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  Abstract. In this paper the effects of uniform magnetic field on a viscous, incompressible 
fluid past a spherical and permeable aggregate has been discussed using Brinkman’s 
equation in the porous region and the Stokes equation in the external region. A uniform 
magnetic field is applied transverse  to the fluid flow. At the interface of the porous 
region and the clear fluid stress jump boundary condition for tangential stresses, 
continuity of  normal stress and continuity of velocity components are used. Normalized 
drag and normalized torque are calculated for different flows using Faxen’s law. It is 
observed that the increase or decrease of the normalized drag and normalized torque  
depends  on the stress jump coefficient due to the effect of magnetic field with variable 
permeability.  
 
Keywords: Stokes flow, Brinkman’s equation, stress jump coefficient, Normalized drag, 
Faxen’s law. 

1. Introduction 
Science never gets more interesting than when it deals with objects in motion. And when 
it talks about the flow of a fluid, the outcome is even better. With various engineering and 
geophysical applications such as enhanced oil recovery, study of geothermal reservoirs, 
drying of porous solids, combustion in an inert porous matrix, adding to the 
environmental applications like study of floods, land erosion and underground spreading 
of chemical wastes, the flow of a viscous fluid has always remained a ‘paradise’ for the 
most brilliant heads on the planet. 

Magneto-hydrodynamic (MHD) is the branch of continuum mechanics which 
deals with the flow of electrically conducting fluids in electric and magnetic fields. Many 
natural phenomena and engineering problems are worth being subjected to an MHD 
analysis. The phenomenon of chemical agglomeration plays a vital role in fluid dynamics 
due to its humungous industrial applications, when coupled with the flow of a viscous 
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fluid through a porous medium. The term ‘agglomeration’ refers to the process of 
building larger bodies from smaller particles.  

Evidently, this process of agglomeration stands as the basic need in the 
manufacture of many products like tablets, fertilizer pellets, fly ash and charcoal 
briquetted. The immersion of permeable agglomerates in their processing media results in 
progressive infiltration by the fluids. This phenomenon was observed and monitored 
earlier in the case of Silica, Calcium Carbonate, Carbon black and Titanium dioxide 
agglomerate [5,18]. Kinetics of dispersion of sparse agglomerates in simple shear flow 
was put into a deep research by Bohin et al [6]. Hydrodynamic analysis of porous spheres 
with infiltrated peripheral shells in linear flow fields was done by Levresse et al.[19]. A 
huge interest in flow past spherical boundaries emerged with the pioneering work of 
Hasimoto[12], who made a detailed study on axisymmetric flow past a rigid sphere. 
Subsequently, many scientists and tech-enthusiasts began researching and numerous 
papers appeared on this topic [8,31]. Several studies of the flow past and with non-porous 
bodies are deficient mainly to low Reynolds number. This low Reynolds number 
hydrodynamics was explained by Happel et al [11]. Lorentz’s theorem on the Stokes’ 
equalize was derived by Hasimoto[13]. The flow of a fluid with low Reynolds number 
past a porous spherical shell and the Stokes’ flow past a porous particle were described in 
depth by Jones [15] and Higden et al [14]. Neale et al [21] and Qin et al [32] discussed 
the problem of creeping flow past a permeable sphere while Pop and Ingham [27] 
examined the problem of flow past a sphere embedded in a porous medium based on the 
Brinkman model. Stokes flow past a porous sphere using Brinkman’s model invoked a 
specific interest in Padmavathi et al [24], who made a meticulous study on the same.  

Beavers and Joseph [1] have proposed an empirical slip flow condition at the 
interface of a plane boundary for the rectilinear flow of a viscous fluid through a two 
dimensional parallel channel. Saffman [30] added a slip flow condition )0( →k  for the 
tangential velocity at the interface. Ochoa – Tapia and Whitaker [22,23] suggested, 
recently, a stress jump boundary condition at the fluid porous interface, where the porous 
region is governed by Brinkman’s equation. 

