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Abstract. In this paper the effects of uniform magnetic fielua viscous, incompressible
fluid past a spherical and permeable aggregatebbas discussed using Brinkman’s
equation in the porous region and the Stokes emuati the external region. A uniform

magnetic field is applied transverse to the flfi@v. At the interface of the porous

region and the clear fluid stress jump boundarydid@n for tangential stresses,

continuity of normal stress and continuity of v@tg components are used. Normalized
drag and normalized torque are calculated for wiffe flows using Faxen's law. It is

observed that the increase or decrease of the fipeshadrag and normalized torque
depends on the stress jump coefficient due teetfeet of magnetic field with variable

permeability.

Keywords: Stokes flow, Brinkman'’s equation, stress jump fioeht, Normalized drag,
Faxen’s law.

1. Introduction

Science never gets more interesting than whenraisdeith objects in motion. And when
it talks about the flow of a fluid, the outcomeeigen better. With various engineering and
geophysical applications such as enhanced oil ergpstudy of geothermal reservoirs,
drying of porous solids, combustion in an inert qu@ matrix, adding to the
environmental applications like study of floodsideerosion and underground spreading
of chemical wastes, the flow of a viscous fluid lahsays remained a ‘paradise’ for the
most brilliant heads on the planet.

Magneto-hydrodynamic (MHD) is the branch of contimu mechanics which
deals with the flow of electrically conducting fiisi in electric and magnetic fields. Many
natural phenomena and engineering problems arehwaming subjected to an MHD
analysis. The phenomenon of chemical agglomerglimys a vital role in fluid dynamics
due to its humungous industrial applications, whenpled with the flow of a viscous
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fluid through a porous medium. The term ‘agglomierdtrefers to the process of
building larger bodies from smaller particles.

Evidently, this process of agglomeration standstl@s basic need in the
manufacture of many products like tablets, feeilizpellets, fly ash and charcoal
briquetted. The immersion of permeable agglomeliaté®eir processing media results in
progressive infiltration by the fluids. This phenemon was observed and monitored
earlier in the case of Silica, Calcium Carbonatarb®n black and Titanium dioxide
agglomerate [5,18]. Kinetics of dispersion of spaagglomerates in simple shear flow
was put into a deep research by Bohin et al [6Hrdglynamic analysis of porous spheres
with infiltrated peripheral shells in linear flouefds was done by Levresse et al.[19]. A
huge interest in flow past spherical boundariesrgett with the pioneering work of
Hasimoto[12], who made a detailed study on axisytrimdlow past a rigid sphere.
Subsequently, many scientists and tech-enthuskzgsn researching and numerous
papers appeared on this topic [8,31]. Several ssugfi the flow past and with non-porous
bodies are deficient mainly to low Reynolds numb€his low Reynolds number
hydrodynamics was explained by Happel et al [1Heltz’'s theorem on the Stokes’
equalize was derived by Hasimoto[13]. The flow diuad with low Reynolds number
past a porous spherical shell and the Stokes’ flast a porous particle were described in
depth by Jones [15] and Higden et al [14]. Nealel §21] and Qin et al [32] discussed
the problem of creeping flow past a permeable sphehile Pop and Ingham [27]
examined the problem of flow past a sphere embettdacorous medium based on the
Brinkman model. Stokes flow past a porous spheneguBrinkman’s model invoked a
specific interest in Padmavathi et al [24], who madmeticulous study on the same.

Beavers and Joseph [1] have proposed an empitipaflenv condition at the
interface of a plane boundary for the rectilindamfof a viscous fluid through a two
dimensional parallel channel. Saffman [30] addetimflow condition (k — Q) for the

tangential velocity at the interface. Ochoa — Tapiel Whitaker [22,23] suggested,
recently, a stress jump boundary condition at kel porous interface, where the porous
region is governed by Brinkman'’s equation.

Kuznetsov [16,17] used this stress jump boundamydition at the interface
between a porous medium and a clear fluid to dssthus flow in channels partially filled
with porous medium. Recently, this stress jump d@mm was applied by Raja Sekhar
and Sano [28] for two-dimensional viscous flow irgmanular material with a void of
arbitrary shape. Bhattacharyya and Raja Sekhal [38e also used the stress jump
condition for the viscous flow past a porous sphsithh an impermeable core and a
porous spherical shell. Of late, Bhattacharyya d#jcussed the effect of the moment
transfer condition at the interface of creepingvfloast a spherical permeable aggregate.
Since then, a number of researches have exploeetiotiv of an electrically conducting
fluid through channels (ducts) because of its irtgrdgrapplication in MHD generators,
pumps, accelerators, and flow meters.

