10 perovskites were considered in the presemqtep, the first and the second cations
are 12- and 6- fold coordinated by the fluorinesiorespectively. A summary of the
structural data for the 10 perovskites are listedable 1. As seen from the table, the
lattice constants increase monotonically with iasieg atomic number and ionic radii of
the second cation (Be - Mg - Ca - Sr - Ba). Thaieslof the lattice constants for those
perovskites, for which we did not find any expenita data, are the theoretical
estimations, which can be tested by experimenituré.

The relationship between optimized lattice constainperovskites and the ionic
radiusr was shown in Fig. 1. The data could be fittedhaslinear functions = 3.10181
+ 1.4058r anda = 2.9369 + 1.5179, with the correlation coefficient 0.98 and 0.99,
respectively. In these equations, the lattice eomstis expressed in A.

Table 1: The optimized lattice constants a (A) and volum@¥) of 10 ideal cubic
perovskites. Experimental data (if available) dwen in the parenthesis.

Formule Lattice g\onstana Volume V (&%) Band gap E g (e)
(A)

KBeFz: 3.671¢ 49.487: 10.687:
KMgF3 3.984" 63.267! 9.496:
KCaF: 4.417" 86.043¢ 8.437"
KSrFz 4.701( 103.891 8.075¢
KBaFz: 5.044" 128.383i 7.248¢
RbBeF: 3.792¢ 54.542! 9.959¢
RbMgF: 4.065¢ 67.213( 9.207¢
RbCaF: 4.459: 88.488! 8.7721
RbSrF: 4.731¢ 105.932 8.283¢
RbBaF: 5.067: 130.102 7.494"
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Figure 1. The optimized lattice constant (symbols) and thiegar approximations as
functions of ionic radius r folAlIAFR; (IA= K, Rb, IIA= Be, Mg, Ca, Sr, Ba) crystals.
Equation of a linear fit is also given in the graph

3.2. Elastic properties
Only three elastic constan®;, Ci,, Cuq are required to describe completely the elastic
properties of cubic crystals. These constants baea calculated with the computational
settings described above. Using these constargsgaimthen estimate quite a number of
important characteristic of the solid, such as btk modulusB, using the following
equation

5= (Cy*2C,)

3
Voigt's shear modulu&, (an upper limit forG values) and Reuss's shear mod@qga
lower limit for G values) were calculated using the elastic cons@nts

— (C,-C,+3C,)

S 5
S._ 4 ,3p
GR Cll_ C12 C44

All the above referenced quantities are collectedrable 2, and the presenting
trends in the groups of the perovskites studietthimwork are visualized in Fig. 2. With
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increasing ionic radius (increasing lattice contstarelasticity modulusB decreases
monotonously, which can be well fitted using ther function.

Table 2: The calculated elastic constants(GPa), bulk moduli B (GPa), and shear

moduli GV (GPa) for 10 cubic perovstike.
Formule Cu Co, Cuy B GV
KBeF: 145.25° 94.82¢ 111.01° 111.63¢ 76.69¢
KMgF3 143.06¢  40.90: 49.83¢ 74.95] 50.33¢
KCaF: 124.08: 18.87¢ 19.22¢ 53.94¢ 32.57"
KSrF: 107.70¢  13.81¢ 11.30: 45.11¢ 25.55¢
KBaF: 87.56¢ 11.02¢  6.261 36.54: 19.06¢
RbBeF: 131.12¢  94.04¢ 10957:  106.40!  73.16(
RbMgF: 129.36! 44.91(  55.70¢ 73.06: 50.31:
RbCaF: 115.75¢  20.20(  22.15¢ 52.05: 32.40:
RbSrF: 101.76:  14.15¢ 13.03: 43.35¢ 25.34(
RbBaF! 84.16¢ 11.09: 7.43] 35.45( 19.07¢

3.3. Electronic properties

Table 1 contains a summary of the band gaps dathddl0O studied perovskites. As seen
from the comparison with the available experimestalctural data, it is consistent with
the experimental lattice constants. Also, all thadgaps data are exhibited in Fig. 3. It is
observed that band gaps reveal a monotonic decngtisancreasing atomic number.
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Figure 2. Calculated values of the elastic constants (sysitamd their linear fits (lines)
of ionic radius r folAlIAF; (IA= K, Rb, lIA= Be, Mg, Ca, Sr, Ba) crystals. Equations of
the linear fits and the correlation coefficients atso given in the graph.
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Figure 3. Calculated values of the band gap (symbols) heil linear fits (lines) of ionic

radius r forlAlIAF; (IA= K, Rb,lIA= Be, Mg, Ca, Sr, Ba) crystals. Equations of thedr
fits and the correlation coefficients are also giirethe graph.

4. Conclusions

Detailed ab initio calculations of the structuralectronic and elastic properties of 10
fluoroperovskitesAllIAF; (IA = K, Rb; IIA = Be, Mg, Ca, Sr, Ba) have been performed in
the present paper. Aggregate analysis of the abmmioned properties exhibited
correlation between the lattice constants, elastitstants, band gaps and atomic number
of alkaline-earth metals: increasing of the atomienber of Be, Mg, Ca, Sr and Ba is
followed by the linear growth of lattice constarisear decrease of elastic constants and
decline of band gaps. Hence, the alkaline-eartlalme&lement which is in the center of
crystal are the main factors for the structurahset and electronic properties of
perovskite.
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