Kuznetsov [16,17] used this stress jump boundary condition at the interface 
between a porous medium and a clear fluid to discuss the flow in channels partially filled 
with porous medium. Recently, this stress jump condition was applied by Raja Sekhar 
and Sano [28] for two-dimensional viscous flow in a granular material with a void of 
arbitrary shape. Bhattacharyya and Raja Sekhar [2,3] have also used the stress jump 
condition for the viscous flow past a porous sphere with an impermeable core and a 
porous spherical shell. Of late, Bhattacharyya [4] discussed the effect of the moment 
transfer condition at the interface of creeping flow past a spherical permeable aggregate. 
Since then, a number of researches have explored the flow of an electrically conducting 
fluid through channels (ducts) because of its important application in MHD generators, 
pumps, accelerators, and flow meters.   

In this paper, we consider a uniform magnetic field on the flow past a porous 
spherical aggregate using Brinkman’s Model in a viscous incompressible fluid. At the 
interface of the porous liquid region, the stress jump boundary for the tangential stresses, 
the continuity of normal stresses and the continuity of velocity components are 
employed. Normalized drag and normalized torque are derived for various flows like 
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uniform flow, doublet in a uniform flow  and rotlet using Faxen’s law. The significant 
effects and observations are discussed using the figures.  
 
2. Mathematical formulation 
Consider an arbitrary Stokes flow of a viscous electrically conducting incompressible 
fluid, past a stationary porous sphere with radius ''a . An uniform magnetic field is 
applied to  the flow field with magnetic induction 0B .  The governing equation of the 

flow inside the porous region )( ar <   is given by Brinkman’s equation 

1
2
011

2
1 qq Bq

k
p σµµ −−∇=∇                               (1) 

0. 1 =∇q                               (2) 

where µ  is the coefficient of viscosity,  0>k  is the permeability of the porous region, 

1q  is the volume rate of flow per unit cross section area , 1p  is the pressure, σ  is the 

fluid conductivity and 0B  is the electromagnetic induction. The flow in the free flow 

region )( ar >   is governed by the Stokes equation 

2
2
02

2
2 qq Bp σµ −∇=∇                 (3) 

0. =∇
2

q                   (4) 

where 2q  is the velocity  and 2p  is the pressure.    Introducing the transformation for 
non dimensionalize the physical quantities 

a

r
r =~ , 

0

2,1

q

q
q =x , 

aq

p
px /0

2,1

µ
=  , 

µ
σ 2

0B
M =             (5) 

where the subscript eix ,=  indicate the flow inside the porous region and outside the 

porous region respectively. 0q  is the velocity of the basic flow. M  is the magnetic 

parameter. 
Hence the governing equations in non-dimensional form in porous region are 

( ) iii lp q
22 −∇=∇                (6) 

0. =∇ iq                    (7) 

where   






 += M
k

ali

122     is the characteristic measure of permeability and in the free 

flow region, 

( ) eee lp q
22 −∇=∇                (8) 

0. =∇ eq                  (9) 

where Male
22 =    is the characteristic measure of magnetic field with characteristic 

radius a . 

Let the velocity components in spherical coordinate system ( )φθ ,,r   be 

( )φθ qqqr ,,  and the corresponding stress components are given by 
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3. Boundary condition 
Beavers and Joseph [1] proposed a semi-empirical slip boundary condition that allows a 
non-zero velocity at the interface. They used Darcy’s law to describe the flow in the 
porous medium which does not allow relating any boundary layer region with the porous 
region close to the interface. Due to this, the porous region is described by Darcy-
Brinkman equation here, instead of Darcy’s law. By applying a sophisticated volume 
averaging technique, Ochoa-Tapia and Whitaker [22] have shown that the process of 
matching the Brinkman-extended Darcy’s law to the Stokes equation requires a 
discontinuity in the stress but retains the continuity of the velocity. Therefore, an 
appropriate stress jump boundary condition introduced by Ochoa-Tapia and Whitaker 
[22] for the tangential stress along with the continuity of the velocity components and 
that of the normal stresses are used in this problem. 
i) Continuity of the velocity components on ar =   

ie
qq =                                                                                                               (13) 

ii) Continuity of the normal stress on ar =   
i

rr
e

rr TT =                                                                                                              (14) 
The stress jump boundary condition for the tangential stresses 

i
ei

q
kr

q

r

q
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θθ β
1

=
∂

∂
−

∂
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                               (15) 

i
ei

q
kr

q

r

q
φ

φφ β
1

=
∂

∂
−

∂
∂

               (16) 

where 22
1 / Malak i −=  and β   is the stress jump coefficient. 