In this paper, we consider a uniform magnetic fietdthe flow past a porous
spherical aggregate using Brinkman’'s Model in a&aiss incompressible fluid. At the
interface of the porous liquid region, the stresag boundary for the tangential stresses,
the continuity of normal stresses and the contynuwif velocity components are
employed. Normalized drag and normalized torque dam@ved for various flows like
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uniform flow, doublet in a uniform flow and rotlesing Faxen’'s law. The significant
effects and observations are discussed usingdhee§.

2. Mathematical formulation
Consider an arbitrary Stokes flow of a viscous teleally conducting incompressible

fluid, past a stationary porous sphere with radias An uniform magnetic field is
applied to the flow field with magnetic inductidd,. The governing equation of the

flow inside the porous regidn <a) is given by Brinkman’s equation

Up, :mqu_%ql_Ongl (1)

[g, =0 (2)
where islthe coefficient of viscosity,k >0 is the permeability of the porous region,
q, is the volume rate of flow per unit cross sectoea , p, is the pressureg is the
fluid conductivity and B, is the electromagnetic induction. The flow in thee flow
region (r >a) is governed by the Stokes equation

Op, = p0%q, - 0B;q, 3

Ug,=0 (4)
wheregq, is the velocity andp, is the pressure. Introducing the transformation
non dimensionalizéhe physical quantities

=l g =% p= Py (5)

a q 1o,/ a H
where the subscripk =i,€ indicate the flow inside the porous region andsiuig the
porous region respectivelyg, is the velocity of the basic flowM is the magnetic

parameter.

Hence the governing equations in non-dimensionah i@ porous region are
Op, = (0% -12)g, (6)
Og,=0 (7

where Ii2 = az(% + Mj is the characteristic measure of permeabiliy & the free

flow region,
Op, = (02 -12)g, ®
Ogq,=0 )

where 12 =a*M is the characteristic measure of magnetic figith characteristic
radiusa .

Let the velocity components in spherical coordinatstem (r,ﬁ,q)) be
(qr ,qg,qw) and the corresponding stress components are biven
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T, =-pr2u’ (10)
or

_ [19q, _q, aqg}
T,=y=——- 4+ 11
0 'U[r 06 r or (D
T o=yt 9% _% % (12)
v rsind og r or

3. Boundary condition

Beavers and Joseph [1] proposed a semi-empirigabslindary condition that allows a
non-zero velocity at the interface. They used Dartgw to describe the flow in the

porous medium which does not allow relating anyrtataury layer region with the porous
region close to the interface. Due to this, theopsrregion is described by Darcy-
Brinkman equation here, instead of Darcy’'s law. &yplying a sophisticated volume
averaging technique, Ochoa-Tapia and Whitaker [28]e shown that the process of
matching the Brinkman-extended Darcy's law to thek8&8s equation requires a
discontinuity in the stress but retains the coritinwf the velocity. Therefore, an

appropriate stress jump boundary condition intreduby Ochoa-Tapia and Whitaker
[22] for the tangential stress along with the comity of the velocity components and
that of the normal stresses are used in this pmble

i) Continuity of the velocity components ar= a

9°=q' (13)
if) Continuity of the normal stress an=a
Te=T! (14)
The stress jump boundary condition for the tangéstresses
oq, 0g; _ B
o _ZHe -~ 15
o o ko (15)
dq. dq: .
%%, % _ B (15)
or or Kk

wherek, =a/4/I>—Ma’ and S is the stress jump coefficient.
iif) Condition at infinity: Letq = gq, +q" wheregq, is the velocity of the basic flow

and g" is the disturbance in the presence of porous splieeng” -~ 0 or q — q,
aslr —» oo

4. Method of solution

To solve the flow inside the porous region, Rajkhse et al. [29] have shown the
completeness of a representation of the Brinkmeanqisation. For the flow inside the
porous region,

q' =CurlCurl (rAi )+ Curl (rBi ) (17)
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i a i
p=p O -17)A) (18)
wherel? = az[% +M jand A, B' are scalars that satisfy? (DZ -12 )Ai =0 and
(0?-12)B' =0
For the velocity and pressure outside the porohsrsp which are due to Stokes flow,
q° =CurlCurl (rAe)+ Curl (rBe) (19)
e a e
p* = 1@ -1 A°) (20)

where IZ=a*M and A°, B® are scalars such thaﬂz(Dz—Ij)Ae=O and
(02-12)B° = 0.