iii) Condition at infinity: Let ∗+= qqq 0  where 0q  is   the   velocity of  the   basic flow 

and ∗q  is the disturbance in the presence of porous sphere, then 0→∗
q   or   0qq →   

as ∞→r        
 
4. Method of solution 
To solve the flow inside the porous region, Raja sekhar et al. [29] have shown the 
completeness of a representation of the Brinkman’s equation. For the flow inside the 
porous region,  

( ) ( )iii BCurlACurlCurl rr +=q                                                                      (17) 
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( )i
i

i Alr
r

p )( 22 −∇
∂
∂= µ                (18) 

where 






 += M
k

ali

122 and iA ,
iB   are  scalars that satisfy ( ) 0222 =−∇∇ i

i Al   and   

( ) 022 =−∇ i
i Bl  

For the velocity and pressure outside the porous sphere, which are due to Stokes flow, 

( ) ( )eee BCurlACurlCurl rr +=q                                                                     (19) 

( )e
e

e Alr
r

p )( 22 −∇
∂
∂= µ               (20) 

where Male
22 =  and eA ,  eB   are scalars such that ( ) 0222 =−∇∇ e

e Al  and  

( ) 022 =−∇ e
e Bl . 

The representations given in equations (17) and (19) support the following general form 
for the velocity components. 

LA
r

qr

1−=                                                                                                        (21) 
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rA
rr
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where 
2

2
2cscsin

sin

1

φ
θ

θ
θ

θθ ∂
∂+









∂
∂

∂
∂=L  which is the transverse part of the 

Laplacian in( )φθ ,,r  coordinate system. 
 Since we are considering an arbitrary Stokes flow without any singularities as 
basic flow, the velocity corresponding to the basic flow is 

( ) ( )000 BCurlACurlCurl rr +=q                  (24)   
0A  and �� are given by 

( ) ),()(),,(
1
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where 
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n

m
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are the spherical harmonics and m
nP,cosθξ =  is the associated Legendre polynomial. 

nn βα , , ,nσ   nmA  , nmB  , nmC  and nmD  are known constants. )( rlf en   is the modified 

Bessel function of first kind which is finite  at zero. 0A  and  0B satisfy 004 =∇ A  and  

002 =∇ B .  

Due to the presence of the porous sphere, the modified flow in the liquid region  ar >  is 
represented by 

( ) ),()()(
1

')1(' φθβαβα n
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n
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e TrlgrlfB ∑

∞

=
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where '
nα , '

nβ  and '
nσ  are unknown constants to be determined from the boundary 

conditions. The scalars eA and eB for the modified flow, represent the disturbance 
caused to the basic flow in the region ar >  due to the presence of the porous sphere. The 

forms of  eA  and eB  are assumed as in (29) and (30) by adding the perturbed terms to 

the basic flow. eA and eB  satisfy the equations ( ) 0222 =−∇∇ e
e Al  and 

( ) 022 =−∇ e
e Bl  respectively and  the perturbed terms vanish as ∞→r . The velocity 

components for the modified flow outside the sphere )( ar >  become  
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)( rlg en  is the modified Bessel function of second kind. The representation of  iA  and  
iB  in the porous region ar <   is  
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where nn δε ,  and  nγ   are   unknown   constants  to be determined from the boundary 

conditions. 

)( rll in  is the modified Bessel function of first kind which is finite at zero. iA  and  iB  

satisfy the equations ( ) 0222 =−∇∇ i
i Al     and       ( ) 022 =−∇ i

i Bl  respectively. For the 

porous region   ar <  the velocity components can be written as  
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The unknown constants'
nα ,

'
nβ ,

'
nσ , nε  nδ , and  '

nγ  can be determined using the 

boundary conditions given in (13)-(16). 
The boundary conditions given in (13)-(16) on the permeable boundary ar = , can be 

written in terms of the scalars eA ,
eB  and iA ,

iB  as follows 
ie AA =                (39) 
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∂
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Now using these boundary conditions, the unknown co-efficients in (29)-(30) and (34)-
(35) were determined. We have solved the system using Mathematica version 8.0. 
 
5. Faxen’s laws for a porous sphere 
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Faxen’s laws provide an expression for the drag and torque acting on the rigid sphere of 
radius ‘a ’ in an unbounded arbitrary stokes flow. The force D exerted on the porous 
sphere by the fluid in the region ar >   and the Torque T are given by 

[ ] φθθ
π π

φφθθ ddaeTeTeTD
ar

e
r

e
rr

e
rr sinˆˆˆ 2

2

0 0 =
∫ ∫ ++=            (45) 

[ ] φθθ
π π

θφφθ ddaerTerTT
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e
r

e
r sinˆˆ 2

2

0 0 =
∫ ∫ −=                                                         (46) 

e
rrT ,

e
rT θ  and e

rT φ are computed using the equations(5)-(7) and are used in equations (45) 

and  (46) to get the following expressions for drag and torque respectively. 
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1
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2
gflE e ββαα  

and  [ ] [ ]01
'
1011 33 glgflfF ee −−++−= σσ  

Now  E  and F  are calculated in terms of known  constants 1α , 1β and 1σ . The value of 
'
1α ,

'
1β  and '

1σ  are given in Appendix. 
 
6. Examples  

Here we discuss few examples. 

(i) Uniform flow : Consider uniform flow  U  along x  direction. 
The basic flow is given by ),( 00 BA  where 

θcos
20 r
U

A =                                                                           (49) 

00 =B                                (50) 

Comparing this  ),( 00 BA  with the equations (25) and (26), we get 

21

U=α                   (51) 

01 =β                      (52) 
Hence the normalized drag and torque can be written as 

1
1 3

ˆ8

α
π

µ
iE

Ua

D
D ==                          (53) 

01 =T                 (54) 
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The variation of normalized drag with permeability for negative and positive values of 
stress jump coefficientβ  has been plotted in Fig.1 and Fig.2 respectively. These graphs 

have been plotted for different values of β  ranging from -0.7 to 0.7 with reference to 
Ochoa-Tapia and Whitaker theory. 
 When the basic flow is uniform (in Fig.1), normalized drag decreases as the 
permeability increases, due to the magnetic field and negative stress jump coefficient. 
With the presence of a very negligible magnetic field, the relation between normalized 

drag and permeability depends upon the values of stress jump coefficient	 β . If β  is 
positive the normalized drag generally increases with increase in permeability, but for 
lower values of β ,  a slight dip is found in normalized drag before the gradual increase, 
as seen in Fig.2. In Fig.3, it is seen that the normalized drag decreases with increasing 
permeability and increases with increasing magnetic induction.  
 

(ii)  Doublet in a uniform flow: A doublet of strength m  is in a uniform flowU
, at ),0,0( c . The basic flow is given by ),( 00 BA  where  

∑
∞

=
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In this case, the corresponding coefficients are given by 
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U
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1
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01 =β     for 1≥n                 (58) 
The normalized drag and torque can be written as 
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01 =T                 (60) 
The behaviour of normalized drag with variation of permeability as well as stress jump 
coefficient in doublet in a uniform flow is almost similar to the case of uniform flow as 
shown in Fig.4. It is also seen from Fig.5 that the normalized drag increases gradually 
with increasing permeability for lower values of magnetic field induction. 