The representations given in equations (17) anyl g@Pport the following general form
for the velocity components.

1

qr :_? LA (21)
10 0 0B
=———(rA)+cscd— 22
% raear( ) op (2)
1 00 0B
= ——(rA)-= 23
% rsinﬁaqoar( )=%6 (3)
1 o(_. 0 9° L
where L=———|sind— |+cs¢ 8— which is the transverse part of the
singd 08 1z Rl

Laplacian ir(r,ﬁ, qo) coordinate system.

Since we are considering an arbitrary Stokes flatthout any singularities as
basic flow, the velocity corresponding to the bdksia is

q° =CurlCurl (rA°)+ Curl (rBO) (24)
A° andB° are given by

A1.6.9)= Y (ar +8,1,0.06,6.9 25)

B°(,0,0) =3 (0, 1,00, (6.0) (26)
where )

5,(6,0 = Y. P"(&)(A,, cosmp+ B, sinmg) (27)

T.(6,0 =Y P"(&)(C,, cosmp+ D, sinmg) (28)
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m

are the spherical harmonics agd= cos@,P" is the associated Legendre polynomial.
a,.p.,.o,, A, B, C,, andD, are known constantsf (I.r) is the modified
Bessel function of first kind which is finite a¢m. A° and Bsatisfy 0*A° =0 and
0°B° =0

Due to the presence of the porous sphere, the i@ddibéw in the liquid regionr >a is
represented by

A=Y (o, + 81,000 + a0+ £0,0.0))5,(6.0) (29)
8°=3"(0, 1,01+ 2,9, 0.0, (6.9 30)

where a,, (3, and g, are unknown constants to be determined from thendary

conditions. The scalarsA®and B®for the modified flow, represent the disturbance
caused to the basic flow in the region a due to the presence of the porous sphere. The
forms of A° and B® are assumed as in (29) and (30) by adding theped terms to

the basic flow. A°and B°® satisfy the equationsDz(Dz—I:)Ae:O and

(D2 —I:)Be =0 respectively and the perturbed terms vanishi as « . The velocity
components for the modified flow outside the spferea) become

:in(nﬂ)(anr”‘1 B f(.r)+a,r ™ +’B g,( r)jS 6,9 (31)

0

s = Z{{(n+1)anrn—1 + B [T .(.r)— fn(|er)j_ na.r ™

n=1

—,Br;(legn_l(ler)+?ngn(ler)j } aTq; Unfn(ler)+0'ngn(ler)]} (32)

n=1

d, = i{(n +Da, r"t+ ﬁn(le f(l.r)- fn(|ef)j —na,r

—ﬂ;( a0+ g, r)jcsoe‘fqo } aaTg

g, (1.r) is the modified Bessel function of second kinde Fapresentation ofA' and

o f.(.r)+o.g,( r)]} (33)

B' in the porous region < a is

A=Y (erm+3),00)5.6.9 (34)

n=1
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(<)

B' => (v, (1)), (6,9) (35)

n=1
where £,,9, and ), are unknown constants to be determined tteerboundary
conditions.
|.(I.r) is the modified Bessel function of first kind whighfinite at zero.A' and B!
satisfy the equationEZ(D2 —Ii"‘)Ai =0 and (D2 —Ii"‘)Bi =0 respectively. For the
porous region r < a the velocity components can be written as

q =in(n+1)[enr”‘l+%In(lir)}sn (36)
[— = [ n-1 _E _aSn aTn
o) —;{_(nﬂ)fnr +(li|n_1(lir) . In(lir)jén_ Y +csobly, 1, ()] aga}

(37)
[ [ n-1 _E | asn _ aTn
qw—;{_(n+1)£nr +(Iiln_1(lir) rln(lir)jdn_cscﬁ ye VAR(S) ae}

(38)
The unknown constands, 53,,0,, €, O,, and J, can be determined using the
boundary conditions given in (13)-(16).
The boundary conditions given in (13)-(16) on tleenpeable boundary = a, can be
written in terms of the scalard®, B® and A', B' as follows

AS = A (39)
or or
2 Al 2 pe i i
A _OA_BIA A 41)
or or k{r or
0% (., 360 ( i 0
r—(A = A°)=|17 =" | —rA )-12 —(rA° 42
ar3( ) {' rkljar( ) e6r( ) 42)
B =B (43)
03_05 :ﬁBi (44)
or o k

Now using these boundary conditions, the unknowseftioients in (29)-(30) and (34)-
(35) were determined. We have solved the systengudathematica version 8.0.