(iii)  Rotlet: Consider a rotlet of strength
πµ8

2F
 at ),0,0( c , )( ac >  whose axis is 

along the positive direction of the y axis. The  expression for 0A  and 0B  are 
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In this case, the corresponding coefficients are given by 
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Hence the normalized drag and torque can be written as  
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  As seen in Fig.6, normalized drag in rotlet decreases as the permeability 
increases for negative stress jump coefficient values in the presence of a negligible 
magnetic field. The normalized drag is observed to gradually increase with increase in 
permeability, as shown in Fig.7, but for lower positive values of β  ,  a slight dip is found 
in the normalized drag before the gradual increase, just like the one seen in uniform flow. 
 When a graph is plotted between normalized drag and permeability (Fig.8) in the 
presence of a negligible magnetic field in a rotlet, the increase in drag with respect to 
permeability is very negligible. However, there is a noticeable rise of drag when the 
magnetic field is increased gradually.  

Normalized torque is observed from Fig.9 to Fig.14. Normalized torque 
decreases as permeability increases and the rate of decrement of torque increases with 
increase in stress jump coefficient owing to the  magnetic field is shown in Fig.9. Fig.10 
represents the increases of torque for the negative stress jump coefficient with respect to 
the permeability (various magnetic induction).  

For the various magnetic induction, the normalized torque decreases as the 
permeability increases with constant positive stress jump coefficient, is represented in 
Fig.11. For the constant negative stress jump coefficient the normalized torque increases 
for various magnetic induction as the permeability increases is given in Fig.12.  

Normalized  torque  decreases for increasing permeability as well as the 
coefficient of viscosity is given in Fig.13. Again the torque decreases for various 
electrical conductivity with respect to the permeability and the rate of decrement is 
depends on the decrease in electrical conductivity is shown in Fig.14.   
 
7. Results and Conclusion 
In this paper we have discussed the effect of a uniform magnetic field on the flow past a  
porous sphere of radius ′��,  considering Brinkman equation  in the porous region and  
stokes flow in the liquid region. At the porous liquid interface, the stress jump condition 
for tangential stresses, continuity for normal stresses and continuity of velocity 
components have been used. The effect of  stress jump coefficient due to magnetic field  
on the flow quantities normalized drag and normalized torque has been observed for 
different flows like uniform flow, doublet in uniform flow  and rotlet.  
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 When the basic flow is uniform, the normalized drag decreases as the 
permeability increases in the presence of a negligible magnetic field for varying negative 
stress jump coefficient. But for positive stress jump coefficient, the normalized drag 
increases with increasing permeability with the effect of magnetic induction whereas in 
the case of varying magnetic induction the drag decreases as the permeability increases. 
For increasing magnetic induction drag increases and the graph plotted or drag against 
magnetic induction for various β  does not give any significant difference. 
  The behaviour of normalized drag in doublet is almost same in uniform flow. 
Fig.4 shows that the  normalized drag increases as permeability increases . When the 
basic flow is rotlet the normalized drag decreases for negative stress jump coefficient as 
the permeability increases. But  the normalized drag increases for positive β   is shown in 
Fig.7. The normalized drag decreases for increasing electrical conductivity with respect 
to the increasing permeability. Normalized torque increases for increasing stress jump 
coefficient is represented in Fig.9 & Fig.10. Evidently, magnetic field plays a significant 
role in the flow of fluids through a porous sphere, highly affecting the nature of drag. 
 As far as the behaviour of torque is concerned, it decreases gradually as the 
permeability increases in rotlet for varying values of stress jump coefficient, when 
exposed to a magnetic field. However, for the negative stress jump coefficient the 
normalized torque increases for the increasing permeability. The graph for various 
permeability does not affect the torque. In the case of magnetic induction torque 
decreases for positive stress jump coefficient and increases for negative stress jump 
coefficient. Normalized torque decreases for various viscous coefficient and electrical 
conductivity .  
 Hence it is observed that magnetic field plays a vital role while studying viscous 
flow problems for a porous sphere involving Brinkman equation in porous region and 
Stokes equation in the free flow region. It highly affects the physical quantities such as 
the drag and torque of the flow. The interest in MHD fluid flow stems because of its 
enormous application in distinguished devices such as MHD power generators, 
accelerators, centrifugal separation of matter from fluid, fluid droplet sprays, purification 
of crude oil, petroleum industry, polymer technology and so forth. The findings may be 
useful for the study of movement of oil, gas and water through the reservoirs of an oil 
field or a gas field, in the migration of underground water and in the filtration and water 
purification processes. The outcomes of this research are also of great importance in 
geophysics in the study of interaction of the geomagnetic field with fluid in the 
geothermal region. 
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Fig. 1. Variation of normalized 
drag with permeability
negative stress jump coefficient 
with 0 1, 1B σ= =
the case of Uniform flow.

Fig. 3. Variation of normalized drag 
with permeability for various 
magnetic induction with

1σ = and 1µ =  
Uniform flow. 
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Variation of normalized 
drag with permeability for 
negative stress jump coefficient 

1, 1= = and 1µ = 	in 

Uniform flow. 

Fig. 2. Variation of normalized 
drag with permeability for positiv
stress jump coefficients with

0 1, 1B σ= = and µ
case of Uniform flow.

Variation of normalized drag 
with permeability for various 
magnetic induction with 0.2β = , 

 in the case of 

Fig. 4. Variation of normalized drag
with permeability for various stress 
jump coefficient 

1µ =  in the case of Doublet in a 
uniform flow. 
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Variation of normalized 
drag with permeability for positive 
stress jump coefficients with

1µ =  	in the 

case of Uniform flow. 

Variation of normalized drag 
with permeability for various stress 

0 1, 1B σ= = and 

in the case of Doublet in a 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Variation of normalized drag with 
permeability for various magnetic 
induction 0.5β =
the case of Doublet in a uniform flow.

Fig. 7. Variation of normalized drag 
with permeability for positive stress 
jump coefficient with

1µ = in the case of Rotlet.
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Variation of normalized drag with 
permeability for various magnetic 

0.5, 1σ = and 1µ =  in 
the case of Doublet in a uniform flow. 

Fig. 6. Variation of normalized drag 
with permeability for negative stress 
jump coefficient with

and 1µ = 	in the case of Rotlet.

 

Variation of normalized drag 
with permeability for positive stress 
jump coefficient with 0 1, 1B σ= = and 

n the case of Rotlet. 

Fig. 8. Variation of normalized drag 
with permeability for various magnetic 
induction 0.5β = , 
	in the case of Rotlet 
 

 

 

Variation of normalized drag 
with permeability for negative stress 
jump coefficient with 0 1, 1B σ= =

in the case of Rotlet. 

Variation of normalized drag 
with permeability for various magnetic 

1σ = and 1µ =
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Fig. 9. Variation of normalized torque 
with permeability for positive stress 
jump coefficient with

and 1µ =  in the case of Rotlet

 

Fig. 11. Variation of normalized 
torque with permeability for various 
magnetic induction with

1σ = and 1µ =
Rotlet  
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Variation of normalized torque 
with permeability for positive stress 
jump coefficient with 0 1, 1B σ= =

n the case of Rotlet 

Fig. 10. Variation of normalized 
torque with permeability for 
negative stress jump coefficient
with 0 1, 1B σ= = and

case of Rotlet 

Variation of normalized 
torque with permeability for various 
magnetic induction with 0.3β = , 

1= in the case of 

Fig. 12. Variation of normalized 
torque with permeability for various 
magnetic induction with 

1σ = and 1µ =  	in the case of 
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Variation of normalized 
permeability for 

coefficient 
and 1µ = in the 

Variation of normalized 
torque with permeability for various 
magnetic induction with 0.3β = − , 

in the case of Rotlet 
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Fig.13. Variation of normalized torque 
with  permeability for various coefficient 

of viscosity with 

0 1B =  	in the case of Rotlet
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Variation of normalized torque 
with  permeability for various coefficient 

 0.3β = , 1σ = and 

in the case of Rotlet 

Fig. 14. Variation of normalized torque 
with permeability 
conductivity with

0 1B =  in the case of Rotlet

 

 

Variation of normalized torque 
permeability  for various electrical 

conductivity with 0.3β = , 1σ = and 

in the case of Rotlet 
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