5. Faxen’s laws for a porous sphere
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Faxen’s laws provide an expression for the dragtarglie acting on the rigid sphere of
radius ‘a’ in an unbounded arbitrary stokes flow. The foizeexerted on the porous
sphere by the fluid in the regian>a and the Torque T are given by

D= TﬂTrfér +T%8, +Tr‘;é¢] a’sind&g (45)
00 r=a
2

T=[[[r1se,-r128,] asinaiaiy (46)
00 r=a

T,,T5 and T,‘; are computed using the equations(5)-(7) and aré imsequations (45)

rr’

and (46) to get the following expressions for daad torque respectively.

8 o 2 »
D= EW[An' +By )+ Aiok]E (47)

8 o > "
= 3 W[Cnl +Dy )+ ClOk]F (48)

Where E = I:[al —% -Bf; +,31'91}

and F = o,[-3f, +1_f,]+0,[-3g, - 1.9,

Now E andF are calculated in terms of known constasmis 5, and 0, . The value of
a,, B, and g, are given in Appendix.

6. Examples

Here we discuss few examples.

® Uniform flow : Consider uniform flowU along x direction.
The basic flow is given byA,,B,) where
U
A = P rcosd (49)
B,=0 (50)
Comparing this(A,,B,) with the equations (25) and (26), we get
Y
== (51)
B =0 (52)
Hence the normalized drag and torque can be widiten
p, =2 =YE (53)
aJ  3a
T,=0 (54)
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The variation of normalized drag with permeability negative and positive values of
stress jump coefficieff has been plotted in Fig.1 and Fig.2 respectivEhese graphs
have been plotted for different values 6f ranging from -0.7 to 0.7 with reference to
Ochoa-Tapia and Whitaker theory.

When the basic flow is uniform (in Fig.1), nornzald drag decreases as the
permeability increases, due to the magnetic field negative stress jump coefficient.
With the presence of a very negligible magnetitdfieghe relation between normalized
drag and permeability depends upon the valuesregsstump coefficienf3. If [ is
positive the normalized drag generally increasds wicrease in permeability, but for
lower values of3, a slight dip is found in normalized drag beftte gradual increase,

as seen in Fig.2. In Fig.3, it is seen that thenadized drag decreases with increasing
permeability and increases with increasing magrietiaction.

(i) Doublet in a uniform flow: A doublet of strengthm is in a uniform flowJ
, at (00,c). The basic flow is given byA,,B,) where

n

m
Ab :? (C_ _)rcose-'-z n+1 n {) (55)
B,=0 (56)
In this case, the corresponding coefficients avergby
_m_U _
a, = Pl anda, = o for n=2 57§
B,=0 for n=z21 (58)
The normalized drag and torque can be written as
D _47E c? ~
Dl = = ( 3 )I (59)
aJ 3 m-a.c
T,=0 (60)

The behaviour of normalized drag with variationpafmeability as well as stress jump
coefficient in doublet in a uniform flow is almosimilar to the case of uniform flow as
shown in Fig.4. It is also seen from Fig.5 that tlemalized drag increases gradually
with increasing permeability for lower values ofgnatic field induction.

(i)  Rotlet: Consider a rotlet of streng{éﬁz— at (00,c),(c>a) whose axis is
T

along the positive direction of thgaxis. The expression fofy, and B, are

- ﬂu;[n(n_'_l)cnﬂ 2 (§)sing (61)
i 71121;[(n+1) wzlP (§)sing (62)

In this case, the corresponding coefficients avergby
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a,= izi 163
2c” 8ru
£ =0 (64)
o=t P -
2c® 8ru
Hence the normalized drag and torque can be widiten
) . .
— + ~
D1 - D - Ie (al al /2 ﬂlgl) | (66)
Fa 3a,
2c?
-3f, + +0.(-3q, - R
Tl - ;I- 5 - a-l( 3f1 |ef0) Jl( 3gl IegO) J (67)
F,a’/2c 30,

As seen in Fig.6, normalized drag in rotlet deses as the permeability
increases for negative stress jump coefficient emlin the presence of a negligible
magnetic field. The normalized drag is observedradually increase with increase in
permeability, as shown in Fig.7, but for lower pivsi values of 3 , a slight dip is found

in the normalized drag before the gradual incrgast]ike the one seen in uniform flow.

When a graph is plotted between normalized dragpammeability (Fig.8) in the
presence of a negligible magnetic field in a rottee increase in drag with respect to
permeability is very negligible. However, thereasnoticeable rise of drag when the
magnetic field is increased gradually.

Normalized torque is observed from Fig.9 to Fig.Mormalized torque
decreases as permeability increases and the ratecofment of torque increases with
increase in stress jump coefficient owing to thagnetic field is shown in Fig.9. Fig.10
represents the increases of torque for the negstiiegs jump coefficient with respect to
the permeability (various magnetic induction).

For the various magnetic induction, the normalizetue decreases as the
permeability increases with constant positive stijgsnp coefficient, is represented in
Fig.11. For the constant negative stress jump iieft the normalized torque increases
for various magnetic induction as the permeabitityeases is given in Fig.12.

Normalized torque decreases for increasing pdrilityaas well as the
coefficient of viscosity is given in Fig.13. Agaitme torque decreases for various
electrical conductivity with respect to the permbgband the rate of decrement is
depends on the decrease in electrical conducts/gpown in Fig.14.

7. Results and Conclusion
In this paper we have discussed the effect of formimagnetic field on the flow past a
porous sphere of radida’, considering Brinkman equation in the porousaergand
stokes flow in the liquid region. At the porousuid interface, the stress jump condition
for tangential stresses, continuity for normal stes and continuity of velocity
components have been used. The effect of stregs gwefficient due to magnetic field
on the flow quantities normalized drag and nornealizorque has been observed for
different flows like uniform flow, doublet in unifan flow and rotlet.
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When the basic flow is uniform, the normalized gdrdecreases as the
permeability increases in the presence of a nddgighagnetic field for varying negative
stress jump coefficient. But for positive stresmju coefficient, the normalized drag
increases with increasing permeability with theseffof magnetic induction whereas in
the case of varying magnetic induction the drageBses as the permeability increases.
For increasing magnetic induction drag increasestha graph plotted or drag against
magnetic induction for varioug does not give any significant difference.

The behaviour of normalized drag in doublet im@dt same in uniform flow.
Fig.4 shows that the normalized drag increasegeaseability increases . When the
basic flow is rotlet the normalized drag decredsesiegative stress jump coefficient as
the permeability increases. But the normalized dnareases for positivg is shown in

Fig.7. The normalized drag decreases for increasliectrical conductivity with respect
to the increasing permeability. Normalized torqoeréases for increasing stress jump
coefficient is represented in Fig.9 & Fig.10. Evitg, magnetic field plays a significant
role in the flow of fluids through a porous sphdrighly affecting the nature of drag.

As far as the behaviour of torque is concernedieitreases gradually as the
permeability increases in rotlet for varying valuek stress jump coefficient, when
exposed to a magnetic field. However, for the riegastress jump coefficient the
normalized torque increases for the increasing eahility. The graph for various
permeability does not affect the torque. In theeca$ magnetic induction torque
decreases for positive stress jump coefficient muteases for negative stress jump
coefficient. Normalized torque decreases for varigiscous coefficient and electrical
conductivity .

Hence it is observed that magnetic field playstal vole while studying viscous
flow problems for a porous sphere involving Brinkmequation in porous region and
Stokes equation in the free flow region. It highlfects the physical quantities such as
the drag and torque of the flow. The interest in IMHAuid flow stems because of its
enormous application in distinguished devices swash MHD power generators,
accelerators, centrifugal separation of matter ffluid, fluid droplet sprays, purification
of crude oil, petroleum industry, polymer techngl@nd so forth. The findings may be
useful for the study of movement of oil, gas andewahrough the reservoirs of an oil
field or a gas field, in the migration of undergnduwater and in the filtration and water
purification processes. The outcomes of this refeare also of great importance in
geophysics in the study of interaction of the gegmedic field with fluid in the
geothermal region.
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Magnetohydrodynamic Flow Past a Porous Sphericgtdgate with Stress Jur
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